聚氨酯三维肺癌模型用于盐酸青藤碱对肺癌细胞侵袭转移蛋白分泌影响的研究
Establishment of Three-Dimensional Polyurethane Model of Lung Cancer and Effect of Sinomenine Hydrochloride on Invasion and Metastasis Protein Secretion of Lung Cancer Cells
DOI: 10.12677/wjcr.2025.153014, PDF, HTML, XML,    科研立项经费支持
作者: 王 晗*:杭州医学院公共卫生学院,浙江 杭州;黄逸伦:温州医科大学阿尔伯塔学院,浙江 温州;朱 莲:杭州医学院基础医学与法医学院,浙江 杭州;张文元, 唐 靓#:杭州医学院检验医学院、生物工程学院,浙江 杭州
关键词: 聚氨酯泡沫三维肺癌模型盐酸青藤碱迁移侵袭蛋白基质金属蛋白酶上皮间质转化Polyurethane Foam 3D Lung Cancer Model Sinomenine Hydrochloride Migration and Invasion Protein Matrix Metalloproteinases Epithelial-Mesenchymal Transition
摘要: 目的:探讨通过三维(3D)聚氨酯泡沫支架构建肺癌模型,并用于盐酸青藤碱影响肺癌A549细胞分泌侵袭转移蛋白的可行性。方法:采用聚氨酯泡沫支架构建3D肺癌模型,进行不同剂量盐酸青藤碱对肺癌A549细胞作用实验,ELISA法测定A549细胞培养上清中基质金属蛋白酶(MMP-2, MMP-9)和上皮间质转化(EMT)标记物E-cadherin、N-cadherin、Vimentin的表达,观察迁移及侵袭相关蛋白分泌情况。结果:盐酸青藤碱可有效抑制A549细胞培养上清液中MMP-2、MMP-9的表达,以及有效抑制EMT,表现为下调N-cadherin、Vimentin蛋白表达,上调E-cadherin蛋白表达。随着盐酸青藤碱浓度的增加,抑制增加,呈剂量依赖性。对3D培养的抑制显著低于2D培养。结论:与2D培养相比,本实验中建立的基于聚氨酯的3D肺癌模型可能更好地模拟了体内病理生理状况,更具预测及分析药物能力。
Abstract: Objective: To investigate the feasibility of constructing a lung cancer model with three-dimensional (3D) polyurethane foam scaffold and using sinomenine hydrochloride to influence the secretion of invasion and metastasis protein in A549 cells of lung cancer. Methods: A three-dimensional lung cancer model was constructed with polyurethane foam scaffold, and the effects of sinomenine hydrochloride on A549 cells were tested. The expression of matrix metalloproteinases (MMP-2, MMP-9) and epithelial-mesenchymal transition (EMT) markers E-cadherin, N-cadherin and Vimentin in the supernatant of A549 cell culture was determined by ELISA, and the secretion of migration and invasion related proteins was observed. Results: Sinomenine hydrochloride could effectively inhibit the expression of MMP-2 and MMP-9 in the supernatant of A549 cell culture, and effectively inhibit EMT, such as down-regulating the expression of N-cadherin and Vimentin, and up-regulating the expression of E-cadherin. With the increase of sinomenine hydrochloride concentration, the inhibition increased in a dose-dependent manner. The inhibition of 3D culture was significantly lower than that of 2D culture. Conclusion: Compared with 2D culture, the 3D lung cancer model based on polyurethane established in this study may better simulate the pathophysiology in vivo, and has more ability to predict and analyze drugs.
文章引用:王晗, 黄逸伦, 朱莲, 张文元, 唐靓. 聚氨酯三维肺癌模型用于盐酸青藤碱对肺癌细胞侵袭转移蛋白分泌影响的研究[J]. 世界肿瘤研究, 2025, 15(3): 108-114. https://doi.org/10.12677/wjcr.2025.153014

