非侵入性检查在判断颅内压变化中的应用进展
Advances in the Application of Non-Invasive Examination in Judging Intracranial Pressure Change
DOI: 10.12677/acm.2025.1551347, PDF, HTML, XML,    科研立项经费支持
作者: 王朋宇:内蒙古医科大学内蒙古临床医学院,内蒙古 呼和浩特;张晓军:内蒙古医科大学内蒙古临床医学院,内蒙古 呼和浩特;内蒙古自治区人民医院神经外科,内蒙古 呼和浩特
关键词: 颅内压非侵入性眼部测量Intracranial Pressure Non-Invasive Eye Measurement
摘要: 颅内压(ICP)的监测对于治疗大多数颅脑疾病和眼科疾病至关重要。早期诊断和及时干预ICP升高是临床降低某些疾病发病率和死亡率的有效手段。ICP监测的金标准为有创颅内压监测技术,但由于是侵入性的,并且有感染和脑出血的风险,且在头痛、呕吐和视觉改变等临床症状诊断颅内压增高缺乏敏感性,目前的无创ICP测量方法包括流体动力学以及眼科、耳科、电生理。虽然这些方法都不能完全取代侵入性技术;然而,其可重复性、低风险、高准确率,逐渐应用到临床实践中,本文综述了目前常见的无创性颅ICP监测及眼部测量ICP的方法,并评估了其适应证和主要优缺点。
Abstract: Intracranial pressure (ICP) monitoring is vital for treatment of most brain disease and eye disease. Early diagnosis and timely intervention of elevated ICP are effective means to reduce the morbidity and mortality of some diseases. The gold standard for ICP monitoring is invasive ICP monitoring techniques, but due to its invasive nature, risk of infection and intracerebral hemorrhage, and lack of sensitivity in diagnosing intracranial hypertension in clinical symptoms such as headache, vomiting, and visual changes, current non-invasive ICP measurement methods include fluid dynamics as well as ophthalmology, ear, and electrophysiology. Although none of these methods can completely replace invasive techniques. However, its repeatability, low risk, and high accuracy have gradually been applied to clinical practice. This review reviews the common non-invasive methods of cranial ICP monitoring and ocular ICP measurement, and assesses their indications and main advantages and disadvantages.
文章引用:王朋宇, 张晓军. 非侵入性检查在判断颅内压变化中的应用进展[J]. 临床医学进展, 2025, 15(5): 100-110. https://doi.org/10.12677/acm.2025.1551347

1. 引言

颅内压(ICP)是脑脊液隔室内的压力,包括固定体积的脑组织、脑脊液(CSF)和血液。健康成人的ICP正常范围为5~15 mmHg [1]。Monro-Kellie学说指出[2],神经组织、CSF和血液的总体积是恒定的。脑脊髓隔室内容物体积的增加,例如脑水肿、血容量增加、脑积水和颅内占位病变,导致ICP增加。ICP测量用于神经病学和神经外科,在眼科中也有广泛的应用。在眼科中,ICP的增加和减少都与视神经疾病有关。ICP升高可导致视水肿,而ICP降低可能是青光眼发生的病理生理因素[3]

目前,临床实践中经常使用侵入性ICP测量。1960年,Lundberg [4]实现了ICP的侵入性连续监测。从那时起,侵入性ICP测量得到了飞速发展。脑室外引流是一种常规的临床监测方法,通过放置在脑室中的导管引流脑脊液,并由外部压力传感器测量脑脊液压力。该技术被认为是ICP测量的黄金标准,并且可以通过引流CSF来控制ICP。然而脑室外引流可能引起并发症有关例如颅内感染。使用光纤设备监测ICP在临床实践中也被广泛使用。这种监测方法可以在脑室内、脑实质内、硬膜外或硬膜下间隙进行[5]。此外,在脑实质中植入微型无线传感器还可以连续监测患者的ICP [6]。腰椎穿刺可用于测量具有交通CSF通路的患者的ICP,是临床实践中使用最广泛的方法之一。尽管侵入性ICP监测需要专用的空间/环境,并且容易伴有一些并发症,但它对许多患者来说仍然具有不可替代的作用。例如,对于严重颅脑损伤的患者,动态ICP监测是确定或调整治疗计划的重要指标。由于使用无创ICP测量设备难以达到连续监测的理想精度和技术要求,因此有创ICP测量仍然是严重创伤性脑损伤(TBI)患者监测ICP的首选。

尽管侵入性方法非常准确,但在某些疾病中,如特发性颅内压增高(IIH)或清醒患者大脑中广泛病变,非侵入性方法在诊断可能升高的ICP患者时更可取。随着医疗技术的不断进步,非侵入性ICP测量方法不断发展,具有安全、可靠、成本低、方便、快速等优点。非侵入性ICP测量对神经系统疾病的早期检测和治疗具有指导意义,具有广阔的应用前景。ICP升高诱导的脑脊液和血液循环阻塞可导致大脑和眼底出现明显的病理变化。因此,ICP的非侵入性测量通常测量这些生理变化以定性或定量评估ICP,无创ICP监测方法根据其不同的原理可分为四大类:流体动力学、耳科、眼科和电生理学[7]。在这些方法中,眼测量方法引起了越来越多的关注。

本文综述了目前常见的无创性颅ICP监测及眼部测量ICP的方法,并评估了其适应证和主要优缺点。

2. 无创颅内压监测

尽管侵入性方法非常准确,但在某些疾病中,如特发性颅内压增高(IIH)或清醒患者大脑中广泛病变,非侵入性方法在诊断可能升高的ICP患者时更准确。随着医疗技术的不断进步,无创ICP测量方法不断发展,具有安全、可靠、成本低、方便、快速等优点。无创ICP测量对神经系统疾病的早期检测和治疗具有指导意义,具有广阔的应用前景。ICP升高诱导的脑脊液和血液循环阻塞可导致大脑和眼底出现明显的病理变化。因此,ICP的无创测量通常测量这些生理变化以定性或定量评估ICP。

