|
[1]
|
Dunn, L.T. (2002) Raised Intracranial Pressure. Journal of Neurology, Neurosurgery & Psychiatry, 73, i23-i27. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Mokri, B. (2001) The Monro-Kellie Hypothesis: Applications in CSF Volume Depletion. Neurology, 56, 1746-1748. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Huang, A., Mai, A., Goldberg, J., Samuelson, T., Morgan, W., Herndon, L., et al. (2024) The Benefit of Nocturnal IOP Reduction in Glaucoma, Including Normal Tension Glaucoma. Clinical Ophthalmology, 18, 3153-3160. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Lundberg, N. (1960) Continuous Recording and Control of Ventricular Fluid Pressure in Neurosurgical Practice. Acta psychiatrica Scandinavica. Supplementum, 36, 1-193.
|
|
[5]
|
Jiang, N., Flyax, S., Kurz, W., Jakobi, M., Tasoglu, S., Koch, A.W., et al. (2021) Intracranial Sensors for Continuous Monitoring of Neurophysiology. Advanced Materials Technologies, 6, Article ID: 2100339. [Google Scholar] [CrossRef]
|
|
[6]
|
Evensen, K.B. and Eide, P.K. (2020) Measuring Intracranial Pressure by Invasive, Less Invasive or Non-Invasive Means: Limitations and Avenues for Improvement. Fluids and Barriers of the CNS, 17, Article No. 34. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
武丽敏, 杨悦, 葛顺楠, 屈延. 无创颅内压监测方法研究进展[J/OL]. 空军军医大学学报, 1-17. https://link.cnki.net/urlid/61.1526.R.20240311.1800.011, 2025-04-28.
|
|
[8]
|
Kristiansson, H., Nissborg, E., Bartek, J., Andresen, M., Reinstrup, P. and Romner, B. (2013) Measuring Elevated Intracranial Pressure through Noninvasive Methods: A Review of the Literature. Journal of Neurosurgical Anesthesiology, 25, 372-385. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Toutant, S.M., Klauber, M.R., Marshall, L.F., Toole, B.M., Bowers, S.A., Seelig, J.M., et al. (1984) Absent or Compressed Basal Cisterns on First CT Scan: Ominous Predictors of Outcome in Severe Head Injury. Journal of Neurosurgery, 61, 691-694. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kazimierska, A., Uryga, A., Mataczyński, C., Czosnyka, M., Lang, E.W., Kasprowicz, M., et al. (2023) Relationship between the Shape of Intracranial Pressure Pulse Waveform and Computed Tomography Characteristics in Patients after Traumatic Brain Injury. Critical Care, 27, Article No. 447. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Toledo, J.A., Namias, R. and Milano, M.J. (2021) A Novel Automated Calculation of Basal Cistern Effacement Status on Computed Tomographic Imaging in Traumatic Brain Injury. Cureus, 13, e13144. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Horev, A., Eliav, T., Sherer, I., Biederko, R., Ben-Arie, G., Shelef, I., et al. (2024) Radiological Signs Supporting Idiopathic Intracranial Hypertension in Symptomatic Patients with Lumbar Puncture Opening Pressure < 250 mm. Scientific Reports, 14, Article No. 19450. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Cogswell, P.M., Murphy, M.C., Madhavan, A.A., Bhatti, M.T., Cutsforth-Gregory, J.K., Senjem, M.L., et al. (2022) Features of Idiopathic Intracranial Hypertension on MRI with MR Elastography: Prospective Comparison with Control Individuals and Assessment of Postintervention Changes. American Journal of Roentgenology, 219, 940-951. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Blanco, P. and Abdo-Cuza, A. (2018) Transcranial Doppler ultrasound in neurocritical care. Journal of Ultrasound, 21, 1-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Cardim, D., Robba, C., Bohdanowicz, M., Donnelly, J., Cabella, B., Liu, X., et al. (2016) Non-Invasive Monitoring of Intracranial Pressure Using Transcranial Doppler Ultrasonography: Is It Possible? Neurocritical Care, 25, 473-491. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Cardim, D., Robba, C., Bohdanowicz, M., Donnelly, J., Cabella, B., Liu, X., et al. (2016) Non-Invasive Monitoring of Intracranial Pressure Using Transcranial Doppler Ultrasonography: Is It Possible? Neurocritical Care, 25, 473-491. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