1. 引言

肺癌是全球癌症相关死亡的主要原因,是最常见的癌症,也是全世界死亡人数最多的癌症,特别是在发展中国家,因此需要提高生存率的治疗方法[1]。尽管医学领域已经见证了靶向治疗的发展,但迫切需要开发新的治疗方案。对于新药的发现,需要人类癌症模型来研究相关环境下的药物效率[2]。传统的二维(2D)体外培养系统过于简化了复杂的三维(3D)组织微环境,而实验动物体内研究往往受到低可重复性和伦理考虑的限制。近年来,体外3D模型因其可重复性、保留3D空间结构和成本效益而在癌症研究中引起了极大的关注。组织工程化3D体外模型能够更好地复制原生肿瘤扩散,可以显著提高对癌症生物学的认识,并有助于指导开发更有效的治疗方法[3]。因此,研究人员越来越多地转向3D体外组织工程模型作为一种有用的折中方案[4]。模拟肿瘤细胞微环境的3D培养系统可能更适合于测试癌细胞的侵袭潜力和肿瘤细胞对抗癌药物的敏感性[5]。青藤碱是一种从中药青藤中提取的生物碱类化合物,是一种多靶点的抗肿瘤天然物质。盐酸青藤碱是青藤碱的盐酸盐化学形式,对肿瘤细胞有特异性的细胞毒作用,对正常细胞无明显的细胞毒作用[6]。青藤碱及其衍生物的抗肿瘤作用主要通过促进细胞凋亡和自噬,抑制细胞增殖、迁移和侵袭,增强放化疗敏感性等机制发挥。本实验采用聚氨酯泡沫支架构建3D肺癌模型,进行盐酸青藤碱对肺癌A549作用实验,ELISA法检测培养上清中基质金属蛋白酶(MMP-2, MMP-9)和上皮间质转化(EMT)标记物E-cadherin、N-cadherin、Vimentin的表达,观察迁移及侵袭相关蛋白分泌情况。并与2D培养比较。

2. 材料与方法

2.1. 药品与试剂

肺癌A549细胞(iCell),来源于人类非小细胞肺癌基底上皮细胞的原发性肺肿瘤,是一种广泛使用的细胞系,具有高度增殖性,已被用于各种研究应用。DMEM高糖培养基(GIBCO),胎牛血清(Procell),鼠尾I型胶原(欣友生物),盐酸青藤碱(麦克林)。MMP-2、MMP-9、E-cadherin、N-cadherin、Vimentin五种ELISA试剂盒(晶美生物)。48孔细胞培养板(Corning)。聚氨酯泡沫(广州匹泰),CO2培养箱(Thermo BB150),多功能酶标仪(上海普丹)。

2.2. 聚氨酯处理及表面修饰

参照文献[7],进行聚氨酯处理及I型胶原表面修饰。将聚氨酯泡沫材料修剪成直径8 mm,高2.5 mm的圆柱体。分别经酸碱处理、超声清洗、乙醇消毒。48孔培养板每孔放置1个支架。然后,取2 mg·mL1鼠尾I型胶原50 μL涂覆于每个聚氨酯泡沫支架表面,37℃,20 min。随后进行细胞种植。

2.3. 细胞培养与细胞悬液制备

参照文献[7],肺癌A549细胞使用DMEM高糖完全培养基(含10% FBS、1%青链霉素)于37℃、5% CO2培养箱中常规培养,以0.25%胰蛋白酶消化、传代。收集对数期生长的A549细胞,分别配制成3.75 × 104 cells·mL1、5 × 105 cells·mL1 A549细胞悬液。

2.4. ELISA检测2D/3D培养上清液中迁移侵袭蛋白浓度

取3.75 × 104 cells·mL1的A549细胞悬液400 μL接种于48孔板·孔1,作为2D模型。取5 × 105 cells·mL1的A549细胞悬液30 μL缓慢加于“2.2项”经I型胶原修饰的聚氨酯支架上,37℃培养箱放置1 h,然后再加完全培养基370 μL·孔1,作为3D模型。将上述2D/3D肺癌模型培养24 h后,弃去原培养基。分别加入含有不同浓度盐酸青藤碱(0, 50, 100, 150 μg·mL1)的完全培养基,400 μL·孔1。培养48 h。收集培养上清液3 000 r·min1离心15 min,吸取上清,−80℃保存。按照ELISA试剂盒说明书操作,检测MMP-2、MMP-9、E-cadherin、N-cadherin、Vimentin五种蛋白浓度,每个浓度设5个复孔。

2.5. 统计分析

使用GraphPad Prism 9进行统计学分析处理。数据资料以 x ¯ ±s 表示,两组间比较采用两独立样本配对t检验,当P < 0.05时,认为差异有统计学意义。

