[1]
|
Dunn, L.T. (2002) Raised Intracranial Pressure. Journal of Neurology, Neurosurgery & Psychiatry, 73, i23-i27. https://doi.org/10.1136/jnnp.73.suppl_1.i23
|
[2]
|
Mokri, B. (2001) The Monro-Kellie Hypothesis: Applications in CSF Volume Depletion. Neurology, 56, 1746-1748. https://doi.org/10.1212/wnl.56.12.1746
|
[3]
|
Huang, A., Mai, A., Goldberg, J., Samuelson, T., Morgan, W., Herndon, L., et al. (2024) The Benefit of Nocturnal IOP Reduction in Glaucoma, Including Normal Tension Glaucoma. Clinical Ophthalmology, 18, 3153-3160. https://doi.org/10.2147/opth.s494949
|
[4]
|
Lundberg, N. (1960) Continuous Recording and Control of Ventricular Fluid Pressure in Neurosurgical Practice. Acta psychiatrica Scandinavica. Supplementum, 36, 1-193.
|
[5]
|
Jiang, N., Flyax, S., Kurz, W., Jakobi, M., Tasoglu, S., Koch, A.W., et al. (2021) Intracranial Sensors for Continuous Monitoring of Neurophysiology. Advanced Materials Technologies, 6, Article ID: 2100339. https://doi.org/10.1002/admt.202100339
|
[6]
|
Evensen, K.B. and Eide, P.K. (2020) Measuring Intracranial Pressure by Invasive, Less Invasive or Non-Invasive Means: Limitations and Avenues for Improvement. Fluids and Barriers of the CNS, 17, Article No. 34. https://doi.org/10.1186/s12987-020-00195-3
|
[7]
|
武丽敏, 杨悦, 葛顺楠, 屈延. 无创颅内压监测方法研究进展[J/OL]. 空军军医大学学报, 1-17. https://link.cnki.net/urlid/61.1526.R.20240311.1800.011, 2025-04-28.
|
[8]
|
Kristiansson, H., Nissborg, E., Bartek, J., Andresen, M., Reinstrup, P. and Romner, B. (2013) Measuring Elevated Intracranial Pressure through Noninvasive Methods: A Review of the Literature. Journal of Neurosurgical Anesthesiology, 25, 372-385. https://doi.org/10.1097/ana.0b013e31829795ce
|
[9]
|
Toutant, S.M., Klauber, M.R., Marshall, L.F., Toole, B.M., Bowers, S.A., Seelig, J.M., et al. (1984) Absent or Compressed Basal Cisterns on First CT Scan: Ominous Predictors of Outcome in Severe Head Injury. Journal of Neurosurgery, 61, 691-694. https://doi.org/10.3171/jns.1984.61.4.0691
|
[10]
|
Kazimierska, A., Uryga, A., Mataczyński, C., Czosnyka, M., Lang, E.W., Kasprowicz, M., et al. (2023) Relationship between the Shape of Intracranial Pressure Pulse Waveform and Computed Tomography Characteristics in Patients after Traumatic Brain Injury. Critical Care, 27, Article No. 447. https://doi.org/10.1186/s13054-023-04731-z
|
[11]
|
Toledo, J.A., Namias, R. and Milano, M.J. (2021) A Novel Automated Calculation of Basal Cistern Effacement Status on Computed Tomographic Imaging in Traumatic Brain Injury. Cureus, 13, e13144. https://doi.org/10.7759/cureus.13144
|
[12]
|
Horev, A., Eliav, T., Sherer, I., Biederko, R., Ben-Arie, G., Shelef, I., et al. (2024) Radiological Signs Supporting Idiopathic Intracranial Hypertension in Symptomatic Patients with Lumbar Puncture Opening Pressure < 250 mm. Scientific Reports, 14, Article No. 19450. https://doi.org/10.1038/s41598-024-70588-z
|
[13]
|
Cogswell, P.M., Murphy, M.C., Madhavan, A.A., Bhatti, M.T., Cutsforth-Gregory, J.K., Senjem, M.L., et al. (2022) Features of Idiopathic Intracranial Hypertension on MRI with MR Elastography: Prospective Comparison with Control Individuals and Assessment of Postintervention Changes. American Journal of Roentgenology, 219, 940-951. https://doi.org/10.2214/ajr.22.27904
|
[14]
|
