自噬依赖性铁死亡在肝细胞癌中的治疗潜力
The Therapeutic Potential of Autophagy-Dependent Ferroptosis in Hepatocellular Carcinoma
摘要: 肝细胞癌作为一种高发恶性肿瘤,其临床治疗面临诸多瓶颈。尽管索拉非尼作为首个获得批准的晚期肝癌一线靶向治疗药物,但耐药性及毒副作用限制了其临床应用。近年来,铁死亡这一新型的细胞死亡模式在肝细胞癌的治疗领域呈现出一定的优势。铁死亡是一种非凋亡细胞死亡新方式,主要通过脂质活性氧的累积而诱发。自噬与铁死亡之间存在着错综复杂的相互作用关系,相关研究显示,自噬依赖性铁死亡借助铁蛋白自噬、脂噬等路径,在肝细胞癌的发生与发展进程中起到重要的作用。现就自噬依赖性铁死亡的生化过程和作用机制及其在肝细胞癌的研究进展进行综述,为肝细胞癌的治疗提供新的方法和思路。
Abstract: Hepatocellular carcinoma (HCC) is a highly prevalent malignant tumor, and its clinical treatment encounters many bottlenecks. Although sorafenib, the first approved first-line targeted therapy drug for advanced liver cancer, has limitations in clinical application due to drug resistance and toxic side effects. Ferroptosis, a novel cell death mode, has shown certain advantages in the treatment of HCC. Ferroptosis is a new non-apoptotic cell death mode that is mainly induced by the accumulation of lipid reactive oxygen species. There is a complex interaction between autophagy and ferroptosis. Relevant studies have shown that autophagy-dependent ferroptosis plays an important role in the occurrence and development of HCC through pathways such as ferroptosis and lipophagy. This article reviews the biochemical process and mechanism of autophagy-dependent ferroptosis and its research progress in HCC, providing new methods and ideas for the treatment of HCC.
文章引用:蒋琪, 吴亮. 自噬依赖性铁死亡在肝细胞癌中的治疗潜力[J]. 世界肿瘤研究, 2025, 15(3): 99-107. https://doi.org/10.12677/wjcr.2025.153013

1. 肝细胞癌及其治疗现状

原发性肝癌是最常见的恶性肿瘤之一,发病率排名第六,死亡率排名第三,五年生存率仅为18% [1]。其中肝细胞癌是最常见的原发性肝癌,约占75%~85%。乙型肝炎病毒和丙型肝炎病毒是HCC主要风险因素[2]。在肝细胞癌早期,肝切除和肝移植是最佳治疗方案,但由于大多数患者就诊时已经处于肝癌晚期,此时便采取全身治疗方案(靶向治疗,免疫治疗等)。然而,肝细胞癌一线用药索拉非尼和仑伐替尼也只能延长患者几个月的生存期[3]。由于HCC的高度异质性、耐药性和高复发率使得传统治疗手段疗效受限[4]。因此亟需发现有效的肝细胞癌的治疗手段。

2. 自噬

自噬是一种细胞自我分解代谢的过程,可在应激条件下促进细胞组分回收来恢复细胞稳态[5]。主要包括巨自噬,微自噬和伴侣介导的自噬(CMA) [6]。巨自噬是一个由自噬相关(ATG)蛋白家族动态调控的复杂过程,该过程涉及双膜自噬体的生成、发育成熟以及其与溶酶体的融合,最终形成自噬溶酶体,实现对所包裹细胞器与胞质内容物的降解[7]。微自噬与巨自噬有所不同,它借助溶酶体膜直接向内凹陷以吞噬胞质成分,并不需要自噬体的介入,是一种更为直接的选择性降解途径[8]。而伴侣介导的自噬(CMA)呈现出高度特异性,其过程依赖热休克同源蛋白70 (HSC70)对靶蛋白中KFERQ基序的识别,并通过溶酶体相关膜蛋白2A (LAMP2A)受体将其转运至溶酶体进行降解[9]。这三种自噬类型对于维持细胞内环境稳态、应对各类应激状况以及调控疾病发展进程均具有关键意义。特别是在肝脏疾病领域,凭借不同的分子机制,参与到线粒体质量管控、蛋白质稳态维系等关键生物学进程中。

3. 铁死亡

铁死亡是一种依赖于铁离子和脂质过氧化的程序性细胞死亡形式,其主要特征包括脂质过氧化和铁超载。

3.1. 脂质过氧化

脂质过氧化是铁死亡标志性事件,其核心在于多不饱和脂肪酸(PUFA)在膜磷脂中的氧化级联反应[10]。酰基辅酶A合成酶长链家族成员4 (ACSL4)和溶血磷脂酰胆碱酰基转移酶3 (LPCAT3)是PUFA整合至膜磷脂的关键酶。ACSL4催化PUFA活化为脂酰辅酶A,LPCAT3将其插入磷脂酰乙醇胺(PE),形成氧化敏感的PUFA-PE,通过自由基链式反应破坏细胞膜完整性,进而导致细胞死亡[11]。HCC中ACSL4的高表达与肿瘤恶性程度和化疗抵抗相关[12]