2.1. CT检查

CT是一种常见的非侵袭方法,可用于通过评估颅内结构的完整性来检测ICP升高。常用于急性脑损伤(如外伤、脑出血、脑卒中)、疑似占位性病变(肿瘤、脓肿)或脑水肿患者,尤其适用于急诊评估。它通过对中线移位、基底池和脑室形态变化与其他临床症状结合以达到监测ICP升高其敏感性较高(约80%~90%) [8]。在一项涉及218名严重颅脑外伤患者的研究中,74%的基底池消失患者的ICP超过30 mmHg [9]。在CT扫描中观察到的中线移位和中脑池的压迫或破坏是ICP升高的最准确迹象[10]。在对测量ICP的非侵入性方法的回顾中,得出的结论是,中脑池的异常与ICP升高的风险增加3倍有关[11]。CT扫描是用于慢性和急性ICP升高的有价值的非侵入性工具,但CT扫描正常并不一定表明ICP正常。对IIH患者进行脑部CT扫描的主要原因是排除导致ICP升高的其他潜在原因[12] [13],但因其辐射暴露、不宜重复检查、无法实时动态监测具有局限性,是作为急诊的首选,快速排除危及生命的病变,指导后续监测选择(如TCD或MRI)。

2.2. 经颅多普勒超声检查(TCD)

TCD是一种通过脑血流速度评估脑血管动力学的技术,是一种无创、便携的技术[14]。TCD适用于需动态评估脑血流动力学的患者(如蛛网膜下腔出血、创伤性脑损伤、脑积水),或无法进行有创监测的患者,TCD主要通过监测大脑中动脉和基底动脉的频谱和波形变化来进行对ICP的定性和定量。通过观察TCD参数(如脑血流波形或脉搏指数)的变化来确定TCD在ICP评估中的适用性。使用TCD监测ICP主要基于脑血管动力学与ICP之间的近似半定量关系。因此,TCD只能在动脉血管发生变化时监测ICP。

尽管TCD具有成本效益高、便携、无风险和高时间分辨率等优点,使其成为急诊科和床边使用的理想选择,但它也有局限性。TCD提供有关颅内血管内血流方向和速度的关键信息,这些信息可能会因ICP等外部压力或动脉血压等内部压力发生变化力而发生变化[15]。如果ICP变化是由CSF循环障碍或脑实质体积增加引起的,则ICP的TCD监测准确性可能较低[16]。此外,TCD检测结果在很大程度上取决于操作员的经验和技能。操作员必须手动定位探头,以通过检测最大速度位置来获得沿血管轴的测量值。且TCD无法区分ICP增高与脑血管痉挛,不能提供绝对压力值,个体解剖学的差异也是决定ICP测量误差因素之一,Pradeep R等人分析了患者接受腰椎穿刺前后的TCD结果并监测脑脊液开放压,并得出结论,TCD衍生的峰值可用于特发性颅内压增高患者的管理、预后和随访[17]。TCD还可以评估大脑的自动调节功能,为治疗严重脑损伤患者提供必要的数据[18]。此外,美国心脏学会SAH治疗指南推荐使用TCD监测动脉血管痉挛的发展,作为IIA类B级证据[19]。在临床应用中,TCD监测不仅限于ICP的简单估计,它还可用于评估脑血管状况、脑血流、大脑自动调节功能,同时为患者优化决策。还可与CT/MRI结合,动态监测血流变化,评估治疗反应(如甘露醇疗效),床旁使用,弥补影像学检查的时效性不足,这些复杂性凸显了谨慎应用和进一步研究TCD在各种临床场景中的有效性的必要性。

2.3. 鼓膜移位

TMD开发于1981年,是一种用于检测ICP升高的听力学技术。它测量鼓膜响应听肌反射的运动[20]。镫骨肌感受声音刺激而收缩,导致镫骨运动。耳蜗液压力水平决定了镫骨运动的静止位置和方向。高耳蜗液压力导致鼓膜向内移位,而低压导致鼓膜向外移动。ICP搏动可通过CSF连接蛛网膜下腔和外淋巴腔的耳蜗导水管传递到内耳。因此,监测鼓膜移位的方向可以表明ICP正常或升高[21],它可以是监测脑积水和神经系统疾病中ICP升高的另一种非侵入性方法[22]

2.4. MRI颅内压监测

使用MRI监测ICP的原理是根据CSF流速计算的CSF压力梯度波形中得出心动周期期间的压力变化。颅内容积的变化是由动脉血流入、静脉血流出以及脑脊液流入和流出的瞬时差值决定的。弹性由测得的压力与体积变化的比值得出。平均ICP值是由颅内弹性和ICP的线性关系中获得的[23] [24] MRI监测常用于慢性ICP增高(如特发性颅内高压)、脑脊液动力学异常(如Chiari畸形)或需精细评估脑结构的患者。MRI提供高分辨率解剖信息,与CT互补(如鉴别肿瘤与水肿)。

Galperin等[25]通过弹性指数计算了ICP值,并证明该方法的灵敏度足以区分正常和升高的ICP。Rambha Burman等人表明,ICP的MRI监测与侵入性ICP监测呈正相关。有创法ICP值平均比MRI监测ICP高2.2 mmHg [23]

MRI除了通过MRI技术建立颅内弹性与ICP之间的关系外,还可以从其他方面确定ICP的高低。例如,Jia等人[26]利用ICP与来自相差电影MRI/PC-MRI的两个CSF参数之间的非线性关系开发并验证了一种无创预测ICP的数学模型,验证了中脑导水管直径变化与ICP变化之间的相关性。可以帮助临床医生无创预测ICP。通过成像构建ICP函数的最大问题是,没有能提供准确的ICP值。结果不可避免地包括假阴性和假阳性。建模参数的评价受多种因素影响,例如患者的疾病是否影响CSF动力学、患者之间的先天性解剖变异、受试者的异质性等。因此,在推广ICP的MRI监测之前,我们需要更多的大规模研究来进一步验证这种方法。此外,这种技术还存在其他问题,例如MRI的昂贵成本以及该过程耗时和劳动密集型的性质,这可能使其在需要立即和连续ICP监测的情况下不切实际。

3. 基于眼科的无创监测ICP

眼压(IOP)是眼睛内容物施加在眼壁上的压力与眼球内容物之间的相互作用。IOP通常以毫米汞柱为单位测量。正常眼压范围为10~21 mmHg。IOP和ICP是2组相互关联且相对独立的压力系统。通过房水和CSF的循环,ICP和IOP相对平衡[27]。视神经纤维属于中枢神经系统的一部分。它穿过巩膜后孔,在那里,巩膜的内侧1/3和筛板(LC)的脉络膜,以及巩膜外侧2/3的脑膜演变成硬脑膜。视神经是白神经的一部分,从脑纤维向外延伸,代表视网膜神经节细胞[28] [29]。视神经的后段覆盖有3层脑膜。外层是硬脑膜,中间层是蛛网膜,内层是软脑膜。鞘膜的3层之间有2个空隙;硬膜下腔和蛛网膜下腔。2个间隙的前端终止于眼球后部,形成盲管,直接与向后充满脑脊液的脑腔相通,颅内压升高会增加CSF在视神经鞘周围蛛网膜下腔的压力,从而导致视网膜中央静脉的循环障碍,该静脉流回视网膜和视神经头。由于这种阻塞,眼内的状况会发生变化,并导致视水肿、视野缺损、视神经鞘直径增加和眼压(IOP)升高等体征[29]。因此,无创测量眼部参数的变化以估计ICP具有一定的可靠性和准确性。