Blanco, P. and Abdo-Cuza, A. (2018) Transcranial Doppler ultrasound in neurocritical care. Journal of Ultrasound, 21, 1-16. https://doi.org/10.1007/s40477-018-0282-9
|
[15]
|
Cardim, D., Robba, C., Bohdanowicz, M., Donnelly, J., Cabella, B., Liu, X., et al. (2016) Non-Invasive Monitoring of Intracranial Pressure Using Transcranial Doppler Ultrasonography: Is It Possible? Neurocritical Care, 25, 473-491. https://doi.org/10.1007/s12028-016-0258-6
|
[16]
|
Cardim, D., Robba, C., Bohdanowicz, M., Donnelly, J., Cabella, B., Liu, X., et al. (2016) Non-Invasive Monitoring of Intracranial Pressure Using Transcranial Doppler Ultrasonography: Is It Possible? Neurocritical Care, 25, 473-491. https://doi.org/10.1007/s12028-016-0258-6
|
[17]
|
R., P., Gupta, D., Shetty, N., Bhushan, A.K., Haskar, K., Gogineni, S., et al. (2020) Transcranial Doppler for Monitoring and Evaluation of Idiopathic Intracranial Hypertension. Journal of Neurosciences in Rural Practice, 11, 309-314. https://doi.org/10.1055/s-0040-1710086
|
[18]
|
Engelhardt, M., Pfadenhauer, K., Zentner, J., Grimmer, S., Wachenfeld-Wahl, C., Heidenreich, P., et al. (2004) Störung der zerebralen Perfusionsreservebei asymptomatischen Patienten mit A. carotisinterna-Stenose: Vergleich von Acetazolamid-SPECT und transkranieller CO2-Dopplersonographie. Zentralblatt für Chirurgie, 129, 178-182. https://doi.org/10.1055/s-2004-822798
|
[19]
|
Connolly, E.S., Rabinstein, A.A., Carhuapoma, J.R., Derdeyn, C.P., Dion, J., Higashida, R.T., et al. (2012) Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke, 43, 1711-1737. https://doi.org/10.1161/str.0b013e3182587839
|
[20]
|
Marchbanks, R.J. (1984) Measurement of Tympanic Membrane Displacement Arising from Aural Cardiovascular Activity, Swallowing, and Intra-Aural Muscle Reflex. Acta Oto-Laryngologica, 98, 119-129. https://doi.org/10.3109/00016488409107543
|
[21]
|
Uryga, A., Kazimierska, A., Popek, M., Dragan, B., Burzyńska, M., Masalski, M., et al. (2023) Applying Video Motion Magnification to Reveal Spontaneous Tympanic Membrane Displacement as an Indirect Measure of Intracranial Pressure in Patients with Brain Pathologies. Acta Neurochirurgica, 165, 2227-2235. https://doi.org/10.1007/s00701-023-05681-9
|
[22]
|
Campbell-Bell, C.M., Birch, A.A., Vignali, D., Bulters, D. and Marchbanks, R.J. (2018) Reference Intervals for the Evoked Tympanic Membrane Displacement Measurement: A Non-Invasive Measure of Intracranial Pressure. Physiological Measurement, 39, Article Id: 015008. https://doi.org/10.1088/1361-6579/aaa1d3
|
[23]
|
Burman, R., Shah, A.H., Benveniste, R., Jimsheleishvili, G., Lee, S.H., Loewenstein, D., et al. (2019) Comparing Invasive with MRI‐Derived Intracranial Pressure Measurements in Healthy Elderly and Brain Trauma Cases: A Pilot Study. Journal of Magnetic Resonance Imaging, 50, 975-981. https://doi.org/10.1002/jmri.26695
|
[24]
|
Raksin, P.B., Alperin, N., Sivaramakrishnan, A., Surapaneni, S. and Lichtor, T. (2003) Noninvasive Intracranial Compliance and Pressure Based on Dynamic Magnetic Resonance Imaging of Blood Flow and Cerebrospinal Fluid Flow: Review of Principles, Implementation, and Other Noninvasive Approaches. Neurosurgical Focus, 14, 1-8. https://doi.org/10.3171/foc.2003.14.4.4
|
[25]
|