3.2. 铁超载

细胞内铁代谢是一个高度调控的过程,其稳态对细胞发挥正常功能至关重要。细胞通过转铁蛋白受体(TFRC)介导的内吞作用摄取转铁蛋白(TF)结合的Fe3+,随后在内体中被STEAP3金属还原酶还原为Fe2+,并通过溶质载体家族11成员2 (SLC11A2)转运到胞质中[13]。Fe2+可被铁蛋白(由FTH1和FTL1亚基组成)储存,或参与氧运输及线粒体铁硫簇合成等关键代谢途径中。同时,过量的Fe2+通过溶质载体家族40成员1 (SLC40A1)排出细胞,重新氧化为Fe3+ [14]。铁代谢的失调会直接影响铁死亡的敏感性。铁超载可通过Fenton反应产生过量活性氧(ROS),进而引发氧化应激,损害DNA并抑制肿瘤抑制基因(如p53)和DNA修复基因的突变,从而促进HCC的发生[15]

4. 自噬依赖性铁死亡

铁死亡最初被认为是一种独立于坏死、凋亡和自噬的细胞死亡方式[16]。然而,近年研究发现,自噬在铁死亡中扮演关键角色,使用经典铁死亡诱导剂(如erastin和RSL3)处理的细胞中,自噬活性显著增强,而自噬缺陷细胞(如ATG5-/-ATG7-/-)在铁死亡条件下表现出更高的存活率[17]。进一步研究表明,自噬通过选择性降解铁蛋白、GPX4、ARNTL及脂滴等调控铁和氧化还原稳态的关键蛋白,导致细胞内铁过载和脂质过氧化物积累,从而促进铁死亡。这一过程涉及多种自噬形式(见图1),包括铁蛋白自噬、脂肪吞噬、时钟自噬、HSP90介导的自噬等[18]

(A) NCOA4介导的铁蛋白降解促进铁死亡中的铁积累;(B) RAB7A介导的脂滴降解促进铁死亡中的脂质过氧化;(C) SQSTM1/p62介导的时钟自噬促进铁死亡中的脂质过氧化;(D) CMA对GPX4的HSP90依赖性降解促进铁死亡中的脂质过氧化。

Figure 1. The role of autophagy in ferroptosis

1. 自噬在铁死亡中的作用

4.1. NCOA4介导的铁蛋白自噬

铁蛋白作为人体内关键的铁储存蛋白,在维持铁稳态中发挥重要作用。铁蛋白根据需要储存和释放铁来调节细胞内铁的平衡,铁蛋白是一种由24个亚基组成的大分子复合物,由铁蛋白重链(FTH1)和铁蛋白轻链(FTL)亚基组成[19]。FTH1可以将亚铁(Fe2+)氧化成三价铁(Fe3+),使其能够稳定地储存在铁蛋白复合物中。而FTL促进铁核形成,增强铁蛋白结构的稳定性[20]。2014年发表在Nature上研究表明NCOA4在铁蛋白自噬过程中扮演关键受体角色。它能够介导铁蛋白向自噬体的定位,随后通过自噬体–溶酶体融合实现铁蛋白降解,释放的铁离子经由ferroportin1 (FPN1)转运出细胞,参与全身铁代谢调控[21]

在铁死亡调控机制中,铜离子通过多重途径发挥作用:其不仅可诱导NCOA4介导的铁蛋白自噬,还能抑制NRF2/Keap1抗氧化应激信号通路和铁死亡抑制蛋白1 (FSP1)的活性[22]。脱氧雪腐镰刀菌烯醇(DON),也称为呕吐毒素,可通过激活mTORC1信号通路和增强ATM激酶介导的NCOA4磷酸化来促进铁蛋白自噬,最终导致铁死亡[23]。在药物性肝损伤研究领域,Wang团队发现甲氨蝶呤(MTX)可通过HMGB1信号通路触发肝细胞NCOA4依赖性铁蛋白自噬,而HMGB1抑制剂GA可显著缓解这一过程[24]

在肿瘤治疗研究方面,天然产物展现出独特的调控作用。石竹烯氧化物作为倍半萜类化合物,可通过上调NCOA4和LC3II表达、下调FTH1水平来诱导肝癌细胞铁自噬和铁死亡[25]。Li等研究者证实,青蒿琥酯与索拉非尼联用可协同增强线粒体损伤、溶酶体活化及铁蛋白自噬,为肝癌治疗提供了新的联合用药策略[26]。此外,二羟基香豆素类化合物esculetin通过调控NCOA4/LC3-II/FTH1信号通路来抑制肝癌细胞增殖和分化,展现了良好的抗肿瘤潜力[27]。这些研究为铁代谢相关疾病的治疗提供了新的思路和潜在靶点。

