[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[2]
|
Maucort‐Boulch, D., de Martel, C., Franceschi, S. and Plummer, M. (2018) Fraction and Incidence of Liver Cancer Attributable to Hepatitis B and C Viruses Worldwide. International Journal of Cancer, 142, 2471-2477. https://doi.org/10.1002/ijc.31280
|
[3]
|
Rinaldi, L., Vetrano, E., Rinaldi, B., Galiero, R., Caturano, A., Salvatore, T., et al. (2021) HCC and Molecular Targeting Therapies: Back to the Future. Biomedicines, 9, Article 1345. https://doi.org/10.3390/biomedicines9101345
|
[4]
|
Forner, A., Reig, M. and Bruix, J. (2018) Hepatocellular Carcinoma. The Lancet, 391, 1301-1314. https://doi.org/10.1016/s0140-6736(18)30010-2
|
[5]
|
Levine, B. and Kroemer, G. (2019) Biological Functions of Autophagy Genes: A Disease Perspective. Cell, 176, 11-42. https://doi.org/10.1016/j.cell.2018.09.048
|
[6]
|
Mizushima, N. (2018) A Brief History of Autophagy from Cell Biology to Physiology and Disease. Nature Cell Biology, 20, 521-527. https://doi.org/10.1038/s41556-018-0092-5
|
[7]
|
Feng, Y., He, D., Yao, Z. and Klionsky, D.J. (2013) The Machinery of Macroautophagy. Cell Research, 24, 24-41. https://doi.org/10.1038/cr.2013.168
|
[8]
|
Li, W., Li, J. and Bao, J. (2011) Microautophagy: Lesser-Known Self-Eating. Cellular and Molecular Life Sciences, 69, 1125-1136. https://doi.org/10.1007/s00018-011-0865-5
|
[9]
|
Kaushik, S. and Cuervo, A.M. (2018) The Coming of Age of Chaperone-Mediated Autophagy. Nature Reviews Molecular Cell Biology, 19, 365-381. https://doi.org/10.1038/s41580-018-0001-6
|
[10]
|
Yang, W.S. and Stockwell, B.R. (2016) Ferroptosis: Death by Lipid Peroxidation. Trends in Cell Biology, 26, 165-176. https://doi.org/10.1016/j.tcb.2015.10.014
|
[11]
|
Dixon, S.J., Winter, G.E., Musavi, L.S., Lee, E.D., Snijder, B., Rebsamen, M., et al. (2015) Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death. ACS Chemical Biology, 10, 1604-1609. https://doi.org/10.1021/acschembio.5b00245
|
[12]
|
Xiang, Y., Song, X. and Long, D. (2024) Ferroptosis Regulation through Nrf2 and Implications for Neurodegenerative Diseases. Archives of Toxicology, 98, 579-615. https://doi.org/10.1007/s00204-023-03660-8
|
[13]
|
Torti, S.V., Manz, D.H., Paul, B.T., Blanchette-Farra, N. and Torti, F.M. (2018) Iron and Cancer. Annual Review of Nutrition, 38, 97-125. https://doi.org/10.1146/annurev-nutr-082117-051732
|
[14]
|
Chen, X., Li, J., Kang, R., Klionsky, D.J. and Tang, D. (2020) Ferroptosis: Machinery and Regulation. Autophagy, 17, 2054-2081. https://doi.org/10.1080/15548627.2020.1810918
|
[15]
|
Chatzikalil, E., Arvanitakis, K., Kalopitas, G., Florentin, M., Germanidis, G., Koufakis, T., et al. (2025) Hepatic Iron Overload and Hepatocellular Carcinoma: New Insights into Pathophysiological Mechanisms and Therapeutic Approaches. Cancers, 17, Article 392. https://doi.org/10.3390/cancers17030392
|
[16]
|
Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042
|
[17]
|
Hou, W., Xie, Y., Song, X., Sun, X., Lotze, M.T., Zeh, H.J., et al. (2016) Autophagy Promotes Ferroptosis by Degradation of Ferritin. Autophagy, 12, 1425-1428. https://doi.org/10.1080/15548627.2016.1187366
|
[18]
|