Alperin, N.J., Lee, S.H., Loth, F., Raksin, P.B. and Lichtor, T. (2000) MR-Intracranial Pressure (ICP): A Method to Measure Intracranial Elastance and Pressure Noninvasively by Means of MR Imaging: Baboon and Human Study. Radiology, 217, 877-885. https://doi.org/10.1148/radiology.217.3.r00dc42877
|
[26]
|
Long, J., Sun, D., Zhou, X., Huang, X., Hu, J., Xia, J., et al. (2020) A Mathematical Model for Predicting Intracranial Pressure Based on Noninvasively Acquired PC-MRI Parameters in Communicating Hydrocephalus. Journal of Clinical Monitoring and Computing, 35, 1325-1332. https://doi.org/10.1007/s10877-020-00598-5
|
[27]
|
Ficarrotta, K.R. and Passaglia, C.L. (2020) Intracranial Pressure Modulates Aqueous Humour Dynamics of the Eye. The Journal of Physiology, 598, 403-413. https://doi.org/10.1113/jp278768
|
[28]
|
Stoskuviene, A., Siaudvytyte, L., Januleviciene, I., Vaitkus, A., Simiene, E., Bakstyte, V., et al. (2023) The Relationship between Intracranial Pressure and Visual Field Zones in Normal-Tension Glaucoma Patients. Diagnostics, 13, Article 174. https://doi.org/10.3390/diagnostics13020174
|
[29]
|
Lindén, C., Qvarlander, S., Jóhannesson, G., Johansson, E., Östlund, F., Malm, J., et al. (2018) Normal-Tension Glaucoma Has Normal Intracranial Pressure: A Prospective Study of Intracranial Pressure and Intraocular Pressure in Different Body Positions. Ophthalmology, 125, 361-368. https://doi.org/10.1016/j.ophtha.2017.09.022
|
[30]
|
Hayreh, S.S. (1968) Pathogenesis of Oedema of the Optic Disc. Documenta Ophthalmologica, 24, 289-411. https://doi.org/10.1007/bf02550944
|
[31]
|
Schott, C.K., Hirzallah, M.I., Heyman, R., Lesky, D.N., Brant, E.B. and Callaway, C.W. (2020) Ultrasound Measurement of Optic Nerve Sheath Diameter Pre-and Post-Lumbar Puncture. The Ultrasound Journal, 12, Article No. 26. https://doi.org/10.1186/s13089-020-00173-8
|
[32]
|
Bastani Viarsagh, S., Agar, A., Lawlor, M., Fraser, C. and Golzan, M. (2024) Non-invasive Assessment of Intracranial Pressure through the Eyes: Current Developments, Limitations, and Future Directions. Frontiers in Neurology, 15, Article 1442821. https://doi.org/10.3389/fneur.2024.1442821
|
[33]
|
Kimberly, H.H., Shah, S., Marill, K. and Noble, V. (2008) Correlation of Optic Nerve Sheath Diameter with Direct Measurement of Intracranial Pressure. Academic Emergency Medicine, 15, 201-204. https://doi.org/10.1111/j.1553-2712.2007.00031.x
|
[34]
|
Blaivas, M. (2003) Elevated Intracranial Pressure Detected by Bedside Emergency Ultrasonography of the Optic Nerve Sheath. Academic Emergency Medicine, 10, 376-381. https://doi.org/10.1197/aemj.10.4.376
|
[35]
|
Price, D.A., Grzybowski, A., Eikenberry, J., Januleviciene, I., Verticchio Vercellin, A.C., Mathew, S., et al. (2019) Review of Non-Invasive Intracranial Pressure Measurement Techniques for Ophthalmology Applications. British Journal of Ophthalmology, 104, 887-892. https://doi.org/10.1136/bjophthalmol-2019-314704
|
[36]
|
Amini, A., Kariman, H., Arhami Dolatabadi, A., Hatamabadi, H.R., Derakhshanfar, H., Mansouri, B., et al. (2013) Use of the Sonographic Diameter of Optic Nerve Sheath to Estimate Intracranial Pressure. The American Journal of Emergency Medicine, 31, 236-239. https://doi.org/10.1016/j.ajem.2012.06.025
|
[37]
|
Kimberly, H. and Noble, V.E. (2008) Using MRI of the Optic Nerve Sheath to Detect Elevated Intracranial Pressure. Critical Care, 12, Article No. 181. https://doi.org/10.1186/cc7008
|
[38]
