加压素和加压素V1a型受体激动剂加压素在感染性休克中的作用
The Role of Vasopressin and the Vasopressin Type V1a Receptor Agonist Selepressin in Septic Shock
DOI: 10.12677/acm.2025.1551359, PDF, HTML, XML,    科研立项经费支持
作者: 刘 澳:内蒙古医科大学包头临床医学院,内蒙古 包头;王君艳*:包头市中心医院重症医学科,内蒙古 包头
关键词: 加压素休克感染性休克Vasopressin Shock Septic Shock
摘要: 感染性休克仍然是危重病人发病和死亡的主要原因之一。尽管进行了早期目标治疗并给予了链胆胺能药物,但仍有高达30%的患者死于该疾病。在这份手稿中,我们首先总结了感染性休克患者的护理标准和当前的指南。我们回顾了加压素的生理作用及其在脓毒性休克管理中的作用。然后,我们回顾了关于V1a受体激动剂(如加压素)在感染性休克中潜在作用的最新证据。令人兴奋的新试验正在完成,以阐明V1a受体激动剂作为潜在的一线血管加压药替代品在脓毒症患者循环休克治疗中的作用。
Abstract: Septic shock remains one of the major causes of morbidity and mortality in the critically ill. Despite early goal therapy and administration of cathecholaminergic agents, up to 30% of patients succumb to the disease. In this manuscript, we first summarize the standard of care of patients with septic shock and current guidelines. We review the physiologic role of vasopressin and its role in septic shock management. We then review the most up-to-date evidence on the potential role of V1a receptor agonists such as Selepressin, in septic shock. Exciting new trials are being completed in order to elucidate the role of V1a receptor agonists as potential first-line vasopressor alternatives in the therapy of circulatory shock in septic patients.
文章引用:刘澳, 王君艳. 加压素和加压素V1a型受体激动剂加压素在感染性休克中的作用[J]. 临床医学进展, 2025, 15(5): 195-203. https://doi.org/10.12677/acm.2025.1551359

1. 引言

脓毒性休克仍然是一种与高发病率和高死亡率相关的严重疾病[1] [2]。在过去的三十年里,循环性休克的死亡率已从80%下降到30% [2] [3],特别是Rivers及其同事[4]所描述的早期目标导向液体治疗的贡献。脓毒性休克患者的一线治疗是液体复苏,目标是实现血流动力学稳定和对重要器官的充分灌注[5]。脓毒症生存运动指南最近进行了更新[6] [7],委员会建议首先使用晶体液,然后给予白蛋白(如果需要大量复苏)。如果初始管理策略未能达到平均动脉压(MAP) 65 mmHg,则应给予血管加压药。该运动推荐的首选血管加压药是去甲肾上腺素(NE),其次是肾上腺素。除NE外,还可以使用0.03单位/min剂量的加压素,目的是增加MAP或减少NE剂量。此外,共识建议不要使用低剂量加压素(AVP)作为单一初始血管加压药,也不要使用剂量 > 0.03~0.04单位/min。后者应仅用作儿茶酚胺耐药脓毒性休克患者的挽救性治疗。多巴胺应仅用于心动过速和心动过缓风险低的患者。来自加压素感染性休克试验(VASST) [8]的关于AVP在循环休克中的作用的证据重新点燃了人们对儿茶酚胺能药物以外的其他血管加压药的兴趣,例如AVP和加压素样药物[9]。自这些指南发布以来,重症监护医学领域出现了对V1a受体激动剂及其在感染性休克管理中的作用的兴趣。在本综述中,我们描述了有关AVP和V1a受体激动剂(如加压素)可能用于治疗脓毒性休克的当前证据[10]

