[1]
|
Goldstein, B., Giroir, B. and Randolph, A. (2005) International Pediatric Sepsis Consensus Conference: Definitions for Sepsis and Organ Dysfunction in Pediatrics. Pediatric Critical Care Medicine, 6, 2-8. https://doi.org/10.1097/01.pcc.0000149131.72248.e6
|
[2]
|
Schlapbach, L.J., Watson, R.S., Sorce, L.R., Argent, A.C., Menon, K., Hall, M.W., et al. (2024) International Consensus Criteria for Pediatric Sepsis and Septic Shock. JAMA, 331, 665-674. https://doi.org/10.1001/jama.2024.0179
|
[3]
|
Yan, C., Xue, G., Zhao, H., Feng, Y., Cui, J. and Yuan, J. (2024) Current Status of Mycoplasma pneumoniae Infection in China. World Journal of Pediatrics, 20, 1-4. https://doi.org/10.1007/s12519-023-00783-x
|
[4]
|
Osthoff, M., Siegemund, M., Balestra, G., Abdul-Aziz, M. and Roberts, J. (2016) Prolonged Administration of β-Lactam Antibiotics—A Comprehensive Review and Critical Appraisal. Swiss Medical Weekly, 146, w14368. https://doi.org/10.4414/smw.2016.14368
|
[5]
|
Seymour, C.W., Gesten, F., Prescott, H.C., Friedrich, M.E., Iwashyna, T.J., Phillips, G.S., et al. (2017) Time to Treatment and Mortality during Mandated Emergency Care for Sepsis. New England Journal of Medicine, 376, 2235-2244. https://doi.org/10.1056/nejmoa1703058
|
[6]
|
Shappell, C.N., Klompas, M., Ochoa, A. and Rhee, C. (2021) Likelihood of Bacterial Infection in Patients Treated with Broad-Spectrum IV Antibiotics in the Emergency Department. Critical Care Medicine, 49, e1144-e1150. https://doi.org/10.1097/ccm.0000000000005090
|
[7]
|
Adembri, C., Novelli, A. and Nobili, S. (2020) Some Suggestions from PK/PD Principles to Contain Resistance in the Clinical Setting—Focus on ICU Patients and Gram-Negative Strains. Antibiotics, 9, Article 676. https://doi.org/10.3390/antibiotics9100676
|
[8]
|
Levy, M.M., Dellinger, R.P., Townsend, S.R., Linde-Zwirble, W.T., Marshall, J.C., Bion, J., et al. (2010) The Surviving Sepsis Campaign: Results of an International Guideline-Based Performance Improvement Program Targeting Severe Sepsis. Critical Care Medicine, 38, 367-374. https://doi.org/10.1097/ccm.0b013e3181cb0cdc
|
[9]
|
Ferrer, R., Artigas, A., Suarez, D., Palencia, E., Levy, M.M., Arenzana, A., et al. (2009) Effectiveness of Treatments for Severe Sepsis: A Prospective, Multicenter, Observational Study. American Journal of Respiratory and Critical Care Medicine, 180, 861-866. https://doi.org/10.1164/rccm.200812-1912oc
|
[10]
|
Liu, V.X., Fielding-Singh, V., Greene, J.D., Baker, J.M., Iwashyna, T.J., Bhattacharya, J., et al. (2017) The Timing of Early Antibiotics and Hospital Mortality in Sepsis. American Journal of Respiratory and Critical Care Medicine, 196, 856-863. https://doi.org/10.1164/rccm.201609-1848oc