|
Schuchardt, F.F., Krafft, A.J., Miguel Telega, L., Küchlin, S., Lagrèze, W.A., Demerath, T., et al. (2024) Interrelation between Cerebrospinal Fluid Pressure, Intracranial Morphology and Venous Hemodynamics Studied by 4D Flow MRI. Clinical Neuroradiology, 34, 391-401. https://doi.org/10.1007/s00062-023-01381-0
|
[39]
|
Almudayni, A., Alharbi, M., Chowdhury, A., Ince, J., Alablani, F., Minhas, J.S., et al. (2022) Magnetic Resonance Imaging of the Pulsing Brain: A Systematic Review. Magnetic Resonance Materials in Physics, Biology and Medicine, 36, 3-14. https://doi.org/10.1007/s10334-022-01043-1
|
[40]
|
Yuh, E.L. and Dillon, W.P. (2010) Intracranial Hypotension and Intracranial Hypertension. Neuroimaging Clinics of North America, 20, 597-617. https://doi.org/10.1016/j.nic.2010.07.012
|
[41]
|
Liu, J., Chaij, J., Linguraru, M.G., French, B., Keating, R., Alexander, A.L., et al. (2024) Cranial Bone Thickness and Density Anomalies Quantified from CT Images Can Identify Chronic Increased Intracranial Pressure. Neuroradiology, 66, 1817-1828. https://doi.org/10.1007/s00234-024-03393-0
|
[42]
|
Pandit, A.S., China, M., Jain, R., Jalal, A.H.B., Jelen, M., Joshi, S.B., et al. (2024) The Utility of MRI Radiological Biomarkers in Determining Intracranial Pressure. Scientific Reports, 14, Article No. 23238. https://doi.org/10.1038/s41598-024-73750-9
|
[43]
|
Taşcioğlu, T. (2021) The Diagnostic Value of Cranial MRI Findings in Idiopathic Intracranial Hypertension: Evaluating Radiological Parameters Associated with Intracranial Pressure. Acta Radiologica, 63, 1390-1397. https://doi.org/10.1177/02841851211038803
|
[44]
|
Raffa, A., Raffa, L., Kamal, Y., Hassan, T., Alaidarous, K., Osaylan, M., et al. (2023) Pediatric Optic Nerve and Globe Measurements on Magnetic Resonance Imaging: Establishing Norms for Children. Acta Radiologica, 64, 2162-2169. https://doi.org/10.1177/02841851231169176
|
[45]
|
Kula, A.Y., Polat, Y.B., Atasoy, B., Yiğit, M., Kırık, F., Pasin, Ö., et al. (2024) Non-Invasive Estimation of Cerebrospinal Fluid Pressure in Idiopathic Intracranial Hypertension: Magnetic Resonance Imaging Analysis of Optic Nerve and Eyeball. Acta Neurologica Belgica, 125, 61-68. https://doi.org/10.1007/s13760-024-02620-y
|
[46]
|
Nagarajan, E., Digala, L.P., Sivaraman, M. and Bollu, P.C. (2019) Is Magnetic Resonance Imaging Diffusion Restriction of the Optic Disc Head a New Marker for Idiopathic Intracranial Hypertension? Journal of Neurosciences in Rural Practice, 11, 170-174. https://doi.org/10.1055/s-0039-3402621
|
[47]
|
Alperin, N. and Bagci, A.M. (2018) Spaceflight-induced Visual Impairment and Globe Deformations in Astronauts Are Linked to Orbital Cerebrospinal Fluid Volume Increase. In: Heldt, T., Ed., Intracranial Pressure & Neuromonitoring XVI, Springer, 215-219. https://doi.org/10.1007/978-3-319-65798-1_44
|
[48]
|
Alperin, N., Lam, B.L., Tain, R., Ranganathan, S., Letzing, M., Bloom, M., et al. (2012) Evidence for Altered Spinal Canal Compliance and Cerebral Venous Drainage in Untreated Idiopathic Intracranial Hypertension. In: Schuhmann, M. and Czosnyka, M., Eds., Intracranial Pressure and Brain Monitoring XIV, Springer, 201-205. https://doi.org/10.1007/978-3-7091-0956-4_39
|
[49]
|