3.1. 视神经鞘直径(ONSD)

视神经鞘(ONS)从硬脑膜延伸出来,视神经周围的蛛网膜下腔包含与颅内CSF相通的CSF。当ICP增加时,颅内CSF通过视管进入蛛网膜下腔,ONSD增宽。随着医学成像技术的成熟,ONS可以通过超声检查、计算机断层扫描(CT)和磁共振成像(MRI)进行成像。在这些方法中,通过超声测量ONSD间接评估ICP已被证明是安全、可靠和非侵入性的。这种方法可以在几分钟内快速检测出升高的ICP。

Hayreh于1968年首次提出颅内蛛网膜下腔的CSF压力和视神经鞘中的CSF压力是一致的[30]。这为后来研究ONSD与ICP之间的关系提供了理论基础。在一项关于腰椎穿刺前后运用超声测量ONSD的研究发现ONSD的宽度随着ICP的增加而增加[31]。关于ONSD临界值和用于测量ICP升高时ONSD扩张的工具的有效性,文献中存在不一致的报告。据报道,临界值范围为5.3 mm至5.8 mm,是ICP升高的指标。值得注意的是,ONSD测量值存在相当大的个体间差异。对中国人群的研究报告了4.1 mm的ONSD阈值是ICP升高的标志物[32],而对西方人群的研究报告了超过5 mm的临界值[33] [34],一项对50名参与者进行超声测量ONSD的研究得出结论,直径增加大于5.5毫米在检测ICP升高超过20 cm H2O方面具有100%的特异性和敏感性[35] [36]。Amini等人发现在非创伤性颅内压增高患者中,ONSD与ICP升高相关,当ICP增加5 mmHg时即可检测到,具有高敏感性和特异性,并且可以检测到ICP升高至15 mmHg [36]。以前的研究表明,用于估计ICP的ONSD超声检测仅限于ICP的增加,但与ICP的降低无关。然而,最近的研究表明,超声也可以检测到ICP的减少。

使用CT或MRI对ONS进行成像也可以评估患者的ICP升高,但需要更长的时间来测量。在一项研究中,研究人员对38名创伤性脑损伤患者同时进行了MRI和侵入性ICP测量,结果显示MRI测量的ONSD与ICP呈显著正相关[37]。一些研究人员表明,与超声相比,MRI可提供更准确的测量结果[38]

ONSD的MRI与超声相似,图像相对清晰。MRI还可以在进行视神经检查时排除由其他潜在原因引起的ICP升高[39]。通常,颅内压增高症的神经影像学表现包括空蝶、蛛网膜下腔狭窄、球后扁平、ONS扩张、小脑扁桃体疝、脑膜膨出、横静脉窦狭窄和视神经垂直迂曲[40]-[43]。采用T2加权MRI分析眼眶结构和ONS。大多数关于ICP的视神经报告来自眼眶的薄片或体积脂肪饱和的T2加权图像。对3 mm球后球杆的轴向和冠状位直径进行平均[44] [45]。与B超相比,MRI具有更高的空间分辨率,可以区分视神经和鞘膜,因此ONSD的计算更具代表性。一项对特发性颅内压增高症(IIH)的研究5例头痛、视力模糊和双侧视盘水肿患者通过MRI检查。结果显示,双眼视神经头的弥散有限。腰椎穿刺后,证实CSF开放压为 > 25 cm H2O [46]。造成这种情况的原因可能是ICP升高时视网膜中央动脉和静脉受压,可能是ICP升高的表现。Alperin等人使用另一种测量ICP的方法,即弹性指数,它使用MRI来计算压力与体积变化的比率。该方法的原理是体积与压力的导数随ICP的增加而减小,利用导数的比值预测ICP [47]。基于此原理的MRI-ICP软件使计算更容易,Alperin等人使用这种方法估计颅脊髓顺应性并改善仰卧位和站立压[48]提出通过MRI测量的压力体积指数来获得颅骨和脊髓的顺应性指数。结果发现,椎管在IIH中的贡献显著小于正常对照组(60% vs. 78%) [49]。此外,与其他成像方法相反,MRI-ICP还可以估计ICP的减少。目前,在青光眼相关研究中,MRI-ICP被认为是估计低ICP或正常ICP的最合适选择[50]

ONSD的CT成像在检测ICP升高方面的敏感性和特异性与MRI相似[51]。研究发现,与颅内压增高的经典CT检查结果相比,ONSD对ICP升高的预测价值也更高[52] [53]。此外,CT上的ONSD测量具有高度可重复性,具有很高的临床应用潜力。然而,传统的CT和MRI需要将患者运送到专门的放射科,这在时间和资源上都非常昂贵。便携式CT和MRI [53]等医学成像技术的最新发展使ONSD的测量更加及时和可及。例如,这些便携式设备可以为一些行动不便的严重TBI患者提供ONSD的床边测量。

3.2. 闪光视觉诱发电位(FVEPs)

VEP准确反映了视觉通路障碍,是临床理论中最早和研究最充分的皮质诱发电位之一。根据视网膜刺激的不同形式,VEP分为FVEP和图形VEP。在这些类型中,FVEP是指视网膜受到均匀闪光刺激后枕叶皮层的潜在变化,可以反映从视网膜到枕叶皮层的视觉通路的完整性。视觉通路位于大脑底部。视神经功能障碍常与颅内病变发生,视网膜的光刺激引起的脑枕叶视觉电位的变化可以在一定程度上反映ICP的病理生理学。ICP升高引起的脑干和血管的机械压迫会损害脑血液循环。这会导致神经元和神经纤维缺血和缺氧,导致随后的脑组织代谢受损和神经元电信号传导受阻。在这些情况下,FVEP波峰潜伏期延长,波幅减小,波宽增加。如果存在脑疝,这种现象会更加明显。因此,可以通过建立特定波FVEP和ICP的延迟之间的关系来间接测量ICP。

