[1]
|
Slade, P., Atkeson, C., Donelan, J.M., Houdijk, H., Ingraham, K.A., Kim, M., et al. (2024) On Human-in-the-Loop Optimization of Human-Robot Interaction. Nature, 633, 779-788. https://doi.org/10.1038/s41586-024-07697-2
|
[2]
|
Tan, P., Han, X., Zou, Y., Qu, X., Xue, J., Li, T., et al. (2022) Self-Powered Gesture Recognition Wristband Enabled by Machine Learning for Full Keyboard and Multicommand Input. Advanced Materials, 34, Article 2200793. https://doi.org/10.1002/adma.202200793
|
[3]
|
Moin, A., Zhou, A., Rahimi, A., Menon, A., Benatti, S., Alexandrov, G., et al. (2020) A Wearable Biosensing System with In-Sensor Adaptive Machine Learning for Hand Gesture Recognition. Nature Electronics, 4, 54-63. https://doi.org/10.1038/s41928-020-00510-8
|
[4]
|
Zhou, Z., Chen, K., Li, X., Zhang, S., Wu, Y., Zhou, Y., et al. (2020) Sign-to-Speech Translation Using Machine-Learning-Assisted Stretchable Sensor Arrays. Nature Electronics, 3, 571-578. https://doi.org/10.1038/s41928-020-0428-6
|
[5]
|
Wang, H., Ding, Q., Luo, Y., Wu, Z., Yu, J., Chen, H., et al. (2023) High-Performance Hydrogel Sensors Enabled Multimodal and Accurate Human-Machine Interaction System for Active Rehabilitation. Advanced Materials, 36, Article 2309868. https://doi.org/10.1002/adma.202309868
|
[6]
|
Osman, A., Elhakeem, A., Kaytbay, S. and Ahmed, A. (2022) A Comprehensive Review on the Thermal, Electrical, and Mechanical Properties of Graphene-Based Multi-Functional Epoxy Composites. Advanced Composites and Hybrid Materials, 5, 547-605. https://doi.org/10.1007/s42114-022-00423-4
|
[7]
|
Wu, Y., An, C., Guo, Y., Zong, Y., Jiang, N., Zheng, Q., et al. (2024) Highly Aligned Graphene Aerogels for Multifunctional Composites. Nano-Micro Letters, 16, Article No. 118. https://doi.org/10.1007/s40820-024-01357-w
|
[8]
|
Huang, X., Wei, J., Zhang, Y., Qian, B., Jia, Q., Liu, J., et al. (2022) Ultralight Magnetic and Dielectric Aerogels Achieved by Metal-Organic Framework Initiated Gelation of Graphene Oxide for Enhanced Microwave Absorption. Nano-Micro Letters, 14, Article No. 107. https://doi.org/10.1007/s40820-022-00851-3
|
[9]
|
Song, N., Zhang, F., Cao, D., Wang, P. and Ding, P. (2022) Bicontinuous Laminated Structure Design of Polypropylene/Reduced Graphene Oxide Hybrid Films for Thermal Management. Advanced Composites and Hybrid Materials, 5, 2873-2883. https://doi.org/10.1007/s42114-022-00470-x
|
[10]
|
Yuan, Y., Huang, J., Li, X., Jiang, L., Li, T., Sun, P., et al. (2023) Laser-Induced Electron Synchronization Excitation for Photochemical Synthesis and Patterning Graphene-Based Electrode. Advanced Materials, 36, Article 2308368. https://doi.org/10.1002/adma.202308368
|
[11]
|
Yuan, Y., Jiang, L., Li, X., Zuo, P., Zhang, X., Lian, Y., et al. (2022) Ultrafast Shaped Laser Induced Synthesis of Mxene Quantum Dots/Graphene for Transparent Supercapacitors. Advanced Materials, 34, Article 2110013. https://doi.org/10.1002/adma.202110013
|
[12]
|
Gao, Y., Liu, J. and Yang, S. (2023) Liquid Crystalline Reduced Graphene Oxide Composite Fibers as Artificial Muscles. Materials Today, 69, 19-30. https://doi.org/10.1016/j.mattod.2023.08.003
|
[13]
|
Luo, S., Peng, L., Xie, Y., Cao, X., Wang, X., Liu, X., et al. (2023) Flexible Large-Area Graphene Films of 50-600 nm Thickness with High Carrier Mobility. Nano-Micro Letters, 15, Article No. 61. https://doi.org/10.1007/s40820-023-01032-6
|
[14]
|
Wu, J., Zhang, Y., Hu, J., Yang, Y., Jin, D., Liu, W., et al. (2024) 2D Graphene Oxide Films Expand Functionality of Photonic Chips. Advanced Materials, 36, Article 2403659. https://doi.org/10.1002/adma.202403659
|
[15]
|
Nazari, P., Bäuerle, R., Zimmermann, J., Melzer, C., Schwab, C., Smith, A., et al. (2023) Piezoresistive Free-Standing Microfiber Strain Sensor for High-Resolution Battery Thickness Monitoring. Advanced Materials, 35, Article 2212189. https://doi.org/10.1002/adma.202212189
|
[16]
|
Kim, E., Kim, S., Jin, H.M., Kim, G., Ha, H., Choi, Y., et al. (2024) Unlocking Novel Functionality: Pseudocapacitive Sensing in Mxene-Based Flexible Supercapacitors. Nano-Micro Letters, 17, Article No. 86. https://doi.org/10.1007/s40820-024-01567-2
|
[17]
|
Yang, D., Zhao, K., Yang, R., Zhou, S., Chen, M., Tian, H., et al. (2024) A Rational Design of Bio-Derived Disulfide Cans for Wearable Capacitive Pressure Sensor. Advanced Materials, 36, Article 2403880. https://doi.org/10.1002/adma.202403880
|
[18]
|
Kaiser, D., Meyerbroeker, N., Purschke, W., Sell, S., Neumann, C., Winter, A., et al. (2024) Ultrasensitive Detection of Chemokines in Clinical Samples with Graphene-Based Field-Effect Transistors. Advanced Materials, 36, Article 2407487. https://doi.org/10.1002/adma.202407487
|
[19]
|
Zhou, S., Zhang, X., Wang, Y., et al. (2024) Opto-Electrical Decoupled Phototransistor for Starlight Detection. Advanced Materials (Deerfield Beach, Fla), 2024, e2413247.
