[1]
|
World Health Organization (2023) Patient Safety. https://www.who.int/news-room/fact-sheets/detail/patient-safety
|
[2]
|
Slawomirski, L. and Klazinga, N. (2022) The Economics of Patient Safety: From Analysis to Action. https://www.oecd-ilibrary.org/social-issues-migration-health/the-economics-of-patient-safety_761f2da8-en
|
[3]
|
Alghamdi, A.A., Keers, R.N., Sutherland, A. and Ashcroft, D.M. (2019) Prevalence and Nature of Medication Errors and Preventable Adverse Drug Events in Paediatric and Neonatal Intensive Care Settings: A Systematic Review. Drug Safety, 42, 1423-1436. https://doi.org/10.1007/s40264-019-00856-9
|
[4]
|
Matlow, A.G., Cronin, C.M.G., Flintoft, V., Nijssen-Jordan, C., Fleming, M., Brady-Fryer, B., et al. (2011) Description of the Development and Validation of the Canadian Paediatric Trigger Tool. BMJ Quality & Safety, 20, 416-423. https://doi.org/10.1136/bmjqs.2010.041152
|
[5]
|
Dillner, P., Unbeck, M., Norman, M., Nydert, P., Härenstam, K.P., Lindemalm, S., et al. (2023) Identifying Neonatal Adverse Events in Preterm and Term Infants Using a Paediatric Trigger Tool. Acta Paediatrica, 112, 1670-1682. https://doi.org/10.1111/apa.16814
|
[6]
|
Salaets, T., Turner, M.A., Short, M., Ward, R.M., Hokuto, I., Ariagno, R.L., et al. (2019) Development of a Neonatal Adverse Event Severity Scale through a Delphi Consensus Approach. Archives of Disease in Childhood, 104, 1167-1173. https://doi.org/10.1136/archdischild-2019-317399
|
[7]
|
Salaets, T., Lacaze-Masmonteil, T., Hokuto, I., Gauldin, C., Taha, A., Smits, A., et al. (2023) Prospective Assessment of Inter-Rater Reliability of a Neonatal Adverse Event Severity Scale. Frontiers in Pharmacology, 14, Article 1237982. https://doi.org/10.3389/fphar.2023.1237982
|
[8]
|
Ostojic, D., Guglielmini, S., Moser, V., et al. (2023) Measuring Adverse Events in the Neonatal Intensive Care Units in Mit-Ghamr Central Hospital. The Egyptian Journal of Hospital Medicine, 92, 6395-6402.
|
[9]
|
Sharek, P.J., Horbar, J.D., Mason, W., Bisarya, H., Thurm, C.W., Suresh, G., et al. (2006) Adverse Events in the Neonatal Intensive Care Unit: Development, Testing, and Findings of an Nicu-Focused Trigger Tool to Identify Harm in North American NICUs. Pediatrics, 118, 1332-1340. https://doi.org/10.1542/peds.2006-0565
|
[10]
|
Sakuma, M., Ohta, Y., Takeuchi, J., Yuza, Y., Ida, H., Bates, D.W., et al. (2023) Adverse Events in Pediatric Inpatients: The Japan Adverse Event Study. Journal of Patient Safety, 20, 38-44. https://doi.org/10.1097/pts.0000000000001180
|
[11]
|
Fajreldines, A., Schnitzler, E., Torres, S., et al. (2019) Measurement of the Incidence of Care-Associated Adverse Events at the Department of Pediatrics of a Teaching Hospital. Archivos Argentinos de Pediatria, 117, e106-e109.
|
[12]
|
Barrionuevo, L.S. and Esandi, M.E. (2010) Epidemiology of Adverse Events in the Neonatal Unit of a Regional Public Hospital in Argentina. Archivos Argentinos de Pediatria, 108, 303-310
|
[13]
|
van den Anker, J., Reed, M.D., Allegaert, K. and Kearns, G.L. (2018) Developmental Changes in Pharmacokinetics and Pharmacodynamics. The Journal of Clinical Pharmacology, 58, S10-S25. https://doi.org/10.1002/jcph.1284
|
[14]
|
宗亚玲, 丁洁, 程龙慧. 新生儿医院感染目标性监测[J]. 中国感染控制杂志, 2018, 17(11): 998-1002.