儿茶酚胺是脓毒症所致循环休克住院患者的主要治疗手段[6]。然而,人们应该意识到这些药物可能具有严重的不良反应,包括免疫抑制、代谢亢进状态和心肌细胞死亡[11]-[14]。此外,目前关于在脓毒性休克中使用儿茶酚胺的指南是基于间接证据。Annane等[15]在330例脓毒性休克患者中进行了一项随机对照试验,比较了NE联合多巴酚丁胺与单独使用肾上腺素。NE加多巴酚丁胺组的28天死亡率低于单用肾上腺素组。Myburgh等[16]的另一项研究在280名低血压危重患者中比较了NE与肾上腺素。接受NE的患者28天死亡率为27%,而接受肾上腺素治疗的患者(23%)死亡率为27%。这些试验的缺陷没有充分把握死亡率,也没有考虑乳酸水平等混杂变量,肾上腺素组的乳酸水平较高。对1679名脓毒性休克患者的第三项研究发现,尽管NE组的28天死亡率低于多巴胺组,但疗效不足。作者还指出,多巴胺组的心律失常不良事件更高[17]。这些观察结果导致重症监护医学领域的专家考虑其他替代品,例如AVP或加压素样药物。

鉴于儿茶酚胺在不同水平(血流动力学、代谢、免疫和凝血)可能发生的不良事件,重症监护医师对脓毒症期间交感神经驱动力降低的兴趣有所上升。β受体阻滞剂在脓毒症中的作用仍然存在争议[18] [19]。Morelli等人最近表明,使用艾司洛尔降低脓毒性休克患者的心率可改善动脉弹性[20]。相比之下,Huang SJ等[21]报道,严重脓毒症或感染性休克幸存者和非幸存者在左心室射血分数、右心室射血分数和右心室尺寸方面没有差异。然而,其他人描述了舒张功能障碍与该目标人群死亡率之间的关联[22]

在我们详细说明AVP与感染性休克等病理状态的关系之前,应该了解它在人体中的生理功能。AVP在下丘脑视上核和室旁核(称为渗透压感受器)中产生。它储存在垂体后叶。其释放和合成的重要触发因素包括高渗血浆/尿液、低血压和低血容量[23] [24]。AVP是一种非特异性V1a、V1b (V3)和V2受体激动剂[25]-[29]。其血管收缩作用主要是通过刺激脉管系统平滑肌中的V1a受体[24]。当V1a受体被激活时,磷脂酰肌醇二磷酸被磷脂酶C水解为肌醇三磷酸和甘油二酯,导致细胞内钙浓度增加,最终增强肌动蛋白–肌球蛋白链的相互作用并导致血管收缩。V1a受体激活的其他拟议作用包括肺和冠状动脉系统中的血管扩张作用。提出的机制是通过从内皮释放一氧化氮(NO) [30] [31]。V1b受体存在于海马体和垂体前叶。这些受体的激活导致垂体前叶释放促肾上腺皮质激素(ACTH)。该途径通过激活垂体–肾上腺皮质激素轴,在AVP在感染性休克等应激条件下发挥潜在作用[32] [33]。AVP的另一个重要作用是水稳态。V2受体激活导致水通道aquaphorin 2在肾脏集合管的主要细胞中表达和易位[34] [35]。V2受体也被证明可以通过NO介导血管舒张[36] [37]。V2受体也在肝脏中表达,刺激将各种凝血因子释放到血液中。此外,已知加压素可提高血浆血管性血友病因子(vWF)水平。两者都是脓毒症中不需要的促凝作用[38]。在较高剂量下,AVP与催产素受体结合,通过NO途径产生血管扩张作用[39]-[41],并导致心房利钠肽水平升高[42] [43]

如前所述,AVP的有益作用是通过V1aR激活而不是V2R结合进行血管收缩。相反,后者可通过选择性血管舒张[24]、血栓栓塞[44]、利尿作用减弱[45]和神经/CNS改变[46]导致休克恶化。因此,开发选择性激活V1aR的潜在药物可能对循环性休克患者具有重要的临床优势。