4.2. RAB7A介导的脂肪自噬

脂质代谢与铁死亡调控机制密切相关。在内质网中,脂肪酸通过酯化反应生成甘油三酯和胆固醇酯,并储存于脂滴(LDs)中。LDs不仅是脂质储存场所,在应激条件下(如饥饿或RSL3处理)还可通过自噬–溶酶体途径降解,这一过程称为脂肪自噬[28]。脂肪自噬介导的LDs降解可释放游离脂肪酸,促进原代小鼠肝细胞和人肝癌细胞系HepG2中RSL3诱导的铁死亡,这一过程受LD转运受体RAB7A调控[29]。RAB7A作为RAS癌基因家族成员,是一种小分子GTP酶,能够特异性识别LDs并介导ATG5依赖性自噬体形成[30]。研究表明,敲除ATG5或RAB7A的shRNA通过抑制脂肪吞噬并增加脂质储存的方式能够显著抑制RSL3诱导的HepaG2细胞铁死亡。相反,敲低肿瘤蛋白D52 (TPD52)的shRNA以抑制脂质储存和上调脂肪吞噬可促进铁死亡的发生[29]。鉴定脂肪自噬受体对于开发靶向脂肪自噬依赖性铁死亡的抑制剂具有重要意义,为相关疾病的治疗策略开发提供了潜在靶点。

4.3. SQSTM1介导的时钟自噬

昼夜节律是一种由生物钟蛋白所调控的内源性机制,芳烃受体核转运蛋白样蛋白1 (ARNTL)与时钟昼夜节律调节因子(CLOCK)是其核心构成部分,对包括铁与脂质代谢等诸多细胞进程发挥着调控作用[31]。时钟自噬通过货物受体SQSTM1和核心自噬组分ATG5和ATG7对ARNTL进行自噬降解,从而促进铁死亡。ARNTL的降解可以促进EGLN2转录,从而导致HIF1A的蛋白酶体降解。Yang团队研究发现,抑制时钟自噬介导的ARNTL降解可以通过敲低ATG5/ATG7或SQSTM1来抑制RSL3诱导的铁死亡的发生以及ARNT加重脂质过氧化的消耗。ARNTL可以抑制EGLN2对缺氧诱导因子1-α (HIF1-α)的降解,从而调节氧化还原平衡并抑制铁死亡的发生[32]

4.4. CMA和自噬介导的GPX4降解

GPX4作为铁死亡的核心调控因子,具有独特的催化活性,可将膜脂质氢过氧化物还原为相应的醇类,维持细胞膜脂质的稳态[33]。RSL3是GPX4的抑制剂,与GPX4共价结合并使GPX4失活,导致胞内过氧化物积累并触发铁死亡。作为GPX4的必需辅因子,谷胱甘肽(GSH)的缺乏同样会导致GPX4失活,进而破坏细胞氧化还原平衡,引发脂质活性氧(ROS)积累和铁死亡。因此,GPX4活性的抑制和GPX4表达的降低会破坏细胞氧化还原系统的平衡,导致脂质ROS的积累和铁死亡[34]

分子伴侣介导的自噬(CMA)和巨自噬均参与调控谷胱甘肽过氧化物酶4 (GPX4)的降解,从而推动细胞中的铁死亡进程。热休克蛋白90 (HSP90)作为CMA的关键分子伴侣,通过与溶酶体相关膜蛋白2A (LAMP2A)结合,介导GPX4的降解[35]。此外,HSP90还通过去磷酸化动力蛋白1样蛋白(DNM1L)的Ser637位点,稳定erastin诱导的酰基辅酶A合成酶长链家族成员4 (ACSL4)表达,从而促进铁死亡的发生[36]。研究表明锑主要通过CMA介导的GPX4降解促进涉及HSPA8、HSP90、LAMP2A和GPX4的复合物的形成,从而激活铁死亡[37]。铜直接与GPX4相互作用,导致GPX4聚集体的形成,这些聚集体随后通过自噬清除,由自噬受体Tax1结合蛋白1 (TAX1BP1)介导,通过激活自噬介导的GPX4降解而促进铁死亡[38]。线粒体外膜蛋白FUNDC1促进GPX4的线粒体易位和随后的自噬降解,最终导致肝铁死亡和纤维化损伤[39]