早在1981年,York等人就证明了VEP的N2波潜伏期增加与ICP升高之间存在很强的正相关关系[54]。研究人员发现,在ICP > 300 mmH2O时,预测准确性很高。随后,一项研究发现,当高ICP患者接受甘露醇降低ICP时,N2波潜伏期缩短,与ICP存在很强的线性关系(r = 0.97) [55]。基于这一现象,Zhong et al.研究了FVEP的波形提取方法[56]。研究人员结合了独立成分分析方法、叠加平均方法和多分辨率小波变换方法的优点,有效地获取了左右枕骨的FVEP信号。利用FVEP的N2波与ICP之间的线性关系,结合经颅多普勒超声(TCD)的优点,将这两种方法结合起来,开发了一种高度可靠、实用的无创ICP测量专用仪器,克服了单一ICP测量方法的缺点。

基于FVEP原理开发的无创ICP测量设备已用于临床,通常只需不到一分钟即可完成一次测量。在临床应用中,它需要由训练有素的专业人员操作。通常,需要在15分钟内完成3次测量,平均值用作ICP的最终测量值。FVEP无创ICP监测技术的临床研究大多集中在颅脑外伤、蛛网膜下腔出血和高血压脑出血诱导的ICP升高患者。该设备可用作颅脑疾病患者的常规临床检查之一。然而,一项研究发现,IIH患者的FVEP没有显著变化。此外,使用FVEP评估ICP不适用于某些患者,例如额叶血肿、视网膜损伤或视神经病变的患者。此外,使用FVEP评估,血糖浓度、患者的神经传导率和体内电解质等因素会影响测得的ICP值。在ICP严重升高的患者中,FVEP评估的准确性较低。

3.3. 双深度经眶多普勒(TDTD)超声检查

传统的TCD成像仅限于在一定深度进行扫描,其可靠性和再现性依赖于人工操作。此外还需要考虑个体之间的血管存在差异;因此,测量单个动脉段的血流不足以定量确定ICP。为了解决这些问题,开发了TDTD,它通过发射不同频率的高频脉搏波来检测颅外和颅内眼动脉的血流光谱。同时,对眼眶组织施加外部压力,以平衡ICP对颅内眼动脉的影响。当眼外动脉和内动脉血流的光谱波形变得相似时,可以认为施加的压力等于ICP [57]。Vittamed Corporation开发的Vittamed 205是一种使用TDTD原理测量ICP的特殊设备。该设备要求操作者使用超声探头定位颅外和颅内眼动脉,并且后续测量可以高精度地自动进行。平均而言,完成测量需要16分钟[58]。这种方法适用于广泛的场景,无论是用于IIH患者的诊断,还是在紧急情况下(战场、救护车等)对TBI患者进行快速分诊。这种方法需要对操作员进行特殊培训,但将来可能会广泛使用。

3.4. 光学相干断层扫描(OCT)

视神经主要位于颅内,ICP的变化可能影响眼内视神经的解剖结构。OCT可以对视盘周围区域的视网膜结构变化进行可靠且可重复的定量测量。因此,有人认为OCT对颅内压增高患者具有诊断价值。

颅内压增高症会导致细胞或轴突水平的变化,导致视网膜最内层视网膜神经纤维层(RNFL)肿胀。1998年,Borchert等人为一种使用RNFL厚度的OCT测量来估计ICP的方法申请了专利;然而,作者没有讨论RNFL厚度与ICP之间的关系[59]。后来,另一项研究发现,在疑似IIH患者中,除了主观评估视水肿外,OCT还可以作为诊断的重要补充[60]。然而,OCT对既往接受过长期IIH治疗的患者价值较低。OCT也有一些限制。例如,当视水肿严重时,OCT几乎没有价值。此外,一项研究发现,当一些颅缝早闭患儿的颅内压升高时,检眼镜无法观察到视水肿[61]。然而,OCT图像显示RNFL厚度显著增加。据信,OCT能够对视神经头进行详细检查,并为颅缝早闭患者ICP升高提供潜在敏感的指标。

2011年,Kupersmith等人提出,通过OCT评估视周围色素上皮和Bruch膜角可用于视水肿的测量和定性评估[62]。研究人员在41名高ICP患者的OCT图像上使用几何形态学,发现周围视网膜色素上皮–基底膜(ppRPE/BM)层的地下轮廓随着ICP的降低而变化。这一发现可作为评估ICP和RNFL厚度的辅助手段[63]。尽管CSF的增加使ppRPE/BM层和下巩膜向玻璃体变形,但仅根据这种情况很难评估ICP的变化。最近的研究表明,ppRPE/BM的空间构型随年龄和眼部疾病而变化。随着年龄的增长,鼻腔和颞部ppRPE/BM之间的角度从倒V形变为更明显的V形[64]。同样与健康受试者相比,青光眼患者的V形结构更为明显[65]。因此,该方法可以作为ICP评估的补充测量。

3.5. 瞳孔测量

一些研究初步证明,瞳孔直径和光反射的变化可以反映ICP的变化[66]。如果检测到瞳孔对光反射受损,则可能表明ICP升高。这一发现是由于ICP增加导致动眼神经通路的机械压迫,从而抑制瞳孔反应性。传统的瞳孔大小测量使用尺子进行视觉测量;然而,使用这种方法,无法测量小的瞳孔收缩或连续变化。随着技术的不断发展,基于红外技术的自动瞳孔计应运而生。自动瞳孔计在测量瞳孔大小和反应性方面比手动检查更准确、更可靠,并且还可以测量瞳孔光响应的细微变化。

瞳孔变化是颅脑损伤患者病情变化的重要标志。一项研究发现,在光刺激下,健康人的瞳孔直径平均减少34%,而头部外伤患者的瞳孔直径平均减少20% [67]。这些结果表明,瞳孔计测量的瞳孔直径变化可以反映ICP的变化。

神经瞳孔指数(NPi)是通过算法转换瞳孔光反射所涉及的七个参数得出的。NPi用于量化瞳孔反应性。NPi的最初开发者使用该指数来评估瞳孔反应性,发现瞳孔对光反应异常的患者ICP值远高于正常值[68]。这表明使用NPi对瞳孔反应性进行定量测量和分类可能有助于早期确定ICP升高。然而,一项研究发现,ICP升高导致NPi值和收缩速度降低,对瞳孔大小没有影响[69]。此外,NPI和ICP之间存在微弱但不具有统计学意义的关系。因此,瞳孔测量可能不是ICP的可靠预测指标[70]。虽然自动瞳孔测量法似乎不足以评估ICP,但该方法可能有助于识别无颅内压升高的脑出血患者[71]