几项临床研究报道了脓毒性休克患者的AVP水平较低[8] [47]-[50]。这被认为是继发于早期循环休克期间储存的AVP耗尽(低血压是最强的触发因素)及其合成受到抑制[47]-[50]。因此,研究人员开始考虑将AVP作为脓毒性休克的体液补充药物[51]。最初的试验表明,给予“反添加”AVP治疗,或者换句话说,低剂量AVP IV输注(0.01~0.04 U/min)可以治疗儿茶酚胺难治性休克患者的低血压[52]-[55]。最近,VASST是一项多中心双盲临床试验,将感染性休克患者(N = 778)随机分配至低剂量AVP (0.01~0.03 U/min)加开放标签NE或单独使用NE;研究表明,当给予低剂量AVP治疗时,脓毒性休克较轻的患者具有更好的生存结局[7]。组间28或90天的死亡率没有差异。休克严重程度低的患者(定义为接受基线NE 5~15 mcg/min)显示0.03 IU/min的AVP使死亡率降低了近10% (P < 0.05)。后者是一个子组/次要分析,因此能力不足,主要用作假设生成而不是有益的证据。在重度休克患者中,作者无法确定AVP的成功剂量。

Gordon等人对VASST进行了事后分析,以评估AVP在休克和急性肾损伤患者中的作用。研究发现,与NE相比,RIFLE评分系统中风险类别的患者在接受AVP时死亡率降低。此外,AVP组的终末期肾功能衰竭和透析需求减少了50% [56]

Russell等人对VASST进行了一项子研究,以详细说明皮质类固醇和AVP给药之间的相互作用。他们发现,当低剂量AVP而不是NE输注与皮质类固醇一起给药时,28天死亡率显著降低(44.7%至35.9%,P = 0.03,P = 0.008) [57]。此外,与未接受皮质类固醇联合给药的患者相比,接受皮质类固醇联合给药的患者血浆水平显著升高。稀缺的动物证据表明,类固醇通过增加AVP水平与AVP协同作用[58],而这种机制是通过抑制加压素酶[59]。皮质类固醇与AVP通路相互作用的明确机制仍然未知,需要进一步的研究来阐明这种关系。最近发表了一项急需的临床试验,比较了AVP与NE作为脓毒性休克患者的初始治疗[60]。在这项双盲临床试验中,409名脓毒性休克患者被随机分配到AVP组安慰剂或氢化可的松组,或NE组安慰剂或氢化可的松组。尽管早期使用AVP在两组之间没有显示出对无肾衰竭天数和总生存期的益处,但注意到AVP组的RRT较少。作者得出结论,没有足够的证据证明用AVP代替NE,但发现了一个有利于使用AVP的趋势,并且未来需要具有足够把握度的临床试验来评估AVP作为脓毒性休克一线血管加压药的潜在益处。

如前所述,将AVP与NE给药进行比较时,VASST在严重休克(高剂量NE需求)患者中未显示出显着益处。相反,休克较轻的患者在接受AVP进行血流动力学支持时生存率更高。尽管有这种好处,但AVP的最佳剂量仍然未知,并且通过V2R激活可导致严重的不良事件,包括血栓栓塞、血管舒张和抗利尿[61] [62]。因此,使用V1a受体激动剂的想法已成为副作用较小的潜在药物,同时保留了AVP观察到的潜在益处。特利加压素是一种作用时间更长的合成加压素类似物,是最早推出的药物之一。它作用于V1a、V1b和V2受体。Asfar小组设计了一种内毒素诱导的败血症猪模型,并将这些猪随机分配到接受载体或特利加压素组中。内毒素诱导后12小时开始用药,剂量为5~15 μg/kg·h,滴定至基线MAP目标。药物载体给药12小时。研究发现,特利加压素增加MAP和SVR,同时降低心输出量、耗氧量和肝动脉血流增加。虽然它与乳酸水平升高有关,但它显著减轻了肝浮游静脉酸中毒[63]。Morelli等人的另一项研究进一步支持在感染性休克中使用特利加压素;MAP < 65 mmHg且对初始液体复苏无反应的脓毒性休克患者被随机分配接受特利加压素(1.3 μg/kg·hr)、AVP (0.03 U/min)或NE (15 μg/min)的输注。对所有MAP目标在65至75毫米汞柱之间的患者进行开放标签NE。特利加压素显著降低了儿茶酚胺需求,并导致更少的反弹性低血压事件,同时不会增加胆红素水平。特利加压素是唯一导致血小板水平降低的药物[64]。尽管目前有证据,但特利加压素被认为对AVP没有太大优势,因为其半衰期更长,而且支持其用于循环休克的临床证据仍然很少[65]