Kang, R. and Tang, D. (2017) Autophagy and Ferroptosis—What Is the Connection? Current Pathobiology Reports, 5, 153-159. https://doi.org/10.1007/s40139-017-0139-5
|
[19]
|
Knovich, M.A., Storey, J.A., Coffman, L.G., Torti, S.V. and Torti, F.M. (2009) Ferritin for the Clinician. Blood Reviews, 23, 95-104. https://doi.org/10.1016/j.blre.2008.08.001
|
[20]
|
Pantopoulos, K., Porwal, S.K., Tartakoff, A. and Devireddy, L. (2012) Mechanisms of Mammalian Iron Homeostasis. Biochemistry, 51, 5705-5724. https://doi.org/10.1021/bi300752r
|
[21]
|
Mancias, J.D., Wang, X., Gygi, S.P., Harper, J.W. and Kimmelman, A.C. (2014) Quantitative Proteomics Identifies NCOA4 as the Cargo Receptor Mediating Ferritinophagy. Nature, 509, 105-109. https://doi.org/10.1038/nature13148
|
[22]
|
Zhong, G., Li, Y., Ma, F., Huo, Y., Liao, J., Han, Q., et al. (2023) Copper Exposure Induced Chicken Hepatotoxicity: Involvement of Ferroptosis Mediated by Lipid Peroxidation, Ferritinophagy, and Inhibition of FSP1-CoQ10 and Nrf2/SLC7A11/GPX4 Axis. Biological Trace Element Research, 202, 1711-1721. https://doi.org/10.1007/s12011-023-03773-2
|
[23]
|
Jiang, J., Ruan, Y., Liu, X., Ma, J. and Chen, H. (2024) Ferritinophagy Is Critical for Deoxynivalenol-Induced Liver Injury in Mice. Journal of Agricultural and Food Chemistry, 72, 6660-6671. https://doi.org/10.1021/acs.jafc.4c00556
|
[24]
|
Wilson, M.I., Dooley, H.C. and Tooze, S.A. (2014) WIPI2b and Atg16L1: Setting the Stage for Autophagosome Formation. Biochemical Society Transactions, 42, 1327-1334. https://doi.org/10.1042/bst20140177
|
[25]
|
Di Giacomo, S., Briz, O., Monte, M.J., Sanchez-Vicente, L., Abete, L., Lozano, E., et al. (2019) Chemosensitization of Hepatocellular Carcinoma Cells to Sorafenib by β-Caryophyllene Oxide-Induced Inhibition of ABC Export Pumps. Archives of Toxicology, 93, 623-634. https://doi.org/10.1007/s00204-019-02395-9
|
[26]
|
Wu, A., Li, M., Chen, Y., Zhang, W., Li, H., Chen, J., et al. (2024) Multienzyme Active Manganese Oxide Alleviates Acute Liver Injury by Mimicking Redox Regulatory System and Inhibiting Ferroptosis. Advanced Healthcare Materials, 13, e2302556. https://doi.org/10.1002/adhm.202302556
|
[27]
|
Xiu, Z., Li, Y., Fang, J., Han, J., Li, S., Li, Y., et al. (2023) Inhibitory Effects of Esculetin on Liver Cancer through Triggering NCOA4 Pathway-Mediation Ferritinophagy in Vivo and in Vitro. Journal of Hepatocellular Carcinoma, 10, 611-629. https://doi.org/10.2147/jhc.s395617
|
[28]
|
Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., et al. (2009) Autophagy Regulates Lipid Metabolism. Nature, 458, 1131-1135. https://doi.org/10.1038/nature07976
|
[29]
|
Bai, Y., Meng, L., Han, L., Jia, Y., Zhao, Y., Gao, H., et al. (2019) Lipid Storage and Lipophagy Regulates Ferroptosis. Biochemical and Biophysical Research Communications, 508, 997-1003. https://doi.org/10.1016/j.bbrc.2018.12.039
|
[30]
|
Schroeder, B., Schulze, R.J., Weller, S.G., Sletten, A.C., Casey, C.A. and McNiven, M.A. (2015) The Small GTPase Rab7 as a Central Regulator of Hepatocellular Lipophagy. Hepatology, 61, 1896-1907. https://doi.org/10.1002/hep.27667
|
[31]
|