Tain, R., Bagci, A.M., Lam, B.L., Sklar, E.M., Ertl‐Wagner, B. and Alperin, N. (2011) Determination of Cranio‐Spinal Canal Compliance Distribution by MRI: Methodology and Early Application in Idiopathic Intracranial Hypertension. Journal of Magnetic Resonance Imaging, 34, 1397-1404. https://doi.org/10.1002/jmri.22799
|
[50]
|
Tatewaki, Y., Mutoh, T., Omodaka, K., Thyreau, B., Matsudaira, I., Furukawa, H., et al. (2019) Morphological Prediction of Glaucoma by Quantitative Analyses of Ocular Shape and Volume Using 3-Dimensional T2-Weighted MR Images. Scientific Reports, 9, Article No. 15148. https://doi.org/10.1038/s41598-019-51611-0
|
[51]
|
Kim, D.Y., Kim, S.Y., Hong, D.Y., Sung, B.Y., Lee, S., Paik, J.H., et al. (2021) Comparison of Ultrasonography and Computed Tomography for Measuring Optic Nerve Sheath Diameter for the Detection of Elevated Intracranial Pressure. Clinical Neurology and Neurosurgery, 204, Article ID: 106609. https://doi.org/10.1016/j.clineuro.2021.106609
|
[52]
|
Jenjitranant, P., Tunlayadechanont, P., Prachanukool, T. and Kaewlai, R. (2020) Correlation between Optic Nerve Sheath Diameter Measured on Imaging with Acute Pathologies Found on Computed Tomography of Trauma Patients. European Journal of Radiology, 125, Article ID: 108875. https://doi.org/10.1016/j.ejrad.2020.108875
|
[53]
|
Sekhon, M.S., Griesdale, D.E., Robba, C., McGlashan, N., Needham, E., Walland, K., et al. (2014) Optic Nerve Sheath Diameter on Computed Tomography Is Correlated with Simultaneously Measured Intracranial Pressure in Patients with Severe Traumatic Brain Injury. Intensive Care Medicine, 40, 1267-1274. https://doi.org/10.1007/s00134-014-3392-7
|
[54]
|
York, D.H., Pulliam, M.W., Rosenfeld, J.G. and Watts, C. (1981) Relationship between Visual Evoked Potentials and Intracranial Pressure. Journal of Neurosurgery, 55, 909-916. https://doi.org/10.3171/jns.1981.55.6.0909
|
[55]
|
Zhao, Y.L., Zhou, J.Y. and Zhu, G.H. (n.d.) Clinical Experience with the Noninvasive ICP Monitoring System. In: Poon, W.S., et al., Eds., Intracranial Pressure and Brain Monitoring XII, Springer-Verlag, 351-355. https://doi.org/10.1007/3-211-32318-x_72
|
[56]
|
Zhong, J.I., Li, Y., Minhui, X. and Yihua, Z. (2012) Realization of a Comprehensive Non-Invasive Detection of Intracranial Pressure Analyzer Based Upon FVEP and TCD. In: Schuhmann, M. and Czosnyka, M., Eds., Intracranial Pressure and Brain Monitoring XIV, Springer Vienna, 127-129. https://doi.org/10.1007/978-3-7091-0956-4_23
|
[57]
|
Ragauskas, A., Matijosaitis, V., Zakelis, R., Petrikonis, K., Rastenyte, D., Piper, I., et al. (2012) Clinical Assessment of Noninvasive Intracranial Pressure Absolute Value Measurement Method. Neurology, 78, 1684-1691. https://doi.org/10.1212/wnl.0b013e3182574f50
|
[58]
|
Zhang, L. and Hargens, A.R. (2018) Spaceflight-induced Intracranial Hypertension and Visual Impairment: Pathophysiology and Countermeasures. Physiological Reviews, 98, 59-87. https://doi.org/10.1152/physrev.00017.2016
|
[59]
|
Zhang, X., Medow, J.E., Iskandar, B.J., Wang, F., Shokoueinejad, M., Koueik, J., et al. (2017) Invasive and Noninvasive Means of Measuring Intracranial Pressure: A Review. Physiological Measurement, 38, R143-R182. https://doi.org/10.1088/1361-6579/aa7256
|
[60]
|
Skau, M., Yri, H., Sander, B., Gerds, T.A., Milea, D. and Jensen, R. (2012) Diagnostic Value of Optical Coherence Tomography for Intracranial Pressure in Idiopathic Intracranial Hypertension. Graefe’s Archive for Clinical and Experimental Ophthalmology, 251, 567-574. https://doi.org/10.1007/s00417-012-2039-z