3. 结果

3.1. 盐酸青藤碱对肺癌细胞培养上清液MMP-2和MMP-9蛋白分泌的影响

ELISA试剂盒检测结果显示,不同浓度的盐酸青藤碱于2D/3D条件下作用于肺癌A549细胞48小时,均可导致MMP-2和MMP-9的分泌下降,并呈剂量依赖性。与未加药对照组相比,各浓度组MMP-2和MMP-9蛋白分泌明显下降。3D培养上清液MMP-2和MMP-9蛋白分泌浓度的下降速度均明显慢于2D培养模型。结果表明于2D/3D培养条件下,盐酸青藤碱显著抑制A549细胞MMP-2和MMP-9蛋白的分泌,并呈剂量依赖性。且对3D培养的抑制显著低于2D培养。结果见表1

Table 1. Effects of sinomenine hydrochloride on protein secretion of MMP-2 and MMP-9 in 2D/3D culture supernatant of A549 cells ( x ¯ ±s , n = 5)

1. 盐酸青藤碱对A549细胞2D/3D培养上清液MMP-2、MMP-9蛋白分泌的影响( x ¯ ±s , n = 5)

盐酸青藤碱剂量

/μg·mL1

MMP-2/ng·mL1

MMP-9/ng·mL1

2D

3D

2D

3D

0 (对照组)

121.54 ± 10.16

127.25 ± 12.36

356.29 ± 37.03

361.02 ± 32.20

50

105.16 ± 10.031)

118.06 ± 13.491)

301.27 ± 30.771)

343.18 ± 32.374)

100

83.69 ± 7.832)

106.08 ± 10.472)5)

264.94 ± 25.083)

316.75 ± 27.661)5)

150

71.33 ± 6.883)

95.11 ± 9.703)6)

222.97 ± 21.563)

289.06 ± 26.572)6)

与对照组相比,1) P < 0.05,2) P < 0.01,3) P < 0.001;与2D培养相比,4) P < 0.05,5) P < 0.01,6) P < 0.001。

3.2. 盐酸青藤碱对肺癌细胞培养上清液E-cadherin、N-cadherin、Vimentin蛋白分泌的影响

ELISA试剂盒检测结果显示,不同浓度的盐酸青藤碱于2D/3D条件下作用于肺癌A549细胞48小时,均可导致N-cadherin、Vimentin蛋白分泌减少。与未加药对照组相比,随着盐酸青藤碱浓度的增加,各浓度组N-cadherin、Vimentin蛋白分泌显著下降,呈剂量依赖性。3D模型培养上清液N-cadherin、Vimentin蛋白分泌浓度的下降速度均明显慢于2D培养模型。结果见表2。另外,随着盐酸青藤碱浓度的增加,各浓度组均可导致E-cadherin蛋白分泌增加,呈剂量依赖性。与未加药对照组相比,各浓度组E-cadherin蛋白分泌明显增加。3D培养上清液E-cadherin蛋白分泌浓度的增加速度均明显慢于2D培养。结果表明于2D/3D培养条件下,盐酸青藤碱有效抑制A549细胞上皮间质转化,表现为下调N-cadherin、Vimentin蛋白表达,上调E-cadherin蛋白表达。且对3D培养的抑制显著低于2D培养。结果见表2

Table 2. Effect of sinomenine hydrochloride on EMT-related protein secretion in 2D/3D culture supernatant of A549 cells ( x ¯ ±s , n = 5)

2. 盐酸青藤碱对A549细胞2D/3D培养上清液EMT相关蛋白分泌的影响( x ¯ ±s , n = 5)

盐酸青藤碱剂量/μg·mL1

E-cadherin/ng·mL1

N-cadherin/ng·mL1

Vimentin/ng·mL1

2D

3D

2D

3D

2D

3D

0 (对照组)

167.68 ± 17.35

160.09 ± 14.96

22.96 ± 2.31

25.20 ± 2.37

2.07 ± 0.18

2.23 ± 0.20

50

183.69 ± 16.78

173.85 ± 17.50

20.25 ± 1.801)

24.29 ± 2.224)

1.78 ± 0.151)

2.10 ± 0.194)

100

204.78 ± 18.262)

182.93 ± 19.461)4)

17.12 ± 1.753)

22.48 ± 2.101)5)