Magnone, M.C., Langmesser, S., Bezdek, A.C., Tallone, T., Rusconi, S. and Albrecht, U. (2015) The Mammalian Circadian Clock Gene Per2 Modulates Cell Death in Response to Oxidative Stress. Frontiers in Neurology, 5, Article 289. https://doi.org/10.3389/fneur.2014.00289
|
[32]
|
Yang, M., Chen, P., Liu, J., Zhu, S., Kroemer, G., Klionsky, D.J., et al. (2019) Clockophagy Is a Novel Selective Autophagy Process Favoring Ferroptosis. Science Advances, 5, eaaw2238. https://doi.org/10.1126/sciadv.aaw2238
|
[33]
|
Maiorino, M., Conrad, M. and Ursini, F. (2018) Gpx4, Lipid Peroxidation, and Cell Death: Discoveries, Rediscoveries, and Open Issues. Antioxidants & Redox Signaling, 29, 61-74. https://doi.org/10.1089/ars.2017.7115
|
[34]
|
Yang, W.S., SriRamaratnam, R., Welsch, M.E., Shimada, K., Skouta, R., Viswanathan, V.S., et al. (2014) Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell, 156, 317-331. https://doi.org/10.1016/j.cell.2013.12.010
|
[35]
|
Wu, Z., Geng, Y., Lu, X., Shi, Y., Wu, G., Zhang, M., et al. (2019) Chaperone-Mediated Autophagy Is Involved in the Execution of Ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 116, 2996-3005. https://doi.org/10.1073/pnas.1819728116
|
[36]
|
Miao, Z., Tian, W., Ye, Y., Gu, W., Bao, Z., Xu, L., et al. (2022) Hsp90 Induces Acsl4-Dependent Glioma Ferroptosis via Dephosphorylating Ser637 at Drp1. Cell Death & Disease, 13, Article No. 548. https://doi.org/10.1038/s41419-022-04997-1
|
[37]
|
Yu, S., Li, Z., Zhang, Q., Wang, R., Zhao, Z., Ding, W., et al. (2022) GPX4 Degradation via Chaperone-Mediated Autophagy Contributes to Antimony-Triggered Neuronal Ferroptosis. Ecotoxicology and Environmental Safety, 234, Article ID: 113413. https://doi.org/10.1016/j.ecoenv.2022.113413
|
[38]
|
Xue, Q., Yan, D., Chen, X., Li, X., Kang, R., Klionsky, D.J., et al. (2023) Copper-Dependent Autophagic Degradation of GPX4 Drives Ferroptosis. Autophagy, 19, 1982-1996. https://doi.org/10.1080/15548627.2023.2165323
|
[39]
|
Bi, Y., Liu, S., Qin, X., Abudureyimu, M., Wang, L., Zou, R., et al. (2024) FUNDC1 Interacts with GPX4 to Govern Hepatic Ferroptosis and Fibrotic Injury through a Mitophagy-Dependent Manner. Journal of Advanced Research, 55, 45-60. https://doi.org/10.1016/j.jare.2023.02.012
|
[40]
|
Torti, S.V. and Torti, F.M. (2013) Iron and Cancer: More Ore to Be Mined. Nature Reviews Cancer, 13, 342-355. https://doi.org/10.1038/nrc3495
|
[41]
|
Sun, X., Ou, Z., Chen, R., Niu, X., Chen, D., Kang, R., et al. (2015) Activation of the P62‐keap1‐NRF2 Pathway Protects against Ferroptosis in Hepatocellular Carcinoma Cells. Hepatology, 63, 173-184. https://doi.org/10.1002/hep.28251
|
[42]
|
Cai, H., Meng, Z. and Yu, F. (2024) The Involvement of Ros-Regulated Programmed Cell Death in Hepatocellular Carcinoma. Critical Reviews in Oncology/Hematology, 197, Article ID: 104361. https://doi.org/10.1016/j.critrevonc.2024.104361
|
[43]
|
Cao, J., Wu, S., Zhao, S., Wang, L., Wu, Y., Song, L., et al. (2024) USP24 Promotes Autophagy-Dependent Ferroptosis in Hepatocellular Carcinoma by Reducing the K48-Linked Ubiquitination of Beclin1. Communications Biology, 7, Article No. 1279. https://doi.org/10.1038/s42003-024-06999-5
|
[44]
|