|
[11]
|
Whiles, B.B., Deis, A.S. and Simpson, S.Q. (2017) Increased Time to Initial Antimicrobial Administration Is Associated with Progression to Septic Shock in Severe Sepsis Patients. Critical Care Medicine, 45, 623-629. https://doi.org/10.1097/ccm.0000000000002262
|
[12]
|
Kim, R.Y., Ng, A.M., Persaud, A.K., Furmanek, S.P., Kothari, Y.N., Price, J.D., et al. (2018) Antibiotic Timing and Outcomes in Sepsis. The American Journal of the Medical Sciences, 355, 524-529. https://doi.org/10.1016/j.amjms.2018.02.007
|
[13]
|
Ferrer, R., Martin-Loeches, I., Phillips, G., Osborn, T.M., Townsend, S., Dellinger, R.P., et al. (2014) Empiric Antibiotic Treatment Reduces Mortality in Severe Sepsis and Septic Shock from the First Hour: Results from a Guideline-Based Performance Improvement Program. Critical Care Medicine, 42, 1749-1755. https://doi.org/10.1097/ccm.0000000000000330
|
[14]
|
Weiss, S.L., Fitzgerald, J.C., Balamuth, F., Alpern, E.R., Lavelle, J., Chilutti, M., et al. (2014) Delayed Antimicrobial Therapy Increases Mortality and Organ Dysfunction Duration in Pediatric Sepsis. Critical Care Medicine, 42, 2409-2417. https://doi.org/10.1097/ccm.0000000000000509
|
[15]
|
Han, M., Fitzgerald, J.C., Balamuth, F., Keele, L., Alpern, E.R., Lavelle, J., et al. (2017) Association of Delayed Antimicrobial Therapy with One-Year Mortality in Pediatric Sepsis. Shock, 48, 29-35. https://doi.org/10.1097/shk.0000000000000833
|
[16]
|
Sterling, S.A., Miller, W.R., Pryor, J., Puskarich, M.A. and Jones, A.E. (2015) The Impact of Timing of Antibiotics on Outcomes in Severe Sepsis and Septic Shock: A Systematic Review and Meta-Analysis. Critical Care Medicine, 43, 1907-1915. https://doi.org/10.1097/ccm.0000000000001142
|
[17]
|
Abe, T., Kushimoto, S., Tokuda, Y., Phillips, G.S., Rhodes, A., Sugiyama, T., et al. (2019) Implementation of Earlier Antibiotic Administration in Patients with Severe Sepsis and Septic Shock in Japan: A Descriptive Analysis of a Prospective Observational Study. Critical Care, 23, Article No. 360. https://doi.org/10.1186/s13054-019-2644-x
|
[18]
|
Tamma, P.D., Avdic, E., Li, D.X., Dzintars, K. and Cosgrove, S.E. (2017) Association of Adverse Events with Antibiotic Use in Hospitalized Patients. JAMA Internal Medicine, 177, 1308-1315. https://doi.org/10.1001/jamainternmed.2017.1938
|
[19]
|
Weiss, S.L., Peters, M.J., Alhazzani, W., et al. (2020) Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-Associated Organ Dysfunction in Children. Intensive Care Medicine, 46, 10-67.