加压素(也称为FE201258)是一种短效选择性V1a受体激动剂[66] [67]已成为一种新型药物[68]。与AVP不同,加压素不是促凝物,因为它不会促进血管性血友病因子的释放[69]。此外,在急性肺损伤和铜绿假单胞菌肺炎导致严重脓毒症的绵羊模型中,我们小组描述了加压素的重要属性[70]。使用这种动物模型,我们通过使用V1a (加压素)和V2受体(去氨加压素)选择性激动剂阐明了V1a受体和V2受体激活的作用。我们将动物随机分为四组;假对照或阴性对照、脓毒症、脓毒症 + 加压素、脓毒症 + 加压素和脓毒症 + 加压素 + 去氨加压素(去氨基-[d-Arg8]加压素)。所有组均接受液体复苏。阴性对照包括缺乏急性肺损伤和肺炎。初始复苏(在整个24小时研究期间)包括以2 mL/kg/h的速度运行乳酸林格液并滴定(每%点变化2 mL/kg/h),目标是保持血细胞比容稳定(±3%基线水平)。当MAP从基线值降低 > 10 mmHg时开始干预。脓毒症组在24小时内MAP下降了~30 mmHg,SVR下降了~50%,液体潴留下降了~7L。液体积聚被AVP减弱,被加压素逆转;当加压素与去氨加压素联合使用时,积液恢复到与脓毒症 + AVP组相似的水平。因此,当用作一线血管加压药时,选择性V1a受体激动剂selepressin会阻止继发于加压素V2受体缺乏激动剂活性的血管渗漏。He等[71]最近也证实了我们的发现。使用粪便腹膜炎诱导的感染性休克绵羊模型,当MAP从基线下降10%或更多时(脓毒症诱导后平均时间为6小时),将动物随机分配到早期干预组,或者当容量复苏后MAP仍保持在<70毫米汞柱时(脓毒症诱导后平均时间为10~12小时)进行晚期干预。干预措施包括加压素、AVP和NE。对照组动物仅给予生理盐水(NaCl 0.9%)。处理后最多30小时允许观察所有动物或直到动物死亡。在晚期治疗组中,与NE和AVP相比,加压素给药导致血管外肺水减少(通过肺湿/干重比测量)和降低MAP的滞后时间增加。在早期加压素干预动物中,平均动脉压、心脏指数、血乳酸水平、肺水肿、累积和体液平衡等参数均得到改善,同时亚硝酸盐/硝酸盐和白细胞介素-6水平较低。与其他干预组(AVP),23.0 h [19.8~23.5];NE,20.5小时[20.3~23.3]和对照组(19.0小时[18.5~21.0]);P < 0.01。从目前的证据中,可以得出结论,加压素是一种具有吸引人属性的新型药物,包括早期使用和作为一线治疗剂时改善感染性休克动物模型的血流动力学。更重要的是,与NE或AVP相比,加压素降低了肺毛细血管渗漏液体超负荷,这是脓毒症[72]和脓毒性休克患者ICU死亡率的重要预测指标[73]。最近的另一项动物研究表明,在兔动脉粥样硬化模型中,加压素不会增加心血管事件的风险[74]

虽然进行了这么多动物实验,在一定程度上阐明了V1a受体和V2受体激活的作用,但需要进一步的研究来阐明加压素抵消第三间隙的确切作用机制及其在感染性休克患者中的临床相关性。我们又多加了很多项目临床研究,来增加相关证据去证明血管加压素的临床意义。因此,目前正在完成或正在进行的几项临床试验,以阐明加压素的临床意义。首先,两项2期试验(NCT01612676和NCT01000649)的初步结果表明,加压素降低了NE的剂量需求。此外,增加加压素的剂量可降低总体过度体液平衡,并且在最初7天内与更高的无呼吸机天数、休克消退率和患者生存率相关[75]。另一项正在进行的双盲2B/3期随机临床试验(NCT02508649) [76]正在研究与安慰剂相比,加压素对无呼吸机和无血管加压药天数的影响。