Yang, Y., Liu, C., Wang, M., Cheng, H., Wu, H., Luo, S., et al. (2024) Arenobufagin Regulates the p62-Keap1-Nrf2 Pathway to Induce Autophagy-Dependent Ferroptosis in HepG2 Cells. Naunyn-Schmiedeberg’s Archives of Pharmacology, 397, 4895-4909. https://doi.org/10.1007/s00210-023-02916-5
|
[45]
|
Lin, P., Tang, H., Wu, S., Shaw, N. and Su, C. (2020) Saponin Formosanin C-Induced Ferritinophagy and Ferroptosis in Human Hepatocellular Carcinoma Cells. Antioxidants, 9, Article 682. https://doi.org/10.3390/antiox9080682
|
[46]
|
Wang, H., Yang, R., Wang, Z., Cao, L., Kong, D., Sun, Q., et al. (2023) Metronomic Capecitabine with Rapamycin Exerts an Immunosuppressive Effect by Inducing Ferroptosis of CD4+ T Cells after Liver Transplantation in Rat. International Immunopharmacology, 124, Article ID: 110810. https://doi.org/10.1016/j.intimp.2023.110810
|
[47]
|
Liang, J., Chen, M., Yan, G., Hoa, P.T.T., Wei, S., Huang, H., et al. (2025) Donafenib Activates the p53 Signaling Pathway in Hepatocellular Carcinoma, Induces Ferroptosis, and Enhances Cell Apoptosis. Clinical and Experimental Medicine, 25, Article No. 29. https://doi.org/10.1007/s10238-024-01550-6
|
[48]
|
Zhang, D., Man, D., Lu, J., Jiang, Y., Ding, B., Su, R., et al. (2023) Mitochondrial TSPO Promotes Hepatocellular Carcinoma Progression through Ferroptosis Inhibition and Immune Evasion. Advanced Science, 10, e2206669. https://doi.org/10.1002/advs.202206669
|
[49]
|
Li, M., Tang, H., Li, Z. and Tang, W. (2022) Emerging Treatment Strategies for Cerebral Ischemia-Reperfusion Injury. Neuroscience, 507, 112-124. https://doi.org/10.1016/j.neuroscience.2022.10.020
|
[50]
|
Tang, K., Chen, Q., Liu, Y., Wang, L. and Lu, W. (2022) Combination of Metformin and Sorafenib Induces Ferroptosis of Hepatocellular Carcinoma through p62-Keap1-Nrf2 Pathway. Journal of Cancer, 13, 3234-3243. https://doi.org/10.7150/jca.76618
|
[51]
|
Gunassekaran, G.R., Poongkavithai Vadevoo, S.M., Baek, M. and Lee, B. (2021) M1 Macrophage Exosomes Engineered to Foster M1 Polarization and Target the IL-4 Receptor Inhibit Tumor Growth by Reprogramming Tumor-Associated Macrophages into M1-Like Macrophages. Biomaterials, 278, Article ID: 121137. https://doi.org/10.1016/j.biomaterials.2021.121137
|
[52]
|
Tang, B., Zhu, J., Wang, Y., Chen, W., Fang, S., Mao, W., et al. (2022) Targeted xCT‐Mediated Ferroptosis and Protumoral Polarization of Macrophages Is Effective against HCC and Enhances the Efficacy of the Anti‐PD‐1/L1 Response. Advanced Science, 10, e2203973. https://doi.org/10.1002/advs.202203973
|
[53]
|
Guo, L., Hu, C., Yao, M. and Han, G. (2023) Mechanism of Sorafenib Resistance Associated with Ferroptosis in HCC. Frontiers in Pharmacology, 14, Article 1207496. https://doi.org/10.3389/fphar.2023.1207496
|
[54]
|
Wang, Q., Guo, Y., Wang, W., Liu, B., Yang, G., Xu, Z., et al. (2021) RNA Binding Protein DAZAP1 Promotes HCC Progression and Regulates Ferroptosis by Interacting with SLC7A11 mRNA. Experimental Cell Research, 399, Article ID: 112453. https://doi.org/10.1016/j.yexcr.2020.112453
|
[55]
|
Huang, W., Chen, K., Lu, Y., Zhang, D., Cheng, Y., Li, L., et al. (2021) ABCC5 Facilitates the Acquired Resistance of Sorafenib through the Inhibition of SLC7A11-Induced Ferroptosis in Hepatocellular Carcinoma. Neoplasia, 23, 1227-1239. https://doi.org/10.1016/j.neo.2021.11.002
|