|
[20]
|
Tabah, A., Bassetti, M., Kollef, M.H., Zahar, J., Paiva, J., Timsit, J., et al. (2019) Antimicrobial De-Escalation in Critically Ill Patients: A Position Statement from a Task Force of the European Society of Intensive Care Medicine (ESICM) and European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Critically Ill Patients Study Group (ESGCIP). Intensive Care Medicine, 46, 245-265. https://doi.org/10.1007/s00134-019-05866-w
|
[21]
|
Folgori, L. and Bielicki, J. (2019) Future Challenges in Pediatric and Neonatal Sepsis: Emerging Pathogens and Antimicrobial Resistance. Journal of Pediatric Intensive Care, 08, 017-024. https://doi.org/10.1055/s-0038-1677535
|
[22]
|
Iroh Tam, P., Musicha, P., Kawaza, K., Cornick, J., Denis, B., Freyne, B., et al. (2018) Emerging Resistance to Empiric Antimicrobial Regimens for Pediatric Bloodstream Infections in Malawi (1998-2017). Clinical Infectious Diseases, 69, 61-68. https://doi.org/10.1093/cid/ciy834
|
[23]
|
De Bus, L., Depuydt, P., Steen, J., Dhaese, S., De Smet, K., Tabah, A., et al. (2020) Antimicrobial De-Escalation in the Critically Ill Patient and Assessment of Clinical Cure: The DIANA Study. Intensive Care Medicine, 46, 1404-1417. https://doi.org/10.1007/s00134-020-06111-5
|
[24]
|
Routsi, C., Gkoufa, A., Arvaniti, K., Kokkoris, S., Tourtoglou, A., Theodorou, V., et al. (2020) De-Escalation of Antimicrobial Therapy in ICU Settings with High Prevalence of Multidrug-Resistant Bacteria: A Multicentre Prospective Observational Cohort Study in Patients with Sepsis or Septic Shock. Journal of Antimicrobial Chemotherapy, 75, 3665-3674. https://doi.org/10.1093/jac/dkaa375
|
[25]
|
Brogan, T.V., Thurm, C., Hersh, A.L., Gerber, J.S., Smith, M.J., Shah, S.S., et al. (2018) Variability in Antibiotic Use across Picus. Pediatric Critical Care Medicine, 19, 519-527. https://doi.org/10.1097/pcc.0000000000001535
|
[26]
|
Chiotos, K., Gerber, J.S. and Himebauch, A.S. (2017) How Can We Optimize Antibiotic Use in the PICU? Pediatric Critical Care Medicine, 18, 903-904. https://doi.org/10.1097/pcc.0000000000001261
|
[27]
|
De Waele, J.J., Schouten, J., Beovic, B., Tabah, A. and Leone, M. (2020) Antimicrobial De-Escalation as Part of Antimicrobial Stewardship in Intensive Care: No Simple Answers to Simple Questions—A Viewpoint of Experts. Intensive Care Medicine, 46, 236-244. https://doi.org/10.1007/s00134-019-05871-z
|
[28]
|
Liu, L., Oza, S., Hogan, D., Perin, J., Rudan, I., Lawn, J.E., et al. (2015) Global, Regional, and National Causes of Child Mortality in 2000-13, with Projections to Inform Post-2015 Priorities: An Updated Systematic Analysis. The Lancet, 385, 430-440. https://doi.org/10.1016/s0140-6736(14)61698-6
|
[29]
|
Laxminarayan, R., Matsoso, P., Pant, S., Brower, C., Røttingen, J., Klugman, K., et al. (2016) Access to Effective Antimicrobials: A Worldwide Challenge. The Lancet, 387, 168-175. https://doi.org/10.1016/s0140-6736(15)00474-2
|
[30]
|
Zaidi, A.K., Huskins, W.C., Thaver, D., Bhutta, Z.A., Abbas, Z. and Goldmann, D.A. (2005) Hospital-Acquired Neonatal Infections in Developing Countries. The Lancet, 365, 1175-1188. https://doi.org/10.1016/s0140-6736(05)71881-x
|
[31]
|
Waters, D., Jawad, I., Ahmad, A., et al. (2011) Aetiology of Community-Acquired Neonatal Sepsis in Low and Middle Income Countries. Journal of Global Health, 1, 154-170.