5. 自噬依赖性铁死亡和肝细胞癌

肝细胞癌患者约70%确诊时已经处于晚期,五年生存率不足18%。目前,晚期肝细胞癌的一线治疗药物索拉非尼和仑伐替尼的客观缓解率低于20%,且易产生耐药性和不良反应,限制了其临床应用。研究表明,肝细胞癌中铁调节蛋白的表达异常导致铁稳态失衡[40]。同时细胞内ROS水平显著升高,抗氧化系统功能失调,进一步加剧了氧化应激反应[41]。另外肝细胞癌中自噬可通过调控铁代谢,氧化应激,脂质过氧化等过程影响细胞死亡[42]。自噬依赖性铁死亡的特征性表现包括自噬通量增加,铁超载和脂质过氧化,这三个关键因素在肝细胞癌的发生发展中起着重要作用。因此,本研究聚焦于肝细胞癌中的调控蛋白、信号通路、肿瘤免疫微环境及药物耐药性等方面,旨在深入解析自噬依赖性铁死亡在肝细胞癌中的作用机制,为开发新的治疗策略提供理论依据。

5.1. 调控蛋白与自噬依赖性铁死亡

在肝细胞癌(HCC)中,自噬依赖性铁死亡涉及多种调控蛋白,这些蛋白通过调控铁代谢、氧化应激、脂质过氧化等过程影响铁死亡的发生。Beclin1在调节自噬中起着至关重要的作用。研究表明,泛素特异性蛋白酶24 (USP24)通过减少与K48连接的泛素化来延迟Beclin1降解,过表达USP24对HCC增殖的影响可以通过沉默Beclin1来部分逆转[43]。p62/SQSTM1是自噬的底物和调控蛋白,参与选择性自噬过程。Arenobufagin通过诱导自噬和调节p62-Keap1-Nrf2通路促进肝细胞癌HepG2细胞自噬依赖性铁死亡[44]。核受体共激活因子4 (NCOA4)是铁蛋白自噬(ferritinophagy)的关键调控蛋白,通过介导铁蛋白的降解影响铁死亡。Formosanin C是一种新的铁死亡诱导剂,通过激活NCOA4介导的铁蛋白自噬释放游离铁,增加细胞内铁水平,促进脂质过氧化和铁死亡[45]。谷胱甘肽过氧化物酶4 (GPX4)是铁死亡的关键调控蛋白,通过抑制脂质过氧化保护细胞免受铁死亡的影响。研究表明自噬诱导雷帕霉素(RAPA)联合节律卡培他滨(mCAP)抑制谷胱甘肽过氧化物酶4 (GPX4)并促进CD4 T细胞铁死亡,从而在大鼠肝移植后发挥免疫抑制作用[46]。p53是肿瘤抑制蛋白,可通过调控SLC7A11 (System Xc-的组分)和SAT1 (脂质过氧化相关基因)影响铁死亡。Donafenib通过诱导肝癌细胞ROS增加、触发铁沉积和激活p53,形成协同机制,增强对肝细胞癌的治疗效果[47]。核因子E2相关因子2 (NRF2)是抗氧化反应的关键调控蛋白,通过调控氧化应激和铁代谢影响铁死亡。线粒体转运蛋白(TSPO)在HCC中高表达,并且与不良预后相关。研究表明TSPO直接与P62相互作用并干扰自噬,导致P62积累。P62积累与KEAP1竞争,阻止其靶向Nrf2进行蛋白酶体降解。此外,TSPO通过增强Nrf2依赖性抗氧化防御系统抑制HCC细胞中的铁死亡[48]

5.2. 信号通路与自噬依赖性铁死亡

铁蛋白自噬作为自噬的一种特定形式,依赖于对铁蛋白的精确识别。NCOA4是这一过程中的关键调控因素。在肝细胞癌(HCC)中,NCOA4的上调与铁蓄积和脂质过氧化密切相关。研究表明,NCOA4的过表达可以通过促进铁蛋白自噬和释放游离铁来增加细胞内铁水平,同时促进脂质过氧化,从而加剧铁死亡[49]。另外,敲除ATG5或ATG7可抑制铁死亡,表明自噬通路的完整性对铁死亡至关重要[17]

p62-Keap1-NRF2通路在调控抗氧化应激和铁死亡中起关键作用。核因子E2相关因子2 (Nrf2)在稳态条件下以低水平存在于细胞质中,并被KEAP1介导的泛素化和蛋白酶体降解所抑制。在氧化应激条件下,NRF2从KEAP1的抑制中释放,稳定并易位到细胞核,促进细胞保护性靶基因的转录。p62是p62-Keap1-NRF2通路的上游调控因子,通过从NRF2-KEAP1复合体中募集KEAP1,将KEAP1隔离到自噬体中,促进NRF2的核易位,增强抗氧化应激基因的表达。据研究表明NRF2在HCC组织中经常上调,其表达与耐药性和不良预后相关。索拉非尼和二甲双胍联合治疗通过p62-Keap1-Nrf2/HO1信号通路铁死亡诱导抑制HCC细胞增殖[50]