|
[15]
|
World Health Organization (2024) Newborn Mortality. https://www.who.int/news-room/fact-sheets/detail/newborn-mortality
|
[16]
|
Carter, B.S. and Lantos, J.D. (2019) Disclosing Adverse Events and near Misses to Parents of Neonates. Seminars in Perinatology, 43, Article ID: 151182. https://doi.org/10.1053/j.semperi.2019.08.011
|
[17]
|
Murff, H.J., Patel, V.L., Hripcsak, G. and Bates, D.W. (2003) Detecting Adverse Events for Patient Safety Research: A Review of Current Methodologies. Journal of Biomedical Informatics, 36, 131-143. https://doi.org/10.1016/j.jbi.2003.08.003
|
[18]
|
Hibbert, P.D., Molloy, C.J., Hooper, T.D., Wiles, L.K., Runciman, W.B., Lachman, P., et al. (2016) The Application of the Global Trigger Tool: A Systematic Review. International Journal for Quality in Health Care, 28, 640-649. https://doi.org/10.1093/intqhc/mzw115
|
[19]
|
Griffin, F.A. and Resar, R.K. (2009) IHI Global Trigger Tool for Measuring Adverse Events (Second Edition). Institute for Healthcare Improvement. https://www.ihi.org/
|
[20]
|
Sajith, S.G., Fung, D.S.S. and Chua, H.C. (2019) The Mental Health Trigger Tool: Development and Testing of a Specialized Trigger Tool for Mental Health Settings. Journal of Patient Safety, 17, e360-e366. https://doi.org/10.1097/pts.0000000000000606
|
[21]
|
Brennan, T.A., Leape, L.L., Laird, N.M., Hebert, L., Localio, A.R., Lawthers, A.G., et al. (1991) Incidence of Adverse Events and Negligence in Hospitalized Patients: Results of the Harvard Medical Practice Study I. New England Journal of Medicine, 324, 370-376. https://doi.org/10.1056/nejm199102073240604
|
[22]
|
Stockwell, D.C., Kirkendall, E., Muething, S.E., Kloppenborg, E., Vinodrao, H. and Jacobs, B.R. (2013) Automated Adverse Event Detection Collaborative: Electronic Adverse Event Identification, Classification, and Corrective Actions across Academic Pediatric Institutions. Journal of Patient Safety, 9, 203-210. https://doi.org/10.1097/pts.0000000000000055
|
[23]
|
Moor, M., Banerjee, O., Abad, Z.S.H., Krumholz, H.M., Leskovec, J., Topol, E.J., et al. (2023) Foundation Models for Generalist Medical Artificial Intelligence. Nature, 616, 259-265. https://doi.org/10.1038/s41586-023-05881-4
|
[24]
|
Robi, Y.G. and Sitote, T.M. (2023) Neonatal Disease Prediction Using Machine Learning Techniques. Journal of Healthcare Engineering, 2023, Article ID: 3567194. https://doi.org/10.1155/2023/3567194
|
[25]
|
Shalish, W., Kanbar, L.J., Rao, S., Robles-Rubio, C.A., Kovacs, L., Chawla, S., et al. (2017) Prediction of Extubation Readiness in Extremely Preterm Infants by the Automated Analysis of Cardiorespiratory Behavior: Study Protocol. BMC Pediatrics, 17, Article No. 167. https://doi.org/10.1186/s12887-017-0911-z
|
[26]
|
Ostojic, D., Guglielmini, S., Moser, V., Fauchère, J.C., Bucher, H.U., Bassler, D., et al. (2020) Reducing False Alarm Rates in Neonatal Intensive Care: A New Machine Learning Approach. In: Ryu, P.D., LaManna, J., Harrison, D. and Lee, S.S., Eds., Oxygen Transport to Tissue XLI, Springer, 285-290. https://doi.org/10.1007/978-3-030-34461-0_36
|
[27]
|
Gálvez, J.A., Jalali, A., Ahumada, L., Simpao, A.F. and Rehman, M.A. (2017) Neural Network Classifier for Automatic Detection of Invasive versus Noninvasive Airway Management Technique Based on Respiratory Monitoring Parameters in a Pediatric Anesthesia. Journal of Medical Systems, 41, Article No. 153. https://doi.org/10.1007/s10916-017-0787-3
|
[28]
|
Willan, J., Katz, H. and Keeling, D. (2019) The Use of Artificial Neural Network Analysis Can Improve the Risk‐Stratification of Patients Presenting with Suspected Deep Vein Thrombosis. British Journal of Haematology, 185, 289-296. https://doi.org/10.1111/bjh.15780
|
[29]
|
Dey, S., Luo, H., Fokoue, A., Hu, J. and Zhang, P. (2018) Predicting Adverse Drug Reactions through Interpretable Deep Learning Framework. BMC Bioinformatics, 19, Article No. 476. https://doi.org/10.1186/s12859-018-2544-0
|