瞳孔测量法是否可用于ICP的无创测量仍存在争议。然而,可以肯定的是,瞳孔反应性受许多因素的影响,即几种神经系统疾病、各种药物、个人的情绪状态和一天中的时间。这些因素限制了瞳孔反应性评估的应用;然而,该方法在确定严重颅脑损伤患者的ICP时仍然有用。

总之,临床使用的理想ICP监护仪需要以下特性:易于使用、准确、读数可靠以及感染、脱垂、出血和破裂的风险低。未来,ICP监测方法的发展将以无线、可吸收和微创为目标。此外,随着各种无创技术的改进,无创ICP监测有可能取代有创监测,成为未来的主流发展趋势。

基金项目

内蒙古自治区科技计划项目(项目编号:2020GG087);内蒙古自治区人民医院院内基金项目(项目编号:2020YN07);内蒙古医学科学院公立医院科研联合基金科技项目(项目编号:2024GLLH0117)。

参考文献

[1] Dunn, L.T. (2002) Raised Intracranial Pressure. Journal of Neurology, Neurosurgery & Psychiatry, 73, i23-i27.
https://doi.org/10.1136/jnnp.73.suppl_1.i23
[2] Mokri, B. (2001) The Monro-Kellie Hypothesis: Applications in CSF Volume Depletion. Neurology, 56, 1746-1748.
https://doi.org/10.1212/wnl.56.12.1746
[3] Huang, A., Mai, A., Goldberg, J., Samuelson, T., Morgan, W., Herndon, L., et al. (2024) The Benefit of Nocturnal IOP Reduction in Glaucoma, Including Normal Tension Glaucoma. Clinical Ophthalmology, 18, 3153-3160.
https://doi.org/10.2147/opth.s494949
[4] Lundberg, N. (1960) Continuous Recording and Control of Ventricular Fluid Pressure in Neurosurgical Practice. Acta psychiatrica Scandinavica. Supplementum, 36, 1-193.
[5] Jiang, N., Flyax, S., Kurz, W., Jakobi, M., Tasoglu, S., Koch, A.W., et al. (2021) Intracranial Sensors for Continuous Monitoring of Neurophysiology. Advanced Materials Technologies, 6, Article ID: 2100339.
https://doi.org/10.1002/admt.202100339
[6] Evensen, K.B. and Eide, P.K. (2020) Measuring Intracranial Pressure by Invasive, Less Invasive or Non-Invasive Means: Limitations and Avenues for Improvement. Fluids and Barriers of the CNS, 17, Article No. 34.
https://doi.org/10.1186/s12987-020-00195-3
[7] 武丽敏, 杨悦, 葛顺楠, 屈延. 无创颅内压监测方法研究进展[J/OL]. 空军军医大学学报, 1-17.
https://link.cnki.net/urlid/61.1526.R.20240311.1800.011, 2025-04-28.
[8] Kristiansson, H., Nissborg, E., Bartek, J., Andresen, M., Reinstrup, P. and Romner, B. (2013) Measuring Elevated Intracranial Pressure through Noninvasive Methods: A Review of the Literature. Journal of Neurosurgical Anesthesiology, 25, 372-385.
https://doi.org/10.1097/ana.0b013e31829795ce
[9] Toutant, S.M., Klauber, M.R., Marshall, L.F., Toole, B.M., Bowers, S.A., Seelig, J.M., et al. (1984) Absent or Compressed Basal Cisterns on First CT Scan: Ominous Predictors of Outcome in Severe Head Injury. Journal of Neurosurgery, 61, 691-694.
https://doi.org/10.3171/jns.1984.61.4.0691
[10] Kazimierska, A., Uryga, A., Mataczyński, C., Czosnyka, M., Lang, E.W., Kasprowicz, M., et al. (2023) Relationship between the Shape of Intracranial Pressure Pulse Waveform and Computed Tomography Characteristics in Patients after Traumatic Brain Injury. Critical Care, 27, Article No. 447.
https://doi.org/10.1186/s13054-023-04731-z
[11] Toledo, J.A., Namias, R. and Milano, M.J. (2021) A Novel Automated Calculation of Basal Cistern Effacement Status on Computed Tomographic Imaging in Traumatic Brain Injury. Cureus, 13, e13144.
https://doi.org/10.7759/cureus.13144
[12] Horev, A., Eliav, T., Sherer, I., Biederko, R., Ben-Arie, G., Shelef, I., et al. (2024) Radiological Signs Supporting Idiopathic Intracranial Hypertension in Symptomatic Patients with Lumbar Puncture Opening Pressure < 250 mm. Scientific Reports, 14, Article No. 19450.
https://doi.org/10.1038/s41598-024-70588-z
[13] Cogswell, P.M., Murphy, M.C., Madhavan, A.A., Bhatti, M.T., Cutsforth-Gregory, J.K., Senjem, M.L., et al. (2022) Features of Idiopathic Intracranial Hypertension on MRI with MR Elastography: Prospective Comparison with Control Individuals and Assessment of Postintervention Changes. American Journal of Roentgenology, 219, 940-951.
https://doi.org/10.2214/ajr.22.27904
[14] Blanco, P. and Abdo-Cuza, A. (2018) Transcranial Doppler ultrasound in neurocritical care. Journal of Ultrasound, 21, 1-16.
https://doi.org/10.1007/s40477-018-0282-9
[15] Cardim, D., Robba, C., Bohdanowicz, M., Donnelly, J., Cabella, B., Liu, X., et al. (2016) Non-Invasive Monitoring of Intracranial Pressure Using Transcranial Doppler Ultrasonography: Is It Possible? Neurocritical Care, 25, 473-491.
https://doi.org/10.1007/s12028-016-0258-6
[16] Cardim, D., Robba, C., Bohdanowicz, M., Donnelly, J., Cabella, B., Liu, X., et al. (2016) Non-Invasive Monitoring of Intracranial Pressure Using Transcranial Doppler Ultrasonography: Is It Possible? Neurocritical Care, 25, 473-491.
https://doi.org/10.1007/s12028-016-0258-6
[17] R., P., Gupta, D., Shetty, N., Bhushan, A.K., Haskar, K., Gogineni, S., et al. (2020) Transcranial Doppler for Monitoring and Evaluation of Idiopathic Intracranial Hypertension. Journal of Neurosciences in Rural Practice, 11, 309-314.
https://doi.org/10.1055/s-0040-1710086
[18] Engelhardt, M., Pfadenhauer, K., Zentner, J., Grimmer, S., Wachenfeld-Wahl, C., Heidenreich, P., et al. (2004) Störung der zerebralen Perfusionsreservebei asymptomatischen Patienten mit A. carotisinterna-Stenose: Vergleich von Acetazolamid-SPECT und transkranieller CO2-Dopplersonographie. Zentralblatt für Chirurgie, 129, 178-182.
https://doi.org/10.1055/s-2004-822798