5.3. 肿瘤免疫微环境和自噬依赖性铁死亡

肿瘤的免疫成分被称为肿瘤免疫微环境(TIME),它在肝细胞癌的发生、发展和化疗耐药性方面发挥着多方面的关键影响。巨噬细胞是TIME的重要组成部分,在不同微环境和刺激因子的作用下,可以向不同方向极化。M1巨噬细胞可以促进炎症、杀死病原体和抗肿瘤,而M2巨噬细胞可以促进血管生成和组织修复,甚至通过免疫抑制促进肿瘤生长[51]。研究表明,敲低SLC7A11可降低巨噬细胞中磷酸化STAT6和PPAR-γ的表达,同时增强SOCS3的表达并抑制M2巨噬细胞的极化。此外,SLC7A11介导的巨噬细胞铁死亡可以增加巨噬细胞中PD-L1的表达并提高抗PD-L1治疗的疗效[52]。线粒体转运蛋白(TSPO)可通过NRF2介导的抗氧化防御系统抑制HCC细胞的铁死亡,并通过NRF2介导的转录上调PD-L1的表达来促进HCC的免疫逃逸[48]

5.4. 药物耐药性与自噬依赖性铁死亡

索拉非尼是一种多靶点酪氨酸激酶抑制剂,已被FDA批准用于晚期HCC的全身治疗,通过抑制肿瘤增殖和血管生成来延长晚期HCC患者的中位总生存期,从而表现出抗肿瘤作用。然而,索拉非尼的耐药性使HCC患者难以长期受益。研究表明,额外诱导铁死亡可以显著提高索拉非尼的疗效,尤其是在对索拉非尼耐药的HCC细胞中[53]。DAZ相关蛋白1 (DAZAP1)是一种高度保守的RNA结合蛋白(RBP),已发现在HCC中显著上调。DAZAP1的异常表达与HCC患者肿瘤体积较大、血管浸润发生率高、预后不良呈正相关。DAZAP1还被发现通过调节转录来抑制索拉非尼诱导SLC7A11铁死亡[54]。ATP结合盒 (ABC)转运蛋白构成了大多数生物体中最大的膜蛋白家族之一。Huang等人表明,在索拉非尼耐药的肝癌细胞中显著诱导了ABCC5的表达,ABCC5通过稳定SLC7A11蛋白来增加细胞内GSH含量并通过 PI3K/AKT/NRF2轴减少脂质过氧化积累,从而抑制肝癌细胞的铁死亡[55]