|
[61]
|
Swanson, J.W., Xu, W., Ying, G., Pan, W., Lang, S., Heuer, G.G., et al. (2019) Intracranial Pressure Patterns in Children with Craniosynostosis Utilizing Optical Coherence Tomography. Child’s Nervous System, 36, 535-544. https://doi.org/10.1007/s00381-019-04448-x
|
[62]
|
Kupersmith, M.J., Sibony, P., Mandel, G., Durbin, M. and Kardon, R.H. (2011) Optical Coherence Tomography of the Swollen Optic Nerve Head: Deformation of the Peripapillary Retinal Pigment Epithelium Layer in Papilledema. Investigative Opthalmology & Visual Science, 52, 6558. https://doi.org/10.1167/iovs.10-6782
|
[63]
|
Sibony, P., Kupersmith, M.J., Honkanen, R., Rohlf, F.J. and Torab-Parhiz, A. (2014) Effects of Lowering Cerebrospinal Fluid Pressure on the Shape of the Peripapillary Retina in Intracranial Hypertension. Investigative Ophthalmology & Visual Science, 55, 8223-8231. https://doi.org/10.1167/iovs.14-15298
|
[64]
|
Tun, T.A., Wang, X., Baskaran, M., Nongpiur, M.E., Tham, Y., Perera, S.A., et al. (2019) Variation of Peripapillary Scleral Shape with Age. Investigative Opthalmology & Visual Science, 60, 3275-3282. https://doi.org/10.1167/iovs.19-26777
|
[65]
|
Wang, X., Tun, T.A., Nongpiur, M.E., Htoon, H.M., Tham, Y.C., Strouthidis, N.G., et al. (2020) Peripapillary Sclera Exhibits a V-Shaped Configuration That Is More Pronounced in Glaucoma Eyes. British Journal of Ophthalmology, 106, 491-496. https://doi.org/10.1136/bjophthalmol-2020-317900
|
[66]
|
Ong, C., Hutch, M., Barra, M., Kim, A., Zafar, S. and Smirnakis, S. (2018) Effects of Osmotic Therapy on Pupil Reactivity: Quantification Using Pupillometry in Critically Ill Neurologic Patients. Neurocritical Care, 30, 307-315. https://doi.org/10.1007/s12028-018-0620-y
|
[67]
|
Taylor, W.R., Chen, J.W., Meltzer, H., Gennarelli, T.A., Kelbch, C., Knowlton, S., et al. (2003) Quantitative Pupillometry, a New Technology: Normative Data and Preliminary Observations in Patients with Acute Head Injury. Journal of Neurosurgery, 98, 205-213. https://doi.org/10.3171/jns.2003.98.1.0205
|
[68]
|
Chen, J., Gombart, Z., Rogers, S., Gardiner, S., Cecil, S. and Bullock, R. (2011) Pupillary Reactivity as an Early Indicator of Increased Intracranial Pressure: The Introduction of the Neurological Pupil Index. Surgical Neurology International, 2, Article 82. https://doi.org/10.4103/2152-7806.82248
|
[69]
|
McNett, M., Moran, C., Grimm, D. and Gianakis, A. (2018) Pupillometry Trends in the Setting of Increased Intracranial Pressure. Journal of Neuroscience Nursing, 50, 357-361. https://doi.org/10.1097/jnn.0000000000000401
|
[70]
|
Stevens, A.R., Su, Z., Toman, E., Belli, A. and Davies, D. (2019) Optical Pupillometry in Traumatic Brain Injury: Neurological Pupil Index and Its Relationship with Intracranial Pressure through Significant Event Analysis. Brain Injury, 33, 1032-1038. https://doi.org/10.1080/02699052.2019.1605621
|
[71]
|
Giede-Jeppe, A., Sprügel, M.I., Huttner, H.B., Borutta, M., Kuramatsu, J.B., Hoelter, P., et al. (2020) Automated Pupillometry Identifies Absence of Intracranial Pressure Elevation in Intracerebral Hemorrhage Patients. Neurocritical Care, 35, 210-220. https://doi.org/10.1007/s12028-020-01146-4
|