|
[20]
|
Zhao, G., Qian, F., Li, X., Tang, Y., Sheng, Y., Li, H., et al. (2023) Constructing a Continuous Reduced Graphene Oxide Network in Porous Plant Fiber Sponge for Highly Compressible and Sensitive Piezoresistive Sensors. Advanced Composites and Hybrid Materials, 6, Article No. 184. https://doi.org/10.1007/s42114-023-00754-w
|
[21]
|
Wu, D., Pigou, L., Kindermans, P., Le, N.D., Shao, L., Dambre, J., et al. (2016) Deep Dynamic Neural Networks for Multimodal Gesture Segmentation and Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 1583-1597. https://doi.org/10.1109/tpami.2016.2537340
|
[22]
|
Chen, T., Pang, Z., He, S., Li, Y., Shrestha, S., Little, J.M., et al. (2024) Machine Intelligence-Accelerated Discovery of All-Natural Plastic Substitutes. Nature Nanotechnology, 19, 782-791. https://doi.org/10.1038/s41565-024-01635-z
|
[23]
|
Xie, J., Xiang, X., Xia, S., Jiang, L., Wang, G. and Gao, X. (2024) MGNR: A Multi-Granularity Neighbor Relationship and Its Application in KNN Classification and Clustering Methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46, 7956-7972. https://doi.org/10.1109/tpami.2024.3400281
|
[24]
|
Turkoglu, M.O., Daaronco, S., Wegner, J.D., et al. (2022) Gating Revisited: Deep Multi-Layer Rnns that Can Be Trained. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 4081-4092.
|
[25]
|
Deng, X. and Dragotti, P.L. (2021) Deep Convolutional Neural Network for Multi-Modal Image Restoration and Fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 3333-3348. https://doi.org/10.1109/tpami.2020.2984244
|
[26]
|
Zhang, X., Zhang, B., Freddolino, L. and Zhang, Y. (2022) CR-I-TASSER: Assemble Protein Structures from Cryo-Em Density Maps Using Deep Convolutional Neural Networks. Nature Methods, 19, 195-204. https://doi.org/10.1038/s41592-021-01389-9
|
[27]
|
Li, X., Tang, J., Zhang, Q., Gao, B., Yang, J.J., Song, S., et al. (2020) Power-Efficient Neural Network with Artificial Dendrites. Nature Nanotechnology, 15, 776-782. https://doi.org/10.1038/s41565-020-0722-5
|
[28]
|
Zhang, Q., Yu, H., Barbiero, M., Wang, B. and Gu, M. (2019) Artificial Neural Networks Enabled by Nanophotonics. Light: Science & Applications, 8, Article No. 42. https://doi.org/10.1038/s41377-019-0151-0
|
[29]
|
Lin, X., Rivenson, Y., Yardimci, N.T., Veli, M., Luo, Y., Jarrahi, M., et al. (2018) All-Optical Machine Learning Using Diffractive Deep Neural Networks. Science, 361, 1004-1008. https://doi.org/10.1126/science.aat8084
|
[30]
|
Liu, C., Ma, Q., Luo, Z.J., Hong, Q.R., Xiao, Q., Zhang, H.C., et al. (2022) A Programmable Diffractive Deep Neural Network Based on a Digital-Coding Metasurface Array. Nature Electronics, 5, 113-122. https://doi.org/10.1038/s41928-022-00719-9
|
[31]
|
Wang, Q., Liu, J., Lyu, D. and Wang, J. (2024) Ultrahigh-Fidelity Spatial Mode Quantum Gates in High-Dimensional Space by Diffractive Deep Neural Networks. Light: Science & Applications, 13, Article No. 10. https://doi.org/10.1038/s41377-023-01336-7
|
[32]
|
Chen, H., Feng, J., Jiang, M., Wang, Y., Lin, J., Tan, J., et al. (2021) Diffractive Deep Neural Networks at Visible Wavelengths. Engineering, 7, 1483-1491. https://doi.org/10.1016/j.eng.2020.07.032
|
[33]
|
Burch, J. and Di Falco, A. (2018) Surface Topology Specific Metasurface Holograms. ACS Photonics, 5, 1762-1766. https://doi.org/10.1021/acsphotonics.7b01449
|
[34]
|