R., P., Gupta, D., Shetty, N., Bhushan, A.K., Haskar, K., Gogineni, S., et al. (2020) Transcranial Doppler for Monitoring and Evaluation of Idiopathic Intracranial Hypertension. Journal of Neurosciences in Rural Practice, 11, 309-314. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Engelhardt, M., Pfadenhauer, K., Zentner, J., Grimmer, S., Wachenfeld-Wahl, C., Heidenreich, P., et al. (2004) Störung der zerebralen Perfusionsreservebei asymptomatischen Patienten mit A. carotisinterna-Stenose: Vergleich von Acetazolamid-SPECT und transkranieller CO2-Dopplersonographie. Zentralblatt für Chirurgie, 129, 178-182. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Connolly, E.S., Rabinstein, A.A., Carhuapoma, J.R., Derdeyn, C.P., Dion, J., Higashida, R.T., et al. (2012) Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke, 43, 1711-1737. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Marchbanks, R.J. (1984) Measurement of Tympanic Membrane Displacement Arising from Aural Cardiovascular Activity, Swallowing, and Intra-Aural Muscle Reflex. Acta Oto-Laryngologica, 98, 119-129. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Uryga, A., Kazimierska, A., Popek, M., Dragan, B., Burzyńska, M., Masalski, M., et al. (2023) Applying Video Motion Magnification to Reveal Spontaneous Tympanic Membrane Displacement as an Indirect Measure of Intracranial Pressure in Patients with Brain Pathologies. Acta Neurochirurgica, 165, 2227-2235. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Campbell-Bell, C.M., Birch, A.A., Vignali, D., Bulters, D. and Marchbanks, R.J. (2018) Reference Intervals for the Evoked Tympanic Membrane Displacement Measurement: A Non-Invasive Measure of Intracranial Pressure. Physiological Measurement, 39, Article Id: 015008. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Burman, R., Shah, A.H., Benveniste, R., Jimsheleishvili, G., Lee, S.H., Loewenstein, D., et al. (2019) Comparing Invasive with MRI‐Derived Intracranial Pressure Measurements in Healthy Elderly and Brain Trauma Cases: A Pilot Study. Journal of Magnetic Resonance Imaging, 50, 975-981. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Raksin, P.B., Alperin, N., Sivaramakrishnan, A., Surapaneni, S. and Lichtor, T. (2003) Noninvasive Intracranial Compliance and Pressure Based on Dynamic Magnetic Resonance Imaging of Blood Flow and Cerebrospinal Fluid Flow: Review of Principles, Implementation, and Other Noninvasive Approaches. Neurosurgical Focus, 14, 1-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Alperin, N.J., Lee, S.H., Loth, F., Raksin, P.B. and Lichtor, T. (2000) MR-Intracranial Pressure (ICP): A Method to Measure Intracranial Elastance and Pressure Noninvasively by Means of MR Imaging: Baboon and Human Study. Radiology, 217, 877-885. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Long, J., Sun, D., Zhou, X., Huang, X., Hu, J., Xia, J., et al. (2020) A Mathematical Model for Predicting Intracranial Pressure Based on Noninvasively Acquired PC-MRI Parameters in Communicating Hydrocephalus. Journal of Clinical Monitoring and Computing, 35, 1325-1332. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ficarrotta, K.R. and Passaglia, C.L. (2020) Intracranial Pressure Modulates Aqueous Humour Dynamics of the Eye. The Journal of Physiology, 598, 403-413. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Stoskuviene, A., Siaudvytyte, L., Januleviciene, I., Vaitkus, A., Simiene, E., Bakstyte, V., et al. (2023) The Relationship between Intracranial Pressure and Visual Field Zones in Normal-Tension Glaucoma Patients. Diagnostics, 13, Article 174. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Lindén, C., Qvarlander, S., Jóhannesson, G., Johansson, E., Östlund, F., Malm, J., et al. (2018) Normal-Tension Glaucoma Has Normal Intracranial Pressure: A Prospective Study of Intracranial Pressure and Intraocular Pressure in Different Body Positions. Ophthalmology, 125, 361-368. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Hayreh, S.S. (1968) Pathogenesis of Oedema of the Optic Disc. Documenta Ophthalmologica, 24, 289-411. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Schott, C.K., Hirzallah, M.I., Heyman, R., Lesky, D.N., Brant, E.B. and Callaway, C.W. (2020) Ultrasound Measurement of Optic Nerve Sheath Diameter Pre-and Post-Lumbar Puncture. The Ultrasound Journal, 12, Article No. 26. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Bastani Viarsagh, S., Agar, A., Lawlor, M., Fraser, C. and Golzan, M. (2024) Non-invasive Assessment of Intracranial Pressure through the Eyes: Current Developments, Limitations, and Future Directions. Frontiers in Neurology, 15, Article 1442821. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kimberly, H.H., Shah, S., Marill, K. and Noble, V. (2008) Correlation of Optic Nerve Sheath Diameter with Direct Measurement of Intracranial Pressure. Academic Emergency Medicine, 15, 201-204. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Blaivas, M. (2003) Elevated Intracranial Pressure Detected by Bedside Emergency Ultrasonography of the Optic Nerve Sheath. Academic Emergency Medicine, 10, 376-381. [Google Scholar] [CrossRef]
|
|
[35]
|
Price, D.A., Grzybowski, A., Eikenberry, J., Januleviciene, I., Verticchio Vercellin, A.C., Mathew, S., et al. (2019) Review of Non-Invasive Intracranial Pressure Measurement Techniques for Ophthalmology Applications. British Journal of Ophthalmology, 104, 887-892. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Amini, A., Kariman, H., Arhami Dolatabadi, A., Hatamabadi, H.R., Derakhshanfar, H., Mansouri, B., et al. (2013) Use of the Sonographic Diameter of Optic Nerve Sheath to Estimate Intracranial Pressure. The American Journal of Emergency Medicine, 31, 236-239. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Kimberly, H. and Noble, V.E. (2008) Using MRI of the Optic Nerve Sheath to Detect Elevated Intracranial Pressure. Critical Care, 12, Article No. 181. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Schuchardt, F.F., Krafft, A.J., Miguel Telega, L., Küchlin, S., Lagrèze, W.A., Demerath, T., et al. (2024) Interrelation between Cerebrospinal Fluid Pressure, Intracranial Morphology and Venous Hemodynamics Studied by 4D Flow MRI. Clinical Neuroradiology, 34, 391-401. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Almudayni, A., Alharbi, M., Chowdhury, A., Ince, J., Alablani, F., Minhas, J.S., et al. (2022) Magnetic Resonance Imaging of the Pulsing Brain: A Systematic Review. Magnetic Resonance Materials in Physics, Biology and Medicine, 36, 3-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Yuh, E.L. and Dillon, W.P. (2010) Intracranial Hypotension and Intracranial Hypertension. Neuroimaging Clinics of North America, 20, 597-617. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Liu, J., Chaij, J., Linguraru, M.G., French, B., Keating, R., Alexander, A.L., et al. (2024) Cranial Bone Thickness and Density Anomalies Quantified from CT Images Can Identify Chronic Increased Intracranial Pressure. Neuroradiology, 66, 1817-1828. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Pandit, A.S., China, M., Jain, R., Jalal, A.H.B., Jelen, M., Joshi, S.B., et al. (2024) The Utility of MRI Radiological Biomarkers in Determining Intracranial Pressure. Scientific Reports, 14, Article No. 23238. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Taşcioğlu, T. (2021) The Diagnostic Value of Cranial MRI Findings in Idiopathic Intracranial Hypertension: Evaluating Radiological Parameters Associated with Intracranial Pressure. Acta Radiologica, 63, 1390-1397. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Raffa, A., Raffa, L., Kamal, Y., Hassan, T., Alaidarous, K., Osaylan, M., et al. (2023) Pediatric Optic Nerve and Globe Measurements on Magnetic Resonance Imaging: Establishing Norms for Children. Acta Radiologica, 64, 2162-2169. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Kula, A.Y., Polat, Y.B., Atasoy, B., Yiğit, M., Kırık, F., Pasin, Ö., et al. (2024) Non-Invasive Estimation of Cerebrospinal Fluid Pressure in Idiopathic Intracranial Hypertension: Magnetic Resonance Imaging Analysis of Optic Nerve and Eyeball. Acta Neurologica Belgica, 125, 61-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Nagarajan, E., Digala, L.P., Sivaraman, M. and Bollu, P.C. (2019) Is Magnetic Resonance Imaging Diffusion Restriction of the Optic Disc Head a New Marker for Idiopathic Intracranial Hypertension? Journal of Neurosciences in Rural Practice, 11, 170-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Alperin, N. and Bagci, A.M. (2018) Spaceflight-induced Visual Impairment and Globe Deformations in Astronauts Are Linked to Orbital Cerebrospinal Fluid Volume Increase. In: Heldt, T., Ed., Intracranial Pressure & Neuromonitoring XVI, Springer, 215-219. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Alperin, N., Lam, B.L., Tain, R., Ranganathan, S., Letzing, M., Bloom, M., et al. (2012) Evidence for Altered Spinal Canal Compliance and Cerebral Venous Drainage in Untreated Idiopathic Intracranial Hypertension. In: Schuhmann, M. and Czosnyka, M., Eds., Intracranial Pressure and Brain Monitoring XIV, Springer, 201-205. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Tain, R., Bagci, A.M., Lam, B.L., Sklar, E.M., Ertl‐Wagner, B. and Alperin, N. (2011) Determination of Cranio‐Spinal Canal Compliance Distribution by MRI: Methodology and Early Application in Idiopathic Intracranial Hypertension. Journal of Magnetic Resonance Imaging, 34, 1397-1404. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Tatewaki, Y., Mutoh, T., Omodaka, K., Thyreau, B., Matsudaira, I., Furukawa, H., et al. (2019) Morphological Prediction of Glaucoma by Quantitative Analyses of Ocular Shape and Volume Using 3-Dimensional T2-Weighted MR Images. Scientific Reports, 9, Article No. 15148. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Kim, D.Y., Kim, S.Y., Hong, D.Y., Sung, B.Y., Lee, S., Paik, J.H., et al. (2021) Comparison of Ultrasonography and Computed Tomography for Measuring Optic Nerve Sheath Diameter for the Detection of Elevated Intracranial Pressure. Clinical Neurology and Neurosurgery, 204, Article ID: 106609. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Jenjitranant, P., Tunlayadechanont, P., Prachanukool, T. and Kaewlai, R. (2020) Correlation between Optic Nerve Sheath Diameter Measured on Imaging with Acute Pathologies Found on Computed Tomography of Trauma Patients. European Journal of Radiology, 125, Article ID: 108875. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Sekhon, M.S., Griesdale, D.E., Robba, C., McGlashan, N., Needham, E., Walland, K., et al. (2014) Optic Nerve Sheath Diameter on Computed Tomography Is Correlated with Simultaneously Measured Intracranial Pressure in Patients with Severe Traumatic Brain Injury. Intensive Care Medicine, 40, 1267-1274. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
York, D.H., Pulliam, M.W., Rosenfeld, J.G. and Watts, C. (1981) Relationship between Visual Evoked Potentials and Intracranial Pressure. Journal of Neurosurgery, 55, 909-916. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Zhao, Y.L., Zhou, J.Y. and Zhu, G.H. (n.d.) Clinical Experience with the Noninvasive ICP Monitoring System. In: Poon, W.S., et al., Eds., Intracranial Pressure and Brain Monitoring XII, Springer-Verlag, 351-355. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Zhong, J.I., Li, Y., Minhui, X. and Yihua, Z. (2012) Realization of a Comprehensive Non-Invasive Detection of Intracranial Pressure Analyzer Based Upon FVEP and TCD. In: Schuhmann, M. and Czosnyka, M., Eds., Intracranial Pressure and Brain Monitoring XIV, Springer Vienna, 127-129. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Ragauskas, A., Matijosaitis, V., Zakelis, R., Petrikonis, K., Rastenyte, D., Piper, I., et al. (2012) Clinical Assessment of Noninvasive Intracranial Pressure Absolute Value Measurement Method. Neurology, 78, 1684-1691. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Zhang, L. and Hargens, A.R. (2018) Spaceflight-induced Intracranial Hypertension and Visual Impairment: Pathophysiology and Countermeasures. Physiological Reviews, 98, 59-87. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Zhang, X., Medow, J.E., Iskandar, B.J., Wang, F., Shokoueinejad, M., Koueik, J., et al. (2017) Invasive and Noninvasive Means of Measuring Intracranial Pressure: A Review. Physiological Measurement, 38, R143-R182. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Skau, M., Yri, H., Sander, B., Gerds, T.A., Milea, D. and Jensen, R. (2012) Diagnostic Value of Optical Coherence Tomography for Intracranial Pressure in Idiopathic Intracranial Hypertension. Graefe’s Archive for Clinical and Experimental Ophthalmology, 251, 567-574. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Swanson, J.W., Xu, W., Ying, G., Pan, W., Lang, S., Heuer, G.G., et al. (2019) Intracranial Pressure Patterns in Children with Craniosynostosis Utilizing Optical Coherence Tomography. Child’s Nervous System, 36, 535-544. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Kupersmith, M.J., Sibony, P., Mandel, G., Durbin, M. and Kardon, R.H. (2011) Optical Coherence Tomography of the Swollen Optic Nerve Head: Deformation of the Peripapillary Retinal Pigment Epithelium Layer in Papilledema. Investigative Opthalmology & Visual Science, 52, 6558. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Sibony, P., Kupersmith, M.J., Honkanen, R., Rohlf, F.J. and Torab-Parhiz, A. (2014) Effects of Lowering Cerebrospinal Fluid Pressure on the Shape of the Peripapillary Retina in Intracranial Hypertension. Investigative Ophthalmology & Visual Science, 55, 8223-8231. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Tun, T.A., Wang, X., Baskaran, M., Nongpiur, M.E., Tham, Y., Perera, S.A., et al. (2019) Variation of Peripapillary Scleral Shape with Age. Investigative Opthalmology & Visual Science, 60, 3275-3282. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Wang, X., Tun, T.A., Nongpiur, M.E., Htoon, H.M., Tham, Y.C., Strouthidis, N.G., et al. (2020) Peripapillary Sclera Exhibits a V-Shaped Configuration That Is More Pronounced in Glaucoma Eyes. British Journal of Ophthalmology, 106, 491-496. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Ong, C., Hutch, M., Barra, M., Kim, A., Zafar, S. and Smirnakis, S. (2018) Effects of Osmotic Therapy on Pupil Reactivity: Quantification Using Pupillometry in Critically Ill Neurologic Patients. Neurocritical Care, 30, 307-315. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Taylor, W.R., Chen, J.W., Meltzer, H., Gennarelli, T.A., Kelbch, C., Knowlton, S., et al. (2003) Quantitative Pupillometry, a New Technology: Normative Data and Preliminary Observations in Patients with Acute Head Injury. Journal of Neurosurgery, 98, 205-213. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Chen, J., Gombart, Z., Rogers, S., Gardiner, S., Cecil, S. and Bullock, R. (2011) Pupillary Reactivity as an Early Indicator of Increased Intracranial Pressure: The Introduction of the Neurological Pupil Index. Surgical Neurology International, 2, Article 82. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
McNett, M., Moran, C., Grimm, D. and Gianakis, A. (2018) Pupillometry Trends in the Setting of Increased Intracranial Pressure. Journal of Neuroscience Nursing, 50, 357-361. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Stevens, A.R., Su, Z., Toman, E., Belli, A. and Davies, D. (2019) Optical Pupillometry in Traumatic Brain Injury: Neurological Pupil Index and Its Relationship with Intracranial Pressure through Significant Event Analysis. Brain Injury, 33, 1032-1038. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Giede-Jeppe, A., Sprügel, M.I., Huttner, H.B., Borutta, M., Kuramatsu, J.B., Hoelter, P., et al. (2020) Automated Pupillometry Identifies Absence of Intracranial Pressure Elevation in Intracerebral Hemorrhage Patients. Neurocritical Care, 35, 210-220. [Google Scholar] [CrossRef] [PubMed]
|