[1]
|
Ortigosa-Palomo, A., Porras-Alcalá, C., Quiñonero, F., Moya-Utrera, F., Ortiz, R., López-Romero, J.M., et al. (2023) Antitumor Activity of Bengamide II in a Panel of Human and Murine Tumor Cell Lines: In Vitro and in Vivo Determination of Effectiveness against Lung Cancer. Biomedicine & Pharmacotherapy, 168, Article ID: 115789. https://doi.org/10.1016/j.biopha.2023.115789
|
[2]
|
Balážová, K., Clevers, H. and Dost, A.F. (2023) The Role of Macrophages in Non-Small Cell Lung Cancer and Advancements in 3D Co-Cultures. eLife, 12, e82998. https://doi.org/10.7554/elife.82998
|
[3]
|
Bassi, G., Grimaudo, M.A., Panseri, S. and Montesi, M. (2021) Advanced Multi-Dimensional Cellular Models as Emerging Reality to Reproduce in Vitro the Human Body Complexity. International Journal of Molecular Sciences, 22, Article 1195. https://doi.org/10.3390/ijms22031195
|
[4]
|
Hoarau-Véchot, J., Rafii, A., Touboul, C. and Pasquier, J. (2018) Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions? International Journal of Molecular Sciences, 19, Article 181. https://doi.org/10.3390/ijms19010181
|
[5]
|
Doillon, C.J., Gagnon, E., Paradis, R. and Koutsilieris, M. (2004) Three-Dimensional Culture System as a Model for Studying Cancer Cell Invasion Capacity and Anticancer Drug Sensitivity. Anticancer Research, 24, 2169-2177.
|
[6]
|
Li, R.Z., Guan, X.X., Wang, X.R., Bao, W., Lian, L., Choi, S.W., et al. (2023) Sinomenine Hydrochloride Bidirectionally Inhibits Progression of Tumor and Autoimmune Diseases by Regulating AMPK Pathway. Phytomedicine, 114, Article ID: 154751. https://doi.org/10.1016/j.phymed.2023.154751
|
[7]
|
王晗,黄逸伦,朱莲,张文元,唐靓.聚氨酯三维肺癌模型的建立及姜黄素药敏试验[J].药物化学,2025,13(1):11-18.
|
[8]
|
Gao, M., Lai, K., Deng, Y., Lu, Z., Song, C., Wang, W., et al. (2023) Eriocitrin Inhibits Epithelial-Mesenchymal Transformation (EMT) in Lung Adenocarcinoma Cells via Triggering Ferroptosis. Aging, 15, 10089-10104. https://doi.org/10.18632/aging.205049
|
[9]
|
Mei, Y., Wu, D., Berg, J., Tolksdorf, B., Roehrs, V., Kurreck, A., et al. (2023) Generation of a Perfusable 3D Lung Cancer Model by Digital Light Processing. International Journal of Molecular Sciences, 24, Article 6071. https://doi.org/10.3390/ijms24076071
|
[10]
|
Jiang, R., Huang, J., Sun, X., Chu, X., Wang, F., Zhou, J., et al. (2022) Construction of in Vitro 3-D Model for Lung Cancer-Cell Metastasis Study. BMC Cancer, 22, Article No. 438. https://doi.org/10.1186/s12885-022-09546-9
|
[11]
|
van der Merwe, L., Svitina, H., Willers, C., Wrzesinski, K. and Gouws, C. (2022) A Novel NCI‐H69V Small Cell Lung Cancer Functional Mini‐Tumor Model for Future Treatment Screening Applications. Biotechnology Progress, 38, e3253. https://doi.org/10.1002/btpr.3253
|
[12]
|
Mazzocchi, A., Dominijanni, A. and Soker, S. (2022) Pleural Effusion Aspirate for Use in 3D Lung Cancer Modeling and Chemotherapy Screening. In: Rasooly, A., Baker, H. and Ossandon, M.R., Eds., Biomedical Engineering Technologies, Springer, 471-483. https://doi.org/10.1007/978-1-0716-1811-0_24
|
[13]
|
Vega, V.F., Yang, D., Jordán, L.O., Ye, F., Conway, L., Chen, L.Y., et al. (2023) Protocol for 3D Screening of Lung Cancer Spheroids Using Natural Products. SLAS Discovery, 28, 20-28. https://doi.org/10.1016/j.slasd.2023.01.005
|
[14]
|
Zhu, J., Zhu, H. and Gao, J. (2023) The Anti-Tumor Potential of Sinomenine: A Narrative Review. Translational Cancer Research, 12, 2393-2404. https://doi.org/10.21037/tcr-23-267
|
[15]
|
Shen, K., Hung, J., Liao, Y., Tsai, S., Wu, M. and Chen, P. (2020) Sinomenine Inhibits Migration and Invasion of Human Lung Cancer Cell through Downregulating Expression of MIR-21 and MMPs. International Journal of Molecular Sciences, 21, Article 3080. https://doi.org/10.3390/ijms21093080
|
[16]
|
Li, R.Z., Guan, X.X., Wang, X.R., Bao, W., Lian, L., Choi, S.W., et al. (2023) Sinomenine Hydrochloride Bidirectionally Inhibits Progression of Tumor and Autoimmune Diseases by Regulating AMPK Pathway. Phytomedicine, 114, Article ID: 154751. https://doi.org/10.1016/j.phymed.2023.154751
|
[17]
|