1.60 ± 0.152)

1.94 ± 0.201)5)

150

225.37 ± 20.053)

190.13 ± 17.952)5)

15.35 ± 1.623)

21.09 ± 1.972)6)

1.39 ± 0.113)

1.82 ± 0.152)6)

与对照组相比,1) P < 0.05,2) P < 0.01,3) P < 0.001,与2D培养相比,4) P < 0.05,5) P < 0.01,6) P < 0.001。

4. 讨论

肺癌是全球癌症相关死亡的主要原因。由于肺癌细胞的上皮间质转化(EMT)导致复发和转移的高倾向[8]。尽管医学领域已经见证了靶向治疗的发展,但迫切需要开发新的治疗方案。对于新药的发现,需要人类癌症模型来研究相关环境下的药物效率[9]。因此,一个精确、高效的3D体外模型对于细胞侵袭研究和药物筛选试验是非常需要的[10]。体外癌症模型在化疗开发中至关重要,而3D模型旨在弥合2D平面培养和体内测试之间的差距。功能3D模型比2D模型更能代表体内情况和肿瘤特征[11]。但目前大多数体外癌症模型仅限于传统的2D细胞培养条件。最近,研究人员已采用创新的3D模型,以改进疾病建模和药物测试[12]。3D肿瘤模型能够更好地模拟体内肿瘤的复杂性,可作为传统2D培养和体内研究之间的潜在桥梁,已经获得了新的认可。3D细胞培养技术的巨大进步使其更具成本效益和效率[13]

目前,化疗是大多数肿瘤的主要治疗方法。然而,化疗的耐药和许多不良反应极大地限制了化疗的应用。因此,越来越多的研究者将研究重点转移到中药的抗肿瘤活性上[14]。青藤碱是一种从中国药用植物青藤根茎中提取的单体生物碱成分。近年来研究发现青藤碱通过抑制肿瘤的增殖、迁移、侵袭和诱导细胞凋亡,对多种癌症具有抑制作用[15]。盐酸青藤碱(SH)通过激活AMPK-mTOR通路诱导细胞凋亡,选择性抑制NSCLC (非小细胞肺癌)细胞的生长[16]。多项基础研究证明青藤碱及其衍生物对乳腺癌、肺癌、肝癌、胃癌、卵巢癌、骨肉瘤等肿瘤具有显著的抗肿瘤活性,可诱导肿瘤细胞凋亡和自噬死亡,抑制肿瘤细胞的增殖、迁移和侵袭,增加肿瘤细胞对放化疗的敏感性,并通过多种分子机制逆转耐药[14]。盐酸青藤碱可降低MMP-2、MMP-9,以及显著增加上皮标记物E-cadherin的表达,但同时降低间质标记物N-cadherin和Vimentin的表达,表明青藤碱可有效抑制EMT。因此,青藤碱可以作为一种有效的辅助化疗候选药物[17]

基质金属蛋白酶(MMPs)是一种具有多种生化功能的内肽酶,可通过降解细胞外基质促进癌细胞的侵袭和转移[18] [19]。其中的MMP-2、MMP-9降解IV型胶原,在肿瘤细胞的侵袭与转移灶的形成中起重要作用[20] [21]。青藤碱可降低MMP-2、MMP-9和基质金属蛋白酶细胞外诱导剂(EMMPRIN/CD147) mRNA的表达水平。另外,青藤碱可下调致癌microRNA-21 (miR-21),降低细胞侵袭能力[15]。在各种癌症中,MMP-2、MMP-9的上调与患者的生存率降低有关[21]。而EMT被认为是侵袭性和转移性癌细胞扩散的根源[22],可松弛细胞-细胞粘附的复合物,赋予细胞增强的迁移和侵袭特性,增强肿瘤转移、化疗耐药和肿瘤干性[23]。已被证明在肿瘤发生过程中起着至关重要的作用,EMT的标志是神经型钙黏蛋白(N-cadherin)、波形蛋白(Vimentin)的上调,上皮型钙黏蛋白(E-cadherin)的下调[24] [25]。有研究发现盐酸青藤碱(SH)治疗对体外透明细胞肾细胞癌(ccRCC)细胞生长具有剂量和时间依赖性。SH处理可显著抑制体外ccRCC细胞的迁移、侵袭性和血管生成。在机制上,研究发现SH处理通过下调转录因子Snail1和Twist在ccRCC细胞中的表达来阻断EMT。这些发现表明SH在ccRCC细胞中具有抗癌作用,并揭示了Smad/EMT轴在ccRCC中发挥作用的潜在分子机制。Smad/EMT轴的过度激活与这种癌症类型的细胞增殖、迁移、侵袭性和血管生成有关。SH可以作为一种有效的辅助化疗候选药物,靶向ccRCC患者的Smad/EMT轴[17]