[19] Connolly, E.S., Rabinstein, A.A., Carhuapoma, J.R., Derdeyn, C.P., Dion, J., Higashida, R.T., et al. (2012) Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke, 43, 1711-1737.
https://doi.org/10.1161/str.0b013e3182587839
[20] Marchbanks, R.J. (1984) Measurement of Tympanic Membrane Displacement Arising from Aural Cardiovascular Activity, Swallowing, and Intra-Aural Muscle Reflex. Acta Oto-Laryngologica, 98, 119-129.
https://doi.org/10.3109/00016488409107543
[21] Uryga, A., Kazimierska, A., Popek, M., Dragan, B., Burzyńska, M., Masalski, M., et al. (2023) Applying Video Motion Magnification to Reveal Spontaneous Tympanic Membrane Displacement as an Indirect Measure of Intracranial Pressure in Patients with Brain Pathologies. Acta Neurochirurgica, 165, 2227-2235.
https://doi.org/10.1007/s00701-023-05681-9
[22] Campbell-Bell, C.M., Birch, A.A., Vignali, D., Bulters, D. and Marchbanks, R.J. (2018) Reference Intervals for the Evoked Tympanic Membrane Displacement Measurement: A Non-Invasive Measure of Intracranial Pressure. Physiological Measurement, 39, Article Id: 015008.
https://doi.org/10.1088/1361-6579/aaa1d3
[23] Burman, R., Shah, A.H., Benveniste, R., Jimsheleishvili, G., Lee, S.H., Loewenstein, D., et al. (2019) Comparing Invasive with MRI‐Derived Intracranial Pressure Measurements in Healthy Elderly and Brain Trauma Cases: A Pilot Study. Journal of Magnetic Resonance Imaging, 50, 975-981.
https://doi.org/10.1002/jmri.26695
[24] Raksin, P.B., Alperin, N., Sivaramakrishnan, A., Surapaneni, S. and Lichtor, T. (2003) Noninvasive Intracranial Compliance and Pressure Based on Dynamic Magnetic Resonance Imaging of Blood Flow and Cerebrospinal Fluid Flow: Review of Principles, Implementation, and Other Noninvasive Approaches. Neurosurgical Focus, 14, 1-8.
https://doi.org/10.3171/foc.2003.14.4.4
[25] Alperin, N.J., Lee, S.H., Loth, F., Raksin, P.B. and Lichtor, T. (2000) MR-Intracranial Pressure (ICP): A Method to Measure Intracranial Elastance and Pressure Noninvasively by Means of MR Imaging: Baboon and Human Study. Radiology, 217, 877-885.
https://doi.org/10.1148/radiology.217.3.r00dc42877
[26] Long, J., Sun, D., Zhou, X., Huang, X., Hu, J., Xia, J., et al. (2020) A Mathematical Model for Predicting Intracranial Pressure Based on Noninvasively Acquired PC-MRI Parameters in Communicating Hydrocephalus. Journal of Clinical Monitoring and Computing, 35, 1325-1332.
https://doi.org/10.1007/s10877-020-00598-5
[27] Ficarrotta, K.R. and Passaglia, C.L. (2020) Intracranial Pressure Modulates Aqueous Humour Dynamics of the Eye. The Journal of Physiology, 598, 403-413.
https://doi.org/10.1113/jp278768
[28] Stoskuviene, A., Siaudvytyte, L., Januleviciene, I., Vaitkus, A., Simiene, E., Bakstyte, V., et al. (2023) The Relationship between Intracranial Pressure and Visual Field Zones in Normal-Tension Glaucoma Patients. Diagnostics, 13, Article 174.
https://doi.org/10.3390/diagnostics13020174
[29] Lindén, C., Qvarlander, S., Jóhannesson, G., Johansson, E., Östlund, F., Malm, J., et al. (2018) Normal-Tension Glaucoma Has Normal Intracranial Pressure: A Prospective Study of Intracranial Pressure and Intraocular Pressure in Different Body Positions. Ophthalmology, 125, 361-368.
https://doi.org/10.1016/j.ophtha.2017.09.022
[30] Hayreh, S.S. (1968) Pathogenesis of Oedema of the Optic Disc. Documenta Ophthalmologica, 24, 289-411.
https://doi.org/10.1007/bf02550944
[31] Schott, C.K., Hirzallah, M.I., Heyman, R., Lesky, D.N., Brant, E.B. and Callaway, C.W. (2020) Ultrasound Measurement of Optic Nerve Sheath Diameter Pre-and Post-Lumbar Puncture. The Ultrasound Journal, 12, Article No. 26.
https://doi.org/10.1186/s13089-020-00173-8
[32] Bastani Viarsagh, S., Agar, A., Lawlor, M., Fraser, C. and Golzan, M. (2024) Non-invasive Assessment of Intracranial Pressure through the Eyes: Current Developments, Limitations, and Future Directions. Frontiers in Neurology, 15, Article 1442821.
https://doi.org/10.3389/fneur.2024.1442821
[33] Kimberly, H.H., Shah, S., Marill, K. and Noble, V. (2008) Correlation of Optic Nerve Sheath Diameter with Direct Measurement of Intracranial Pressure. Academic Emergency Medicine, 15, 201-204.
https://doi.org/10.1111/j.1553-2712.2007.00031.x
[34] Blaivas, M. (2003) Elevated Intracranial Pressure Detected by Bedside Emergency Ultrasonography of the Optic Nerve Sheath. Academic Emergency Medicine, 10, 376-381.
https://doi.org/10.1197/aemj.10.4.376
[35] Price, D.A., Grzybowski, A., Eikenberry, J., Januleviciene, I., Verticchio Vercellin, A.C., Mathew, S., et al. (2019) Review of Non-Invasive Intracranial Pressure Measurement Techniques for Ophthalmology Applications. British Journal of Ophthalmology, 104, 887-892.
https://doi.org/10.1136/bjophthalmol-2019-314704
[36] Amini, A., Kariman, H., Arhami Dolatabadi, A., Hatamabadi, H.R., Derakhshanfar, H., Mansouri, B., et al. (2013) Use of the Sonographic Diameter of Optic Nerve Sheath to Estimate Intracranial Pressure. The American Journal of Emergency Medicine, 31, 236-239.
https://doi.org/10.1016/j.ajem.2012.06.025