2. 结论

已被证明对脓毒性休克患者生存率有重要影响的主要干预措施包括早期使用抗生素和减少低血压时间。后者是通过早期液体复苏和给予血管加压药来实现的。最佳治疗药物的选择仍存在争议。当前指南背后的证据仍然稀缺且存在争议。新出现的新证据指向新型替代药物,例如V1a受体激动剂。指南指出去甲肾上腺素仍然是首选的血管加压药(高水平证据)。在没有去甲肾上腺素的预期治疗效果(目标平均动脉压为65 mmHg或更高)的情况下,可以添加加压素以减少去甲肾上腺素的剂量(中等水平)。指南指出:去甲肾上腺素范围0.25~0.5 ug/kg/min,可加用血管加压素。去甲肾上腺素是脓毒性休克患者的一线血管加压药。然而,去甲肾上腺素剂量高于1 μg/kg/min的死亡率超过80%,表明在达到该剂量之前需要实施辅助策略。因此,降低去甲肾上腺素的用量对于患者的预后具有很好的意义。关于大剂量去甲肾上腺素治疗脓毒性休克的负面影响,已经提出了具有不同受体机制的加压素。加压素的血管收缩是通过加压素V1受体激活进行的。然而,现在已经证明加压素可能通过激活其他受体引起其他负面副作用。激活肾集合管上的V2受体可能会诱导抗利尿作用。内皮细胞上V2受体的激活可能导致血管性血友病因子释放。垂体中的V3受体激活增加了ACTH的分泌。血管内皮细胞上的催产素受体可能会增加一氧化氮合酶活性,从而导致血管舒张。特利加压素是一种合成的加压素类似物,对V1受体具有更大的选择性亲和力。因此,特利加压素可能是加压素的最佳替代品。TP和NE的联合治疗在治疗感染性休克成人患者方面显示出潜在的益处。此外,TP与NE同时给药显示出心输出量和中心静脉压的改善。Wang J,Shi M等指出特利加压素可改善脓毒性休克患者肾灌注,增加每搏输出量,降低去甲肾上腺素剂量和心率。