本实验结果表明,盐酸青藤碱可有效下调MMP-2、MMP-9的表达。也可有效抑制EMT,表现为下调N-cadherin、Vimentin蛋白表达,上调E-cadherin蛋白表达。均呈剂量依赖性。而且对2D培养的抑制效果显著强于3D模型。表明仿生多孔聚氨酯支架在盐酸青藤碱对肺癌细胞侵袭转移蛋白分泌测定研究中具有一定的潜力,包括药物和治疗筛选。

聚氨酯泡沫材料具备良好的生物相容性与力学性能[26],为多孔结构,孔洞贯通性好,孔壁上存在与相邻泡孔相连通[27],比较均匀,连续性较好。有利于细胞获得足够的营养物质,进行气体交换,排除废料[28] [29]。其吸水率良好,可以吸收大量的水份,有利于物质的交换和细胞的生长[30]。适宜作为三维细胞培养载体。

5. 结论

本实验采用聚氨酯泡沫作为支架,成功构建了3D体外培养肺癌模型。本实验结果表明,基于聚氨酯体外3D肿瘤模型的盐酸青藤碱药物效果对体内药物疗效具有更好的预测性。与传统的2D细胞培养相比,3D模型培养的肺癌A549细胞耐药性更强,恶性程度更高,更接近肺癌患者体内情况,能够更好地评估癌细胞的侵袭、迁移行为,可作为抗肿瘤药物体外筛药模型,为药物研发和临床用药提供理论指导,其相关的机制有待进一步深入的研究。