[37] Kimberly, H. and Noble, V.E. (2008) Using MRI of the Optic Nerve Sheath to Detect Elevated Intracranial Pressure. Critical Care, 12, Article No. 181.
https://doi.org/10.1186/cc7008
[38] Schuchardt, F.F., Krafft, A.J., Miguel Telega, L., Küchlin, S., Lagrèze, W.A., Demerath, T., et al. (2024) Interrelation between Cerebrospinal Fluid Pressure, Intracranial Morphology and Venous Hemodynamics Studied by 4D Flow MRI. Clinical Neuroradiology, 34, 391-401.
https://doi.org/10.1007/s00062-023-01381-0
[39] Almudayni, A., Alharbi, M., Chowdhury, A., Ince, J., Alablani, F., Minhas, J.S., et al. (2022) Magnetic Resonance Imaging of the Pulsing Brain: A Systematic Review. Magnetic Resonance Materials in Physics, Biology and Medicine, 36, 3-14.
https://doi.org/10.1007/s10334-022-01043-1
[40] Yuh, E.L. and Dillon, W.P. (2010) Intracranial Hypotension and Intracranial Hypertension. Neuroimaging Clinics of North America, 20, 597-617.
https://doi.org/10.1016/j.nic.2010.07.012
[41] Liu, J., Chaij, J., Linguraru, M.G., French, B., Keating, R., Alexander, A.L., et al. (2024) Cranial Bone Thickness and Density Anomalies Quantified from CT Images Can Identify Chronic Increased Intracranial Pressure. Neuroradiology, 66, 1817-1828.
https://doi.org/10.1007/s00234-024-03393-0
[42] Pandit, A.S., China, M., Jain, R., Jalal, A.H.B., Jelen, M., Joshi, S.B., et al. (2024) The Utility of MRI Radiological Biomarkers in Determining Intracranial Pressure. Scientific Reports, 14, Article No. 23238.
https://doi.org/10.1038/s41598-024-73750-9
[43] Taşcioğlu, T. (2021) The Diagnostic Value of Cranial MRI Findings in Idiopathic Intracranial Hypertension: Evaluating Radiological Parameters Associated with Intracranial Pressure. Acta Radiologica, 63, 1390-1397.
https://doi.org/10.1177/02841851211038803
[44] Raffa, A., Raffa, L., Kamal, Y., Hassan, T., Alaidarous, K., Osaylan, M., et al. (2023) Pediatric Optic Nerve and Globe Measurements on Magnetic Resonance Imaging: Establishing Norms for Children. Acta Radiologica, 64, 2162-2169.
https://doi.org/10.1177/02841851231169176
[45] Kula, A.Y., Polat, Y.B., Atasoy, B., Yiğit, M., Kırık, F., Pasin, Ö., et al. (2024) Non-Invasive Estimation of Cerebrospinal Fluid Pressure in Idiopathic Intracranial Hypertension: Magnetic Resonance Imaging Analysis of Optic Nerve and Eyeball. Acta Neurologica Belgica, 125, 61-68.
https://doi.org/10.1007/s13760-024-02620-y
[46] Nagarajan, E., Digala, L.P., Sivaraman, M. and Bollu, P.C. (2019) Is Magnetic Resonance Imaging Diffusion Restriction of the Optic Disc Head a New Marker for Idiopathic Intracranial Hypertension? Journal of Neurosciences in Rural Practice, 11, 170-174.
https://doi.org/10.1055/s-0039-3402621
[47] Alperin, N. and Bagci, A.M. (2018) Spaceflight-induced Visual Impairment and Globe Deformations in Astronauts Are Linked to Orbital Cerebrospinal Fluid Volume Increase. In: Heldt, T., Ed., Intracranial Pressure & Neuromonitoring XVI, Springer, 215-219.
https://doi.org/10.1007/978-3-319-65798-1_44
[48] Alperin, N., Lam, B.L., Tain, R., Ranganathan, S., Letzing, M., Bloom, M., et al. (2012) Evidence for Altered Spinal Canal Compliance and Cerebral Venous Drainage in Untreated Idiopathic Intracranial Hypertension. In: Schuhmann, M. and Czosnyka, M., Eds., Intracranial Pressure and Brain Monitoring XIV, Springer, 201-205.
https://doi.org/10.1007/978-3-7091-0956-4_39
[49] Tain, R., Bagci, A.M., Lam, B.L., Sklar, E.M., Ertl‐Wagner, B. and Alperin, N. (2011) Determination of Cranio‐Spinal Canal Compliance Distribution by MRI: Methodology and Early Application in Idiopathic Intracranial Hypertension. Journal of Magnetic Resonance Imaging, 34, 1397-1404.
https://doi.org/10.1002/jmri.22799
[50] Tatewaki, Y., Mutoh, T., Omodaka, K., Thyreau, B., Matsudaira, I., Furukawa, H., et al. (2019) Morphological Prediction of Glaucoma by Quantitative Analyses of Ocular Shape and Volume Using 3-Dimensional T2-Weighted MR Images. Scientific Reports, 9, Article No. 15148.
https://doi.org/10.1038/s41598-019-51611-0
[51] Kim, D.Y., Kim, S.Y., Hong, D.Y., Sung, B.Y., Lee, S., Paik, J.H., et al. (2021) Comparison of Ultrasonography and Computed Tomography for Measuring Optic Nerve Sheath Diameter for the Detection of Elevated Intracranial Pressure. Clinical Neurology and Neurosurgery, 204, Article ID: 106609.
https://doi.org/10.1016/j.clineuro.2021.106609
[52] Jenjitranant, P., Tunlayadechanont, P., Prachanukool, T. and Kaewlai, R. (2020) Correlation between Optic Nerve Sheath Diameter Measured on Imaging with Acute Pathologies Found on Computed Tomography of Trauma Patients. European Journal of Radiology, 125, Article ID: 108875.
https://doi.org/10.1016/j.ejrad.2020.108875
[53] Sekhon, M.S., Griesdale, D.E., Robba, C., McGlashan, N., Needham, E., Walland, K., et al. (2014) Optic Nerve Sheath Diameter on Computed Tomography Is Correlated with Simultaneously Measured Intracranial Pressure in Patients with Severe Traumatic Brain Injury. Intensive Care Medicine, 40, 1267-1274.
https://doi.org/10.1007/s00134-014-3392-7