6. 总结与展望

自噬依赖性铁死亡作为一种新型的细胞死亡方式,在肝细胞癌(HCC)的治疗中展现出巨大的潜力。自噬依赖性铁死亡的发现为HCC的治疗提供了新的思路,尤其是在克服多重耐药性方面具有重要意义。因此,深入探索自噬与铁死亡的相互作用及其在HCC中的具体调控机制,将为克服肿瘤耐药性和提高治疗效果提供重要的理论依据。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Maucort‐Boulch, D., de Martel, C., Franceschi, S. and Plummer, M. (2018) Fraction and Incidence of Liver Cancer Attributable to Hepatitis B and C Viruses Worldwide. International Journal of Cancer, 142, 2471-2477.
https://doi.org/10.1002/ijc.31280
[3] Rinaldi, L., Vetrano, E., Rinaldi, B., Galiero, R., Caturano, A., Salvatore, T., et al. (2021) HCC and Molecular Targeting Therapies: Back to the Future. Biomedicines, 9, Article 1345.
https://doi.org/10.3390/biomedicines9101345
[4] Forner, A., Reig, M. and Bruix, J. (2018) Hepatocellular Carcinoma. The Lancet, 391, 1301-1314.
https://doi.org/10.1016/s0140-6736(18)30010-2
[5] Levine, B. and Kroemer, G. (2019) Biological Functions of Autophagy Genes: A Disease Perspective. Cell, 176, 11-42.
https://doi.org/10.1016/j.cell.2018.09.048
[6] Mizushima, N. (2018) A Brief History of Autophagy from Cell Biology to Physiology and Disease. Nature Cell Biology, 20, 521-527.
https://doi.org/10.1038/s41556-018-0092-5
[7] Feng, Y., He, D., Yao, Z. and Klionsky, D.J. (2013) The Machinery of Macroautophagy. Cell Research, 24, 24-41.
https://doi.org/10.1038/cr.2013.168
[8] Li, W., Li, J. and Bao, J. (2011) Microautophagy: Lesser-Known Self-Eating. Cellular and Molecular Life Sciences, 69, 1125-1136.
https://doi.org/10.1007/s00018-011-0865-5
[9] Kaushik, S. and Cuervo, A.M. (2018) The Coming of Age of Chaperone-Mediated Autophagy. Nature Reviews Molecular Cell Biology, 19, 365-381.
https://doi.org/10.1038/s41580-018-0001-6
[10] Yang, W.S. and Stockwell, B.R. (2016) Ferroptosis: Death by Lipid Peroxidation. Trends in Cell Biology, 26, 165-176.
https://doi.org/10.1016/j.tcb.2015.10.014
[11] Dixon, S.J., Winter, G.E., Musavi, L.S., Lee, E.D., Snijder, B., Rebsamen, M., et al. (2015) Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death. ACS Chemical Biology, 10, 1604-1609.
https://doi.org/10.1021/acschembio.5b00245
[12] Xiang, Y., Song, X. and Long, D. (2024) Ferroptosis Regulation through Nrf2 and Implications for Neurodegenerative Diseases. Archives of Toxicology, 98, 579-615.
https://doi.org/10.1007/s00204-023-03660-8
[13] Torti, S.V., Manz, D.H., Paul, B.T., Blanchette-Farra, N. and Torti, F.M. (2018) Iron and Cancer. Annual Review of Nutrition, 38, 97-125.
https://doi.org/10.1146/annurev-nutr-082117-051732
[14] Chen, X., Li, J., Kang, R., Klionsky, D.J. and Tang, D. (2020) Ferroptosis: Machinery and Regulation. Autophagy, 17, 2054-2081.
https://doi.org/10.1080/15548627.2020.1810918
[15] Chatzikalil, E., Arvanitakis, K., Kalopitas, G., Florentin, M., Germanidis, G., Koufakis, T., et al. (2025) Hepatic Iron Overload and Hepatocellular Carcinoma: New Insights into Pathophysiological Mechanisms and Therapeutic Approaches. Cancers, 17, Article 392.
https://doi.org/10.3390/cancers17030392
[16] Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072.
https://doi.org/10.1016/j.cell.2012.03.042
[17] Hou, W., Xie, Y., Song, X., Sun, X., Lotze, M.T., Zeh, H.J., et al. (2016) Autophagy Promotes Ferroptosis by Degradation of Ferritin. Autophagy, 12, 1425-1428.
https://doi.org/10.1080/15548627.2016.1187366
[18] Kang, R. and Tang, D. (2017) Autophagy and Ferroptosis—What Is the Connection? Current Pathobiology Reports, 5, 153-159.
https://doi.org/10.1007/s40139-017-0139-5
[19] Knovich, M.A., Storey, J.A., Coffman, L.G., Torti, S.V. and Torti, F.M. (2009) Ferritin for the Clinician. Blood Reviews, 23, 95-104.
https://doi.org/10.1016/j.blre.2008.08.001
[20] Pantopoulos, K., Porwal, S.K., Tartakoff, A. and Devireddy, L. (2012) Mechanisms of Mammalian Iron Homeostasis. Biochemistry, 51, 5705-5724.
https://doi.org/10.1021/bi300752r
[21] Mancias, J.D., Wang, X., Gygi, S.P., Harper, J.W. and Kimmelman, A.C. (2014) Quantitative Proteomics Identifies NCOA4 as the Cargo Receptor Mediating Ferritinophagy. Nature, 509, 105-109.
https://doi.org/10.1038/nature13148
[22] Zhong, G., Li, Y., Ma, F., Huo, Y., Liao, J., Han, Q., et al. (2023) Copper Exposure Induced Chicken Hepatotoxicity: Involvement of Ferroptosis Mediated by Lipid Peroxidation, Ferritinophagy, and Inhibition of FSP1-CoQ10 and Nrf2/SLC7A11/GPX4 Axis. Biological Trace Element Research, 202, 1711-1721.