Wu, J., Lin, M., Cong, X., Liu, H. and Tan, P. (2018) Raman Spectroscopy of Graphene-Based Materials and Its Applications in Related Devices. Chemical Society Reviews, 47, 1822-1873. https://doi.org/10.1039/c6cs00915h
|
[35]
|
Chen, X. and Gu, M. (2022) Two-Beam Ultrafast Laser Scribing of Graphene Patterns with 90-nm Subdiffraction Feature Size. Ultrafast Science, 2022, 1-9. https://doi.org/10.34133/ultrafastscience.0001
|
[36]
|
Liu, X., Fang, L., Zhang, F., Zhang, Q., Wan, Z. and Chen, X. (2024) All-Optical Diffractive Deep Neural Networks Enabled Laser-Reduced Graphene Oxide Tactile Sensor for Braille Recognition. ACS Applied Electronic Materials, 6, 2049-2058. https://doi.org/10.1021/acsaelm.4c00116
|
[37]
|
Orekhov, N.D., Bondareva, J.V., Potapov, D.O., Dyakonov, P.V., Dubinin, O.N., Tarkhov, M.A., et al. (2022) Mechanism of Graphene Oxide Laser Reduction at Ambient Conditions: Experimental and Reaxff Study. Carbon, 191, 546-554. https://doi.org/10.1016/j.carbon.2022.02.018
|
[38]
|
Chen, H., Lou, S., Wang, Q., Huang, P., Duan, H. and Hu, Y. (2024) Diffractive Deep Neural Networks: Theories, Optimization, and Applications. Applied Physics Reviews, 11, Article 021332. https://doi.org/10.1063/5.0191977
|
[39]
|
Goi, E., Chen, X., Zhang, Q., Cumming, B.P., Schoenhardt, S., Luan, H., et al. (2021) Nanoprinted High-Neuron-Density Optical Linear Perceptrons Performing Near-Infrared Inference on a CMOS Chip. Light: Science & Applications, 10, Article No. 40. https://doi.org/10.1038/s41377-021-00483-z
|
[40]
|
Yang, B., Dong, Y. and Chen, X. (2024) Feature-Enhanced Artificial Visual Perception Based on Superlinear Voltage-Reflectance Responses of Electrochromic Arrays. ACS Photonics, 11, 1909-1919. https://doi.org/10.1021/acsphotonics.3c01862
|
[41]
|
Aggarwal, A., Bhutani, N., Kapur, R., Dhand, G. and Sheoran, K. (2023) Real-Time Hand Gesture Recognition Using Multiple Deep Learning Architectures. Signal, Image and Video Processing, 17, 3963-3971. https://doi.org/10.1007/s11760-023-02626-8
|
[42]
|
Czuszynski, K., Ruminski, J. and Kwasniewska, A. (2018) Gesture Recognition with the Linear Optical Sensor and Recurrent Neural Networks. IEEE Sensors Journal, 18, 5429-5438. https://doi.org/10.1109/jsen.2018.2834968
|
[43]
|
Zhang, Z., Wang, Q., Shi, G., Ma, Y., Zeng, J. and Liu, G. (2024) Neural Networks Based on In-Sensor Computing of Optoelectronic Memristor. Microelectronic Engineering, 291, Article 112201. https://doi.org/10.1016/j.mee.2024.112201
|
[44]
|
Lee, H., Lee, S., Kim, J., Jung, H., Yoon, K.J., Gandla, S., et al. (2023) Stretchable Array Electromyography Sensor with Graph Neural Network for Static and Dynamic Gestures Recognition System. npj Flexible Electronics, 7, Article No. 20. https://doi.org/10.1038/s41528-023-00246-3
|
[45]
|
Wang, M., Yan, Z., Wang, T., Cai, P., Gao, S., Zeng, Y., et al. (2020) Gesture Recognition Using a Bioinspired Learning Architecture that Integrates Visual Data with Somatosensory Data from Stretchable Sensors. Nature Electronics, 3, 563-570. https://doi.org/10.1038/s41928-020-0422-z
|
[46]
|
Song, Y., Liu, M., Wang, F., Zhu, J., Hu, A. and Sun, N. (2024) Gesture Recognition Based on a Convolutional Neural Network-Bidirectional Long Short-Term Memory Network for a Wearable Wrist Sensor with Multi-Walled Carbon Nanotube/Cotton Fabric Material. Micromachines, 15, Article 185. https://doi.org/10.3390/mi15020185
|