[1]
|
唐孝炎, 张远航, 邵敏. 大气环境化学[M]. 北京: 高等教育出版社, 2006.
|
[2]
|
Fuller, R., Landrigan, P.J., Balakrishnan, K., Bathan, G., Bose-O’Reilly, S., Brauer, M., et al. (2022) Pollution and Health: A Progress Update. The Lancet Planetary Health, 6, e535-e547. https://doi.org/10.1016/s2542-5196(22)00090-0
|
[3]
|
中华人民共和国生态环境部. 2020年中国生态环境状况公报[R]. 北京: 中华人民共和国生态环境部, 2021.
|
[4]
|
逯世泽, 史旭荣, 薛文博, 等. 新冠肺炎疫情期间气象条件和排放变化对PM2.5的影响[J]. 环境科学, 2021, 42(7): 3099-3106.
|
[5]
|
戴启立, 戴天骄, 侯林璐, 等. 污染减排与气象因素对我国主要城市2015~2021年环境空气质量变化的贡献评估[J]. 中国科学: 地球科学, 2023, 53(8): 1741-1753.
|
[6]
|
Zhai, S., Jacob, D.J., Wang, X., Liu, Z., Wen, T., Shah, V., et al. (2021) Control of Particulate Nitrate Air Pollution in China. Nature Geoscience, 14, 389-395. https://doi.org/10.1038/s41561-021-00726-z
|
[7]
|
Shi, Z., Huang, L., Li, J., Ying, Q., Zhang, H. and Hu, J. (2020) Sensitivity Analysis of the Surface Ozone and Fine Particulate Matter to Meteorological Parameters in China. Atmospheric Chemistry and Physics, 20, 13455-13466. https://doi.org/10.5194/acp-20-13455-2020
|
[8]
|
王毓铮, 黄志炯, 肖笑, 等. 珠三角典型城市大气污染减排措施的PM2.5改善评估研究[J]. 环境科学学报, 2021, 41(7): 2530-2539.
|
[9]
|
薛文博, 史旭荣, 严刚, 等. 气象条件和排放变化对2020年春节前后华北地区重污染过程的影响[J]. 中国科学: 地球科学, 2021, 51(2): 314-324.
|
[10]
|
张碧辉, 刘洪利, 张迪, 等. QX/T 479-2019 PM2.5气象条件评估指数(EMI) [S]. 北京: 中国气象局, 2019.
|
[11]
|
张宸赫, 王东东, 赵天良, 等. 基于WRF-Chem和EMI指数的新冠肺炎疫情期间沈阳市大气污染物浓度变化原因分析[J]. 环境科学学报, 2021, 41(9): 3709-3716.
|
[12]
|
岳岩裕, 沈龙娇, 周悦, 等. 武汉市军运会期间空气质量特征及气象条件分析[J]. 气象, 2022, 48(1): 96-106.
|
[13]
|
Gao, M., Han, Z., Liu, Z., Li, M., Xin, J., Tao, Z., et al. (2018) Air Quality and Climate Change, Topic 3 of the Model Inter-Comparison Study for Asia Phase III (Mics-Asia III)—Part 1: Overview and Model Evaluation. Atmospheric Chemistry and Physics, 18, 4859-4884. https://doi.org/10.5194/acp-18-4859-2018
|
[14]
|
Henneman, L.R.F., Liu, C., Mulholland, J.A. and Russell, A.G. (2016) Evaluating the Effectiveness of Air Quality Regulations: A Review of Accountability Studies and Frameworks. Journal of the Air & Waste Management Association, 67, 144-172. https://doi.org/10.1080/10962247.2016.1242518
|
[15]
|
Wise, E.K. and Comrie, A.C. (2005) Extending the Kolmogorov-Zurbenko Filter: Application to Ozone, Particulate Matter, and Meteorological Trends. Journal of the Air & Waste Management Association, 55, 1208-1216. https://doi.org/10.1080/10473289.2005.10464718
|
[16]
|
Li, P., Wang, Y. and Dong, Q. (2017) The Analysis and Application of a New Hybrid Pollutants Forecasting Model Using Modified Kolmogorov-Zurbenko Filter. Science of The Total Environment, 583, 228-240. https://doi.org/10.1016/j.scitotenv.2017.01.057
|
[17]
|
Gao, S., Bai, Z., Liang, S., Yu, H., Chen, L., Sun, Y., et al. (2021) Simulation of Surface Ozone over Hebei Province, China Using Kolmogorov-Zurbenko and Artificial Neural Network (KZ-ANN) Combined Model. Atmospheric Environment, 261, Article ID: 118599. https://doi.org/10.1016/j.atmosenv.2021.118599
|
[18]
|