基金项目

杭州医学院高校基本科研业务费基础科研项目(KYYB202103);浙江省中医药科技计划项目(2022ZB224, 2023ZL358);浙江省医药卫生科技计划项目(2022KY730)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Ortigosa-Palomo, A., Porras-Alcalá, C., Quiñonero, F., Moya-Utrera, F., Ortiz, R., López-Romero, J.M., et al. (2023) Antitumor Activity of Bengamide II in a Panel of Human and Murine Tumor Cell Lines: In Vitro and in Vivo Determination of Effectiveness against Lung Cancer. Biomedicine & Pharmacotherapy, 168, Article ID: 115789.
https://doi.org/10.1016/j.biopha.2023.115789
[2] Balážová, K., Clevers, H. and Dost, A.F. (2023) The Role of Macrophages in Non-Small Cell Lung Cancer and Advancements in 3D Co-Cultures. eLife, 12, e82998.
https://doi.org/10.7554/elife.82998
[3] Bassi, G., Grimaudo, M.A., Panseri, S. and Montesi, M. (2021) Advanced Multi-Dimensional Cellular Models as Emerging Reality to Reproduce in Vitro the Human Body Complexity. International Journal of Molecular Sciences, 22, Article 1195.
https://doi.org/10.3390/ijms22031195
[4] Hoarau-Véchot, J., Rafii, A., Touboul, C. and Pasquier, J. (2018) Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions? International Journal of Molecular Sciences, 19, Article 181.
https://doi.org/10.3390/ijms19010181
[5] Doillon, C.J., Gagnon, E., Paradis, R. and Koutsilieris, M. (2004) Three-Dimensional Culture System as a Model for Studying Cancer Cell Invasion Capacity and Anticancer Drug Sensitivity. Anticancer Research, 24, 2169-2177.
[6] Li, R.Z., Guan, X.X., Wang, X.R., Bao, W., Lian, L., Choi, S.W., et al. (2023) Sinomenine Hydrochloride Bidirectionally Inhibits Progression of Tumor and Autoimmune Diseases by Regulating AMPK Pathway. Phytomedicine, 114, Article ID: 154751.
https://doi.org/10.1016/j.phymed.2023.154751
[7] 王晗,黄逸伦,朱莲,张文元,唐靓.聚氨酯三维肺癌模型的建立及姜黄素药敏试验[J].药物化学,2025,13(1):11-18.
[8] Gao, M., Lai, K., Deng, Y., Lu, Z., Song, C., Wang, W., et al. (2023) Eriocitrin Inhibits Epithelial-Mesenchymal Transformation (EMT) in Lung Adenocarcinoma Cells via Triggering Ferroptosis. Aging, 15, 10089-10104.
https://doi.org/10.18632/aging.205049
[9] Mei, Y., Wu, D., Berg, J., Tolksdorf, B., Roehrs, V., Kurreck, A., et al. (2023) Generation of a Perfusable 3D Lung Cancer Model by Digital Light Processing. International Journal of Molecular Sciences, 24, Article 6071.
https://doi.org/10.3390/ijms24076071
[10] Jiang, R., Huang, J., Sun, X., Chu, X., Wang, F., Zhou, J., et al. (2022) Construction of in Vitro 3-D Model for Lung Cancer-Cell Metastasis Study. BMC Cancer, 22, Article No. 438.
https://doi.org/10.1186/s12885-022-09546-9
[11] van der Merwe, L., Svitina, H., Willers, C., Wrzesinski, K. and Gouws, C. (2022) A Novel NCI‐H69V Small Cell Lung Cancer Functional Mini‐Tumor Model for Future Treatment Screening Applications. Biotechnology Progress, 38, e3253.
https://doi.org/10.1002/btpr.3253
[12] Mazzocchi, A., Dominijanni, A. and Soker, S. (2022) Pleural Effusion Aspirate for Use in 3D Lung Cancer Modeling and Chemotherapy Screening. In: Rasooly, A., Baker, H. and Ossandon, M.R., Eds., Biomedical Engineering Technologies, Springer, 471-483.
https://doi.org/10.1007/978-1-0716-1811-0_24
[13] Vega, V.F., Yang, D., Jordán, L.O., Ye, F., Conway, L., Chen, L.Y., et al. (2023) Protocol for 3D Screening of Lung Cancer Spheroids Using Natural Products. SLAS Discovery, 28, 20-28.
https://doi.org/10.1016/j.slasd.2023.01.005
[14] Zhu, J., Zhu, H. and Gao, J. (2023) The Anti-Tumor Potential of Sinomenine: A Narrative Review. Translational Cancer Research, 12, 2393-2404.
https://doi.org/10.21037/tcr-23-267
[15] Shen, K., Hung, J., Liao, Y., Tsai, S., Wu, M. and Chen, P. (2020) Sinomenine Inhibits Migration and Invasion of Human Lung Cancer Cell through Downregulating Expression of MIR-21 and MMPs. International Journal of Molecular Sciences, 21, Article 3080.
https://doi.org/10.3390/ijms21093080
[16] Li, R.Z., Guan, X.X., Wang, X.R., Bao, W., Lian, L., Choi, S.W., et al. (2023) Sinomenine Hydrochloride Bidirectionally Inhibits Progression of Tumor and Autoimmune Diseases by Regulating AMPK Pathway. Phytomedicine, 114, Article ID: 154751.
https://doi.org/10.1016/j.phymed.2023.154751