[54] York, D.H., Pulliam, M.W., Rosenfeld, J.G. and Watts, C. (1981) Relationship between Visual Evoked Potentials and Intracranial Pressure. Journal of Neurosurgery, 55, 909-916.
https://doi.org/10.3171/jns.1981.55.6.0909
[55] Zhao, Y.L., Zhou, J.Y. and Zhu, G.H. (n.d.) Clinical Experience with the Noninvasive ICP Monitoring System. In: Poon, W.S., et al., Eds., Intracranial Pressure and Brain Monitoring XII, Springer-Verlag, 351-355.
https://doi.org/10.1007/3-211-32318-x_72
[56] Zhong, J.I., Li, Y., Minhui, X. and Yihua, Z. (2012) Realization of a Comprehensive Non-Invasive Detection of Intracranial Pressure Analyzer Based Upon FVEP and TCD. In: Schuhmann, M. and Czosnyka, M., Eds., Intracranial Pressure and Brain Monitoring XIV, Springer Vienna, 127-129.
https://doi.org/10.1007/978-3-7091-0956-4_23
[57] Ragauskas, A., Matijosaitis, V., Zakelis, R., Petrikonis, K., Rastenyte, D., Piper, I., et al. (2012) Clinical Assessment of Noninvasive Intracranial Pressure Absolute Value Measurement Method. Neurology, 78, 1684-1691.
https://doi.org/10.1212/wnl.0b013e3182574f50
[58] Zhang, L. and Hargens, A.R. (2018) Spaceflight-induced Intracranial Hypertension and Visual Impairment: Pathophysiology and Countermeasures. Physiological Reviews, 98, 59-87.
https://doi.org/10.1152/physrev.00017.2016
[59] Zhang, X., Medow, J.E., Iskandar, B.J., Wang, F., Shokoueinejad, M., Koueik, J., et al. (2017) Invasive and Noninvasive Means of Measuring Intracranial Pressure: A Review. Physiological Measurement, 38, R143-R182.
https://doi.org/10.1088/1361-6579/aa7256
[60] Skau, M., Yri, H., Sander, B., Gerds, T.A., Milea, D. and Jensen, R. (2012) Diagnostic Value of Optical Coherence Tomography for Intracranial Pressure in Idiopathic Intracranial Hypertension. Graefes Archive for Clinical and Experimental Ophthalmology, 251, 567-574.
https://doi.org/10.1007/s00417-012-2039-z
[61] Swanson, J.W., Xu, W., Ying, G., Pan, W., Lang, S., Heuer, G.G., et al. (2019) Intracranial Pressure Patterns in Children with Craniosynostosis Utilizing Optical Coherence Tomography. Childs Nervous System, 36, 535-544.
https://doi.org/10.1007/s00381-019-04448-x
[62] Kupersmith, M.J., Sibony, P., Mandel, G., Durbin, M. and Kardon, R.H. (2011) Optical Coherence Tomography of the Swollen Optic Nerve Head: Deformation of the Peripapillary Retinal Pigment Epithelium Layer in Papilledema. Investigative Opthalmology & Visual Science, 52, 6558.
https://doi.org/10.1167/iovs.10-6782
[63] Sibony, P., Kupersmith, M.J., Honkanen, R., Rohlf, F.J. and Torab-Parhiz, A. (2014) Effects of Lowering Cerebrospinal Fluid Pressure on the Shape of the Peripapillary Retina in Intracranial Hypertension. Investigative Ophthalmology & Visual Science, 55, 8223-8231.
https://doi.org/10.1167/iovs.14-15298
[64] Tun, T.A., Wang, X., Baskaran, M., Nongpiur, M.E., Tham, Y., Perera, S.A., et al. (2019) Variation of Peripapillary Scleral Shape with Age. Investigative Opthalmology & Visual Science, 60, 3275-3282.
https://doi.org/10.1167/iovs.19-26777
[65] Wang, X., Tun, T.A., Nongpiur, M.E., Htoon, H.M., Tham, Y.C., Strouthidis, N.G., et al. (2020) Peripapillary Sclera Exhibits a V-Shaped Configuration That Is More Pronounced in Glaucoma Eyes. British Journal of Ophthalmology, 106, 491-496.
https://doi.org/10.1136/bjophthalmol-2020-317900
[66] Ong, C., Hutch, M., Barra, M., Kim, A., Zafar, S. and Smirnakis, S. (2018) Effects of Osmotic Therapy on Pupil Reactivity: Quantification Using Pupillometry in Critically Ill Neurologic Patients. Neurocritical Care, 30, 307-315.
https://doi.org/10.1007/s12028-018-0620-y
[67] Taylor, W.R., Chen, J.W., Meltzer, H., Gennarelli, T.A., Kelbch, C., Knowlton, S., et al. (2003) Quantitative Pupillometry, a New Technology: Normative Data and Preliminary Observations in Patients with Acute Head Injury. Journal of Neurosurgery, 98, 205-213.
https://doi.org/10.3171/jns.2003.98.1.0205
[68] Chen, J., Gombart, Z., Rogers, S., Gardiner, S., Cecil, S. and Bullock, R. (2011) Pupillary Reactivity as an Early Indicator of Increased Intracranial Pressure: The Introduction of the Neurological Pupil Index. Surgical Neurology International, 2, Article 82.
https://doi.org/10.4103/2152-7806.82248
[69] McNett, M., Moran, C., Grimm, D. and Gianakis, A. (2018) Pupillometry Trends in the Setting of Increased Intracranial Pressure. Journal of Neuroscience Nursing, 50, 357-361.
https://doi.org/10.1097/jnn.0000000000000401
[70] Stevens, A.R., Su, Z., Toman, E., Belli, A. and Davies, D. (2019) Optical Pupillometry in Traumatic Brain Injury: Neurological Pupil Index and Its Relationship with Intracranial Pressure through Significant Event Analysis. Brain Injury, 33, 1032-1038.
https://doi.org/10.1080/02699052.2019.1605621
[71] Giede-Jeppe, A., Sprügel, M.I., Huttner, H.B., Borutta, M., Kuramatsu, J.B., Hoelter, P., et al. (2020) Automated Pupillometry Identifies Absence of Intracranial Pressure Elevation in Intracerebral Hemorrhage Patients. Neurocritical Care, 35, 210-220.
https://doi.org/10.1007/s12028-020-01146-4