综上所述,越来越多的证据表明,低剂量(<0.04 U/min)加压素治疗感染性休克是安全有效的。

基金项目

内蒙古医学科学院公立医院科研联合基金项目。

NOTES

*通讯作者。

参考文献

[1] Angus, D.C., Linde-Zwirble, W.T., Lidicker, J., Clermont, G., Carcillo, J. and Pinsky, M.R. (2001) Epidemiology of Severe Sepsis in the United States: Analysis of Incidence, Outcome, and Associated Costs of Care. Critical Care Medicine, 29, 1303-1310.
https://doi.org/10.1097/00003246-200107000-00002
[2] Angus, D., Pires Pereira, C. and Silva, E. (2006) Epidemiology of Severe Sepsis around the World. Endocrine, Metabolic & Immune Disorders-Drug Targets, 6, 207-212.
https://doi.org/10.2174/187153006777442332
[3] Kumar, G., Kumar, N., Taneja, A., Kaleekal, T., Tarima, S., McGinley, E., et al. (2011) Nationwide Trends of Severe Sepsis in the 21st Century (2000-2007). Chest, 140, 1223-1231.
https://doi.org/10.1378/chest.11-0352
[4] Rivers, E., Nguyen, B., Havstad, S., Ressler, J., Muzzin, A., Knoblich, B., et al. (2001) Early Goal-Directed Therapy in the Treatment of Severe Sepsis and Septic Shock. New England Journal of Medicine, 345, 1368-1377.
https://doi.org/10.1056/nejmoa010307
[5] Yende, S. and Angus, D.C. (2007) Long-Term Outcomes from Sepsis. Current Infectious Disease Reports, 9, 382-386.
https://doi.org/10.1007/s11908-007-0059-3
[6] Bone, R.C., Balk, R.A., Cerra, F.B., Dellinger, R.P., Fein, A.M., Knaus, W.A., et al. (1992) Definitions for Sepsis and Organ Failure and Guidelines for the Use of Innovative Therapies in Sepsis. Chest, 101, 1644-1655.
https://doi.org/10.1378/chest.101.6.1644
[7] Rhodes, A., Evans, L.E., Alhazzani, W., Levy, M.M., Antonelli, M., Ferrer, R., et al. (2021) Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock. Intensive Care Medicine, 47, 1181-1247.
[8] Russell, J.A., Walley, K.R., Singer, J., Gordon, A.C., Hébert, P.C., Cooper, D.J., et al. (2008) Vasopressin versus Norepinephrine Infusion in Patients with Septic Shock. New England Journal of Medicine, 358, 877-887.
https://doi.org/10.1056/nejmoa067373
[9] Maybauer, M.O. and Walley, K.R. (2010) Best Vasopressor for Advanced Vasodilatory Shock: Should Vasopressin Be Part of the Mix? Intensive Care Medicine, 36, 1484-1487.
https://doi.org/10.1007/s00134-010-1942-1
[10] Maybauer, M.O. and Maybauer, D.M. (2011) Vasopressin Analogues and V1a Receptor Agonists in Septic Shock. Inflammation Research, 60, 425-427.
https://doi.org/10.1007/s00011-011-0314-9
[11] Chopra, M. and Sharma, A.C. (2009) Contractile Response of Norepinephrine Is Modulated by Caspase-3 in Adult Rat Ventricular Myocytes Isolated from Septic Rat Heart. Pharmacological Research, 60, 303-313.
https://doi.org/10.1016/j.phrs.2009.04.009
[12] Muthu, K., Deng, J., Gamelli, R., Shankar, R. and Jones, S.B. (2005) Adrenergic Modulation of Cytokine Release in Bone Marrow Progenitor-Derived Macrophage Following Polymicrobial Sepsis. Journal of Neuroimmunology, 158, 50-57.
https://doi.org/10.1016/j.jneuroim.2004.08.003
[13] Ensinger, H., Weichel, T., Lindner, K., Grünert, A. and Georgieff, M. (1995) Are the Effects of Noradrenaline, Adrenaline and Dopamine Infusions on VO2 and Metabolism Transient? And Metabolism Transient? Intensive Care Medicine, 21, 50-56.
https://doi.org/10.1007/bf02425154
[14] Barth, E., Albuszies, G., Baumgart, K., Matejovic, M., Wachter, U., Vogt, J., et al. (2007) Glucose Metabolism and Catecholamines. Critical Care Medicine, 35, S508-S518.
https://doi.org/10.1097/01.ccm.0000278047.06965.20
[15] Annane, D., Vignon, P., Renault, A., Bollaert, P., Charpentier, C., Martin, C., et al. (2007) Norepinephrine Plus Dobutamine versus Epinephrine Alone for Management of Septic Shock: A Randomised Trial. The Lancet, 370, 676-684.