Gardner, M. and Dorling, S. (2001) Artificial Neural Network-Derived Trends in Daily Maximum Surface Ozone Concentrations. Journal of the Air & Waste Management Association, 51, 1202-1210. https://doi.org/10.1080/10473289.2001.10464338
|
[19]
|
Zhai, S., Jacob, D.J., Wang, X., Shen, L., Li, K., Zhang, Y., et al. (2019) Fine Particulate Matter (PM2.5) Trends in China, 2013-2018: Separating Contributions from Anthropogenic Emissions and Meteorology. Atmospheric Chemistry and Physics, 19, 11031-11041. https://doi.org/10.5194/acp-19-11031-2019
|
[20]
|
Zhang, B., Rong, Y., Yong, R., Qin, D., Li, M., Zou, G., et al. (2022) Deep Learning for Air Pollutant Concentration Prediction: A Review. Atmospheric Environment, 290, Article ID: 119347. https://doi.org/10.1016/j.atmosenv.2022.119347
|
[21]
|
王馨陆, 黄冉, 张雯娴, 等. 基于机器学习方法的臭氧和PM2.5污染潜势预报模型——以成都市为例[J]. 北京大学学报(自然科学版), 2021, 57(5): 938-950.
|
[22]
|
张运江, 雷若媛, 崔世杰, 等. 2015-2020年我国主要城市PM2.5和O3污染时空变化趋势和影响因素[J]. 科学通报, 2022(67): 2029-2042.
|
[23]
|
Grange, S.K. and Carslaw, D.C. (2019) Using Meteorological Normalisation to Detect Interventions in Air Quality Time Series. Science of the Total Environment, 653, 578-588. https://doi.org/10.1016/j.scitotenv.2018.10.344
|
[24]
|
Vu, T.V., Shi, Z., Cheng, J., Zhang, Q., He, K., Wang, S., et al. (2019) Assessing the Impact of Clean Air Action on Air Quality Trends in Beijing Using a Machine Learning Technique. Atmospheric Chemistry and Physics, 19, 11303-11314. https://doi.org/10.5194/acp-19-11303-2019
|
[25]
|
Li, C., Zhu, Q., Jin, X. and Cohen, R.C. (2022) Elucidating Contributions of Anthropogenic Volatile Organic Compounds and Particulate Matter to Ozone Trends over China. Environmental Science & Technology, 56, 12906-12916. https://doi.org/10.1021/acs.est.2c03315
|
[26]
|
Guo, Y., Li, K., Zhao, B., Shen, J., Bloss, W.J., Azzi, M., et al. (2022) Evaluating the Real Changes of Air Quality Due to Clean Air Actions Using a Machine Learning Technique: Results from 12 Chinese Mega-Cities during 2013-2020. Chemosphere, 300, Article ID:134608. https://doi.org/10.1016/j.chemosphere.2022.134608
|
[27]
|
Liu, H., Yue, F. and Xie, Z. (2022) Quantify the Role of Anthropogenic Emission and Meteorology on Air Pollution Using Machine Learning Approach: A Case Study of PM2.5 during the COVID-19 Outbreak in Hubei Province, China. Environmental Pollution, 300, Article ID:118932. https://doi.org/10.1016/j.envpol.2022.118932
|
[28]
|
龚安保, 解欢, 于阳春, 等. 基于随机森林算法的山东省区域臭氧污染事件中气象条件和排放贡献影响研究[J]. 环境科学研究, 2024, 37(3): 493-501.
|
[29]
|
Lundberg, S.M. and Lee, S.I. (2017) A Unified Approach to Interpreting Model Predictions. Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17), Long Beach, 4-9 December 2017, 4768-4777.
|
[30]
|
Mehryar, M., Afshin, R. and Ameet, T. (2019) Foundations of Machine Learning. 2nd Edition, The MIT Press.
|
[31]
|
Wilson, A.G. (2020) The Case for Bayesian Deep Learning. arXiv: 2001.10995.
|
[32]
|
卢亚灵, 李勃, 范朝阳, 等. 空气质量预测模拟技术演变与发展研究[J]. 中国环境管理, 2021, 13(4): 84-92.
|