https://doi.org/10.1007/s12011-023-03773-2
[23] Jiang, J., Ruan, Y., Liu, X., Ma, J. and Chen, H. (2024) Ferritinophagy Is Critical for Deoxynivalenol-Induced Liver Injury in Mice. Journal of Agricultural and Food Chemistry, 72, 6660-6671.
https://doi.org/10.1021/acs.jafc.4c00556
[24] Wilson, M.I., Dooley, H.C. and Tooze, S.A. (2014) WIPI2b and Atg16L1: Setting the Stage for Autophagosome Formation. Biochemical Society Transactions, 42, 1327-1334.
https://doi.org/10.1042/bst20140177
[25] Di Giacomo, S., Briz, O., Monte, M.J., Sanchez-Vicente, L., Abete, L., Lozano, E., et al. (2019) Chemosensitization of Hepatocellular Carcinoma Cells to Sorafenib by β-Caryophyllene Oxide-Induced Inhibition of ABC Export Pumps. Archives of Toxicology, 93, 623-634.
https://doi.org/10.1007/s00204-019-02395-9
[26] Wu, A., Li, M., Chen, Y., Zhang, W., Li, H., Chen, J., et al. (2024) Multienzyme Active Manganese Oxide Alleviates Acute Liver Injury by Mimicking Redox Regulatory System and Inhibiting Ferroptosis. Advanced Healthcare Materials, 13, e2302556.
https://doi.org/10.1002/adhm.202302556
[27] Xiu, Z., Li, Y., Fang, J., Han, J., Li, S., Li, Y., et al. (2023) Inhibitory Effects of Esculetin on Liver Cancer through Triggering NCOA4 Pathway-Mediation Ferritinophagy in Vivo and in Vitro. Journal of Hepatocellular Carcinoma, 10, 611-629.
https://doi.org/10.2147/jhc.s395617
[28] Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., et al. (2009) Autophagy Regulates Lipid Metabolism. Nature, 458, 1131-1135.
https://doi.org/10.1038/nature07976
[29] Bai, Y., Meng, L., Han, L., Jia, Y., Zhao, Y., Gao, H., et al. (2019) Lipid Storage and Lipophagy Regulates Ferroptosis. Biochemical and Biophysical Research Communications, 508, 997-1003.
https://doi.org/10.1016/j.bbrc.2018.12.039
[30] Schroeder, B., Schulze, R.J., Weller, S.G., Sletten, A.C., Casey, C.A. and McNiven, M.A. (2015) The Small GTPase Rab7 as a Central Regulator of Hepatocellular Lipophagy. Hepatology, 61, 1896-1907.
https://doi.org/10.1002/hep.27667
[31] Magnone, M.C., Langmesser, S., Bezdek, A.C., Tallone, T., Rusconi, S. and Albrecht, U. (2015) The Mammalian Circadian Clock Gene Per2 Modulates Cell Death in Response to Oxidative Stress. Frontiers in Neurology, 5, Article 289.
https://doi.org/10.3389/fneur.2014.00289
[32] Yang, M., Chen, P., Liu, J., Zhu, S., Kroemer, G., Klionsky, D.J., et al. (2019) Clockophagy Is a Novel Selective Autophagy Process Favoring Ferroptosis. Science Advances, 5, eaaw2238.
https://doi.org/10.1126/sciadv.aaw2238
[33] Maiorino, M., Conrad, M. and Ursini, F. (2018) Gpx4, Lipid Peroxidation, and Cell Death: Discoveries, Rediscoveries, and Open Issues. Antioxidants & Redox Signaling, 29, 61-74.
https://doi.org/10.1089/ars.2017.7115
[34] Yang, W.S., SriRamaratnam, R., Welsch, M.E., Shimada, K., Skouta, R., Viswanathan, V.S., et al. (2014) Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell, 156, 317-331.
https://doi.org/10.1016/j.cell.2013.12.010
[35] Wu, Z., Geng, Y., Lu, X., Shi, Y., Wu, G., Zhang, M., et al. (2019) Chaperone-Mediated Autophagy Is Involved in the Execution of Ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 116, 2996-3005.
https://doi.org/10.1073/pnas.1819728116
[36] Miao, Z., Tian, W., Ye, Y., Gu, W., Bao, Z., Xu, L., et al. (2022) Hsp90 Induces Acsl4-Dependent Glioma Ferroptosis via Dephosphorylating Ser637 at Drp1. Cell Death & Disease, 13, Article No. 548.
https://doi.org/10.1038/s41419-022-04997-1
[37] Yu, S., Li, Z., Zhang, Q., Wang, R., Zhao, Z., Ding, W., et al. (2022) GPX4 Degradation via Chaperone-Mediated Autophagy Contributes to Antimony-Triggered Neuronal Ferroptosis. Ecotoxicology and Environmental Safety, 234, Article ID: 113413.
https://doi.org/10.1016/j.ecoenv.2022.113413
[38] Xue, Q., Yan, D., Chen, X., Li, X., Kang, R., Klionsky, D.J., et al. (2023) Copper-Dependent Autophagic Degradation of GPX4 Drives Ferroptosis. Autophagy, 19, 1982-1996.
https://doi.org/10.1080/15548627.2023.2165323
[39] Bi, Y., Liu, S., Qin, X., Abudureyimu, M., Wang, L., Zou, R., et al. (2024) FUNDC1 Interacts with GPX4 to Govern Hepatic Ferroptosis and Fibrotic Injury through a Mitophagy-Dependent Manner. Journal of Advanced Research, 55, 45-60.