https://doi.org/10.1016/s0140-6736(07)61344-0
[16] Myburgh, J.A., Higgins, A., Jovanovska, A., Lipman, J., Ramakrishnan, N. and Santamaria, J. (2008) A Comparison of Epinephrine and Norepinephrine in Critically Ill Patients. Intensive Care Medicine, 34, 2226-2234.
https://doi.org/10.1007/s00134-008-1219-0
[17] De Backer, D., Biston, P., Devriendt, J., Madl, C., Chochrad, D., Aldecoa, C., et al. (2010) Comparison of Dopamine and Norepinephrine in the Treatment of Shock. New England Journal of Medicine, 362, 779-789.
https://doi.org/10.1056/nejmoa0907118
[18] Maybauer, M.O. and Maybauer, D.M. (2015) A New Frontier for an Old Drug? A Word of Caution for Beta-Blockers in Sepsis! Current Medical Research and Opinion, 31, 1829-1830.
https://doi.org/10.1185/03007995.2015.1085371
[19] Morelli, A., Ertmer, C., Westphal, M., Rehberg, S., Kampmeier, T., Ligges, S., et al. (2013) Effect of Heart Rate Control with Esmolol on Hemodynamic and Clinical Outcomes in Patients with Septic Shock: A Randomized Clinical Trial. JAMA, 310, 1683-1691.
https://doi.org/10.1001/jama.2013.278477
[20] Morelli, A., Singer, M., Ranieri, V.M., D’Egidio, A., Mascia, L., Orecchioni, A., et al. (2016) Heart Rate Reduction with Esmolol Is Associated with Improved Arterial Elastance in Patients with Septic Shock: A Prospective Observational Study. Intensive Care Medicine, 42, 1528-1534.
https://doi.org/10.1007/s00134-016-4351-2
[21] Huang, S.J., Nalos, M. and McLean, A.S. (2013) Is Early Ventricular Dysfunction or Dilatation Associated with Lower Mortality Rate in Adult Severe Sepsis and Septic Shock? A Meta-Analysis. Critical Care, 17, Article No. R96.
https://doi.org/10.1186/cc12741
[22] Sanfilippo, F., Corredor, C., Fletcher, N., Landesberg, G., Benedetto, U., Foex, P., et al. (2015) Diastolic Dysfunction and Mortality in Septic Patients: A Systematic Review and Meta-analysis. Intensive Care Medicine, 41, 1004-1013.
https://doi.org/10.1007/s00134-015-3748-7
[23] Schrier, R.W., Berl, T. and Anderson, R.J. (1979) Osmotic and Nonosmotic Control of Vasopressin Release. American Journal of Physiology-Renal Physiology, 236, F321-F332.
https://doi.org/10.1152/ajprenal.1979.236.4.f321
[24] Maybauer, M.O., Maybauer, D.M., Enkhbaatar, P. and Traber, D.L. (2008) Physiology of the Vasopressin Receptors. Best Practice & Research Clinical Anaesthesiology, 22, 253-263.
https://doi.org/10.1016/j.bpa.2008.03.003
[25] Howl, J. and Wheatley, M. (1995) Molecular Pharmacology of V1a Vasopressin Receptors. General Pharmacology: The Vascular System, 26, 1143-1152.
https://doi.org/10.1016/0306-3623(95)00016-t
[26] Oshikawa, S., Tanoue, A., Koshimizu, T., Kitagawa, Y. and Tsujimoto, G. (2004) Vasopressin Stimulates Insulin Release from Islet Cells through V1b Receptors: A Combined Pharmacological/Knockout Approach. Molecular Pharmacology, 65, 623-629.
https://doi.org/10.1124/mol.65.3.623
[27] Barberis, C., Mouillac, B. and Durroux, T. (1998) Structural Bases of Vasopressin/Oxytocin Receptor Function. Journal of Endocrinology, 156, 223-229.
https://doi.org/10.1677/joe.0.1560223
[28] Jard, S. (1998) Vasopressin Receptors. In: Zingg, H.H., Bourque, C.W. and Bichet, D.G., Eds., Vasopressin and Oxytocin, Springer, 1-13.
https://doi.org/10.1007/978-1-4615-4871-3_1
[29] Ring, R. (2005) The Central Vasopressinergic System: Examining the Opportunities for Psychiatric Drug Development. Current Pharmaceutical Design, 11, 205-225.
https://doi.org/10.2174/1381612053382241