[17] Zhao, B., Liu, L., Mao, J., Liu, K., Fan, W., Liu, J., et al. (2017) Sinomenine Hydrochloride Attenuates the Proliferation, Migration, Invasiveness, Angiogenesis and Epithelial-Mesenchymal Transition of Clear-Cell Renal Cell Carcinoma Cells via Targeting Smad in Vitro. Biomedicine & Pharmacotherapy, 96, 1036-1044.
https://doi.org/10.1016/j.biopha.2017.11.123
[18] Kasurinen, A., Tervahartiala, T., Laitinen, A., Kokkola, A., Sorsa, T., Böckelman, C., et al. (2018) High Serum MMP-14 Predicts Worse Survival in Gastric Cancer. PLOS ONE, 13, e0208800.
https://doi.org/10.1371/journal.pone.0208800
[19] Sun, Y., Zhou, Q., Lu, Y., Zhang, H., Chen, Q., Zhao, M., et al. (2019) Resveratrol Inhibits the Migration and Metastasis of MDA-MB-231 Human Breast Cancer by Reversing TGF-β1-Induced Epithelial-Mesenchymal Transition. Molecules, 24, Article 1131.
https://doi.org/10.3390/molecules24061131
[20] Wu, Z., Wang, T., Fang, M., Huang, W., Sun, Z., Xiao, J., et al. (2018) MFAP5 Promotes Tumor Progression and Bone Metastasis by Regulating ERK/MMP Signaling Pathways in Breast Cancer. Biochemical and Biophysical Research Communications, 498, 495-501.
https://doi.org/10.1016/j.bbrc.2018.03.007
[21] Liu, B., Cui, J., Sun, J., Li, J., Han, X., Guo, J., et al. (2016) Immunolocalization of MMP9 and MMP2 in Osteolytic Metastasis Originating from MDA-MB-231 Human Breast Cancer Cells. Molecular Medicine Reports, 14, 1099-1106.
https://doi.org/10.3892/mmr.2016.5374
[22] Bure, I.V., Nemtsova, M.V. and Zaletaev, D.V. (2019) Roles of E-Cadherin and Noncoding RNAs in the Epithelial-Mesenchymal Transition and Progression in Gastric Cancer. International Journal of Molecular Sciences, 20, Article 2870.
https://doi.org/10.3390/ijms20122870
[23] Loh, C., Chai, J., Tang, T., Wong, W., Sethi, G., Shanmugam, M., et al. (2019) The E-Cadherin and N-Cadherin Switch in Epithelial-To-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells, 8, Article 1118.
https://doi.org/10.3390/cells8101118
[24] Luo, W., Liu, Q., Jiang, N., Li, M. and Shi, L. (2019) Isorhamnetin Inhibited Migration and Invasion via Suppression of Akt/ERK-Mediated Epithelial-To-Mesenchymal Transition (EMT) in A549 Human Non-Small-Cell Lung Cancer Cells. Bioscience Reports, 39, BSR20190159.
https://doi.org/10.1042/bsr20190159
[25] Mohebi, M., Ghafouri-Fard, S., Modarressi, M.H., Dashti, S., Zekri, A., Kholghi-Oskooei, V., et al. (2020) Expression Analysis of Vimentin and the Related lncRNA Network in Breast Cancer. Experimental and Molecular Pathology, 115, Article ID: 104439.
https://doi.org/10.1016/j.yexmp.2020.104439
[26] Kojio, K., Furukawa, M., Nonaka, Y. and Nakamura, S. (2010) Control of Mechanical Properties of Thermoplastic Polyurethane Elastomers by Restriction of Crystallization of Soft Segment. Materials, 3, 5097-5110.
https://doi.org/10.3390/ma3125097
[27] Pereira, L.X., Viana, C.T.R., Orellano, L.A.A., Almeida, S.A., Vasconcelos, A.C., Goes, A.D.M., et al. (2017) Synthetic Matrix of Polyether-Polyurethane as a Biological Platform for Pancreatic Regeneration. Life Sciences, 176, 67-74.
https://doi.org/10.1016/j.lfs.2017.03.015
[28] Gabriel, L.P., Santos, M.E.M.d., Jardini, A.L., Bastos, G.N.T., Dias, C.G.B.T., Webster, T.J., et al. (2017) Bio-Based Polyurethane for Tissue Engineering Applications: How Hydroxyapatite Nanoparticles Influence the Structure, Thermal and Biological Behavior of Polyurethane Composites. Nanomedicine: Nanotechnology, Biology and Medicine, 13, 201-208.
https://doi.org/10.1016/j.nano.2016.09.008
[29] Asadpour, S., Ai, J., Davoudi, P., Ghorbani, M., Jalali Monfared, M. and Ghanbari, H. (2018) In Vitro Physical and Biological Characterization of Biodegradable Elastic Polyurethane Containing Ferulic Acid for Small-Caliber Vascular Grafts. Biomedical Materials, 13, Article ID: 035007.
https://doi.org/10.1088/1748-605x/aaa8b6
[30] Sun, L., Wang, X., He, Y., Chen, B., Shan, B., Yang, J., et al. (2023) Polyurethane Scaffold-Based 3D Lung Cancer Model Recapitulates in Vivo Tumor Biological Behavior for Nanoparticulate Drug Screening. Regenerative Biomaterials, 10, rbad091.
https://doi.org/10.1093/rb/rbad091