Zhao, B., Liu, L., Mao, J., Liu, K., Fan, W., Liu, J., et al. (2017) Sinomenine Hydrochloride Attenuates the Proliferation, Migration, Invasiveness, Angiogenesis and Epithelial-Mesenchymal Transition of Clear-Cell Renal Cell Carcinoma Cells via Targeting Smad in Vitro. Biomedicine & Pharmacotherapy, 96, 1036-1044. https://doi.org/10.1016/j.biopha.2017.11.123
|
[18]
|
Kasurinen, A., Tervahartiala, T., Laitinen, A., Kokkola, A., Sorsa, T., Böckelman, C., et al. (2018) High Serum MMP-14 Predicts Worse Survival in Gastric Cancer. PLOS ONE, 13, e0208800. https://doi.org/10.1371/journal.pone.0208800
|
[19]
|
Sun, Y., Zhou, Q., Lu, Y., Zhang, H., Chen, Q., Zhao, M., et al. (2019) Resveratrol Inhibits the Migration and Metastasis of MDA-MB-231 Human Breast Cancer by Reversing TGF-β1-Induced Epithelial-Mesenchymal Transition. Molecules, 24, Article 1131. https://doi.org/10.3390/molecules24061131
|
[20]
|
Wu, Z., Wang, T., Fang, M., Huang, W., Sun, Z., Xiao, J., et al. (2018) MFAP5 Promotes Tumor Progression and Bone Metastasis by Regulating ERK/MMP Signaling Pathways in Breast Cancer. Biochemical and Biophysical Research Communications, 498, 495-501. https://doi.org/10.1016/j.bbrc.2018.03.007
|
[21]
|
Liu, B., Cui, J., Sun, J., Li, J., Han, X., Guo, J., et al. (2016) Immunolocalization of MMP9 and MMP2 in Osteolytic Metastasis Originating from MDA-MB-231 Human Breast Cancer Cells. Molecular Medicine Reports, 14, 1099-1106. https://doi.org/10.3892/mmr.2016.5374
|
[22]
|
Bure, I.V., Nemtsova, M.V. and Zaletaev, D.V. (2019) Roles of E-Cadherin and Noncoding RNAs in the Epithelial-Mesenchymal Transition and Progression in Gastric Cancer. International Journal of Molecular Sciences, 20, Article 2870. https://doi.org/10.3390/ijms20122870
|
[23]
|
Loh, C., Chai, J., Tang, T., Wong, W., Sethi, G., Shanmugam, M., et al. (2019) The E-Cadherin and N-Cadherin Switch in Epithelial-To-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells, 8, Article 1118. https://doi.org/10.3390/cells8101118
|
[24]
|
Luo, W., Liu, Q., Jiang, N., Li, M. and Shi, L. (2019) Isorhamnetin Inhibited Migration and Invasion via Suppression of Akt/ERK-Mediated Epithelial-To-Mesenchymal Transition (EMT) in A549 Human Non-Small-Cell Lung Cancer Cells. Bioscience Reports, 39, BSR20190159. https://doi.org/10.1042/bsr20190159
|
[25]
|
Mohebi, M., Ghafouri-Fard, S., Modarressi, M.H., Dashti, S., Zekri, A., Kholghi-Oskooei, V., et al. (2020) Expression Analysis of Vimentin and the Related lncRNA Network in Breast Cancer. Experimental and Molecular Pathology, 115, Article ID: 104439. https://doi.org/10.1016/j.yexmp.2020.104439
|
[26]
|
Kojio, K., Furukawa, M., Nonaka, Y. and Nakamura, S. (2010) Control of Mechanical Properties of Thermoplastic Polyurethane Elastomers by Restriction of Crystallization of Soft Segment. Materials, 3, 5097-5110. https://doi.org/10.3390/ma3125097
|
[27]
|
Pereira, L.X., Viana, C.T.R., Orellano, L.A.A., Almeida, S.A., Vasconcelos, A.C., Goes, A.D.M., et al. (2017) Synthetic Matrix of Polyether-Polyurethane as a Biological Platform for Pancreatic Regeneration. Life Sciences, 176, 67-74. https://doi.org/10.1016/j.lfs.2017.03.015
|
[28]
|
Gabriel, L.P., Santos, M.E.M.d., Jardini, A.L., Bastos, G.N.T., Dias, C.G.B.T., Webster, T.J., et al. (2017) Bio-Based Polyurethane for Tissue Engineering Applications: How Hydroxyapatite Nanoparticles Influence the Structure, Thermal and Biological Behavior of Polyurethane Composites. Nanomedicine: Nanotechnology, Biology and Medicine, 13, 201-208. https://doi.org/10.1016/j.nano.2016.09.008
|
[29]
|
Asadpour, S., Ai, J., Davoudi, P., Ghorbani, M., Jalali Monfared, M. and Ghanbari, H. (2018) In Vitro Physical and Biological Characterization of Biodegradable Elastic Polyurethane Containing Ferulic Acid for Small-Caliber Vascular Grafts. Biomedical Materials, 13, Article ID: 035007. https://doi.org/10.1088/1748-605x/aaa8b6
|
[30]
|
Sun, L., Wang, X., He, Y., Chen, B., Shan, B., Yang, J., et al. (2023) Polyurethane Scaffold-Based 3D Lung Cancer Model Recapitulates in Vivo Tumor Biological Behavior for Nanoparticulate Drug Screening. Regenerative Biomaterials, 10, rbad091. https://doi.org/10.1093/rb/rbad091
|