https://doi.org/10.1016/j.jare.2023.02.012
[40] Torti, S.V. and Torti, F.M. (2013) Iron and Cancer: More Ore to Be Mined. Nature Reviews Cancer, 13, 342-355.
https://doi.org/10.1038/nrc3495
[41] Sun, X., Ou, Z., Chen, R., Niu, X., Chen, D., Kang, R., et al. (2015) Activation of the P62‐keap1‐NRF2 Pathway Protects against Ferroptosis in Hepatocellular Carcinoma Cells. Hepatology, 63, 173-184.
https://doi.org/10.1002/hep.28251
[42] Cai, H., Meng, Z. and Yu, F. (2024) The Involvement of Ros-Regulated Programmed Cell Death in Hepatocellular Carcinoma. Critical Reviews in Oncology/Hematology, 197, Article ID: 104361.
https://doi.org/10.1016/j.critrevonc.2024.104361
[43] Cao, J., Wu, S., Zhao, S., Wang, L., Wu, Y., Song, L., et al. (2024) USP24 Promotes Autophagy-Dependent Ferroptosis in Hepatocellular Carcinoma by Reducing the K48-Linked Ubiquitination of Beclin1. Communications Biology, 7, Article No. 1279.
https://doi.org/10.1038/s42003-024-06999-5
[44] Yang, Y., Liu, C., Wang, M., Cheng, H., Wu, H., Luo, S., et al. (2024) Arenobufagin Regulates the p62-Keap1-Nrf2 Pathway to Induce Autophagy-Dependent Ferroptosis in HepG2 Cells. Naunyn-Schmiedebergs Archives of Pharmacology, 397, 4895-4909.
https://doi.org/10.1007/s00210-023-02916-5
[45] Lin, P., Tang, H., Wu, S., Shaw, N. and Su, C. (2020) Saponin Formosanin C-Induced Ferritinophagy and Ferroptosis in Human Hepatocellular Carcinoma Cells. Antioxidants, 9, Article 682.
https://doi.org/10.3390/antiox9080682
[46] Wang, H., Yang, R., Wang, Z., Cao, L., Kong, D., Sun, Q., et al. (2023) Metronomic Capecitabine with Rapamycin Exerts an Immunosuppressive Effect by Inducing Ferroptosis of CD4+ T Cells after Liver Transplantation in Rat. International Immunopharmacology, 124, Article ID: 110810.
https://doi.org/10.1016/j.intimp.2023.110810
[47] Liang, J., Chen, M., Yan, G., Hoa, P.T.T., Wei, S., Huang, H., et al. (2025) Donafenib Activates the p53 Signaling Pathway in Hepatocellular Carcinoma, Induces Ferroptosis, and Enhances Cell Apoptosis. Clinical and Experimental Medicine, 25, Article No. 29.
https://doi.org/10.1007/s10238-024-01550-6
[48] Zhang, D., Man, D., Lu, J., Jiang, Y., Ding, B., Su, R., et al. (2023) Mitochondrial TSPO Promotes Hepatocellular Carcinoma Progression through Ferroptosis Inhibition and Immune Evasion. Advanced Science, 10, e2206669.
https://doi.org/10.1002/advs.202206669
[49] Li, M., Tang, H., Li, Z. and Tang, W. (2022) Emerging Treatment Strategies for Cerebral Ischemia-Reperfusion Injury. Neuroscience, 507, 112-124.
https://doi.org/10.1016/j.neuroscience.2022.10.020
[50] Tang, K., Chen, Q., Liu, Y., Wang, L. and Lu, W. (2022) Combination of Metformin and Sorafenib Induces Ferroptosis of Hepatocellular Carcinoma through p62-Keap1-Nrf2 Pathway. Journal of Cancer, 13, 3234-3243.
https://doi.org/10.7150/jca.76618
[51] Gunassekaran, G.R., Poongkavithai Vadevoo, S.M., Baek, M. and Lee, B. (2021) M1 Macrophage Exosomes Engineered to Foster M1 Polarization and Target the IL-4 Receptor Inhibit Tumor Growth by Reprogramming Tumor-Associated Macrophages into M1-Like Macrophages. Biomaterials, 278, Article ID: 121137.
https://doi.org/10.1016/j.biomaterials.2021.121137
[52] Tang, B., Zhu, J., Wang, Y., Chen, W., Fang, S., Mao, W., et al. (2022) Targeted xCT‐Mediated Ferroptosis and Protumoral Polarization of Macrophages Is Effective against HCC and Enhances the Efficacy of the Anti‐PD‐1/L1 Response. Advanced Science, 10, e2203973.
https://doi.org/10.1002/advs.202203973
[53] Guo, L., Hu, C., Yao, M. and Han, G. (2023) Mechanism of Sorafenib Resistance Associated with Ferroptosis in HCC. Frontiers in Pharmacology, 14, Article 1207496.
https://doi.org/10.3389/fphar.2023.1207496
[54] Wang, Q., Guo, Y., Wang, W., Liu, B., Yang, G., Xu, Z., et al. (2021) RNA Binding Protein DAZAP1 Promotes HCC Progression and Regulates Ferroptosis by Interacting with SLC7A11 mRNA. Experimental Cell Research, 399, Article ID: 112453.
https://doi.org/10.1016/j.yexcr.2020.112453
[55] Huang, W., Chen, K., Lu, Y., Zhang, D., Cheng, Y., Li, L., et al. (2021) ABCC5 Facilitates the Acquired Resistance of Sorafenib through the Inhibition of SLC7A11-Induced Ferroptosis in Hepatocellular Carcinoma. Neoplasia, 23, 1227-1239.
https://doi.org/10.1016/j.neo.2021.11.002