|
[32]
|
Logan, L.K., Braykov, N.P., Weinstein, R.A. and Laxminarayan, R. (2014) Extended-Spectrum β-Lactamase-Producing and Third-Generation Cephalosporin-Resistant Enterobacteriaceae in Children: Trends in the United States, 1999-2011. Journal of the Pediatric Infectious Diseases Society, 3, 320-328. https://doi.org/10.1093/jpids/piu010
|
[33]
|
Vardakas, K.Z., Tansarli, G.S., Rafailidis, P.I. and Falagas, M.E. (2012) Carbapenems versus Alternative Antibiotics for the Treatment of Bacteraemia Due to Enterobacteriaceae Producing Extended-Spectrum β-Lactamases: A Systematic Review and Meta-Analysis. Journal of Antimicrobial Chemotherapy, 67, 2793-2803. https://doi.org/10.1093/jac/dks301
|
[34]
|
Thomas, R., Ondongo-Ezhet, C., Motsoaledi, N., Sharland, M., Clements, M. and Velaphi, S. (2024) Incidence, Pathogens and Antimicrobial Resistance of Blood and Cerebrospinal Fluid Isolates from a Tertiary Neonatal Unit in South Africa: A 10 Year Retrospective Review. PLOS ONE, 19, e0297371. https://doi.org/10.1371/journal.pone.0297371
|
[35]
|
Mohd Sazlly Lim, S., Zainal Abidin, A., Liew, S.M., Roberts, J.A. and Sime, F.B. (2019) The Global Prevalence of Multidrug-Resistance among Acinetobacter baumannii Causing Hospital-Acquired and Ventilator-Associated Pneumonia and Its Associated Mortality: A Systematic Review and Meta-Analysis. Journal of Infection, 79, 593-600. https://doi.org/10.1016/j.jinf.2019.09.012
|
[36]
|
Hartman, M.E., Linde-Zwirble, W.T., Angus, D.C. and Watson, R.S. (2013) Trends in the Epidemiology of Pediatric Severe Sepsis. Pediatric Critical Care Medicine, 14, 686-693. https://doi.org/10.1097/pcc.0b013e3182917fad
|
[37]
|
Watson, R.S. and Carcillo, J.A. (2005) Scope and Epidemiology of Pediatric Sepsis. Pediatric Critical Care Medicine, 6, S3-S5. https://doi.org/10.1097/01.pcc.0000161289.22464.c3
|
[38]
|
Kumar, A., Roberts, D., Wood, K.E., Light, B., Parrillo, J.E., Sharma, S., et al. (2006) Duration of Hypotension before Initiation of Effective Antimicrobial Therapy Is the Critical Determinant of Survival in Human Septic Shock. Critical Care Medicine, 34, 1589-1596. https://doi.org/10.1097/01.ccm.0000217961.75225.e9
|
[39]
|
Gaieski, D.F., Mikkelsen, M.E., Band, R.A., Pines, J.M., Massone, R., Furia, F.F., et al. (2010) Impact of Time to Antibiotics on Survival in Patients with Severe Sepsis or Septic Shock in Whom Early Goal-Directed Therapy Was Initiated in the Emergency Department. Critical Care Medicine, 38, 1045-1053. https://doi.org/10.1097/ccm.0b013e3181cc4824
|
[40]
|
Weiss, C.H., Persell, S.D., Wunderink, R.G. and Baker, D.W. (2012) Empiric Antibiotic, Mechanical Ventilation, and Central Venous Catheter Duration as Potential Factors Mediating the Effect of a Checklist Prompting Intervention on Mortality: An Exploratory Analysis. BMC Health Services Research, 12, Article No. 198. https://doi.org/10.1186/1472-6963-12-198
|
[41]
|
Garnacho-Montero, J., Gutiérrez-Pizarraya, A., Escoresca-Ortega, A., Corcia-Palomo, Y., Fernández-Delgado, E., Herrera-Melero, I., et al. (2013) De-Escalation of Empirical Therapy Is Associated with Lower Mortality in Patients with Severe Sepsis and Septic Shock. Intensive Care Medicine, 40, 32-40. https://doi.org/10.1007/s00134-013-3077-7
|
[42]
|
Guo, Y., Gao, W., Yang, H., Ma, C. and Sui, S. (2016) De-Escalation of Empiric Antibiotics in Patients with Severe Sepsis or Septic Shock: A Meta-Analysis. Heart & Lung, 45, 454-459. https://doi.org/10.1016/j.hrtlng.2016.06.001
|