[30] Evora, P.R.B., Pearson, P.J., Rodrigues, A.J., Viaro, F. and Schaff, H.V. (2003) Effect of Arginine Vasopressin on the Canine Epicardial Coronary Artery: Experiments on V1-Receptor-Mediated Production of Nitric Oxide. Arquivos Brasileiros de Cardiologia, 80, 489-494.
https://doi.org/10.1590/s0066-782x2003000500002
[31] Sai, Y., Okamura, T., Amakata, Y. and Toda, N. (1995) Comparison of Responses of Canine Pulmonary Artery and Vein to Angiotensin II, Bradykinin and Vasopressin. European Journal of Pharmacology, 282, 235-241.
https://doi.org/10.1016/0014-2999(95)00343-j
[32] Antoni, F.A., Holmes, M.C., Makara, G.B., Kárteszi, M. and László, F.A. (1984) Evidence That the Effects of Arginine-8-Vasopressin (AVP) on Pituitary Corticotropin (ACTH) Release Are Mediated by a Novel Type of Receptor. Peptides, 5, 519-522.
https://doi.org/10.1016/0196-9781(84)90080-9
[33] Hernando, F., Schoots, O., Lolait, S.J. and Burbach, J.P.H. (2001) Immunohistochemical Localization of the Vasopressin V1b Receptor in the Rat Brain and Pituitary Gland: Anatomical Support for Its Involvement in the Central Effects of Vasopressin. Endocrinology, 142, 1659-1668.
https://doi.org/10.1210/endo.142.4.8067
[34] Holmes, C.L., Landry, D.W. and Granton, J.T. (2003) Science Review: Vasopressin and the Cardiovascular System Part 1-Receptor Physiology. Critical Care, 7, 427-434.
https://doi.org/10.1186/cc2337
[35] Knepper, M.A. and Inoue, T. (1997) Regulation of Aquaporin-2 Water Channel Trafficking by Vasopressin. Current Opinion in Cell Biology, 9, 560-564.
https://doi.org/10.1016/s0955-0674(97)80034-8
[36] O’Connor, P.M. and Cowley, A.W. (2007) Vasopressin-induced Nitric Oxide Production in Rat Inner Medullary Collecting Duct Is Dependent on V2 Receptor Activation of the Phosphoinositide Pathway. American Journal of Physiology-Renal Physiology, 293, F526-F532.
https://doi.org/10.1152/ajprenal.00052.2007
[37] Park, F., Zou, A. and Cowley, A.W. (1998) Arginine Vasopressin-Mediated Stimulation of Nitric Oxide within the Rat Renal Medulla. Hypertension, 32, 896-901.
https://doi.org/10.1161/01.hyp.32.5.896
[38] Kaufmann, J.E., Oksche, A., Wollheim, C.B., Günther, G., Rosenthal, W. and Vischer, U.M. (2000) Vasopressin-Induced Von Willebrand Factor Secretion from Endothelial Cells Involves V2 Receptors and cAMP. Journal of Clinical Investigation, 106, 107-116.
https://doi.org/10.1172/jci9516
[39] Thibonnier, M., Conarty, D.M., Preston, J.A., Plesnicher, C.L., Dweik, R.A. and Erzurum, S.C. (1999) Human Vascular Endothelial Cells Express Oxytocin Receptors. Endocrinology, 140, 1301-1309.
https://doi.org/10.1210/endo.140.3.6546
[40] Gutkowska, J., Jankowski, M., Mukaddam-Daher, S. and McCann, S.M. (2000) Oxytocin Is a Cardiovascular Hormone. Brazilian Journal of Medical and Biological Research, 33, 625-633.
https://doi.org/10.1590/s0100-879x2000000600003
[41] Indrambarya, T., Boyd, J.H., Wang, Y., McConechy, M. and Walley, K.R. (2009) Low-Dose Vasopressin Infusion Results in Increased Mortality and Cardiac Dysfunction Following Ischemia-Reperfusion Injury in Mice. Critical Care, 13, Article No. R98.
https://doi.org/10.1186/cc7930
[42] Mori, M., Tsushima, H. and Matsuda, T. (1994) Antidiuretic Effects of ATP Induced by Microinjection into the Hypothalamic Supraoptic Nucleus in Water-Loaded and Ethanol-Anesthetized Rats. Japanese Journal of Pharmacology, 66, 445-450.
https://doi.org/10.1254/jjp.66.445
[43] Guo, W., Sun, J., Xu, X., Bunstock, G., He, C. and Xiang, Z. (2008) P2X Receptors Are Differentially Expressed on Vasopressin-And Oxytocin-Containing Neurons in the Supraoptic and Paraventricular Nuclei of Rat Hypothalamus. Histochemistry and Cell Biology, 131, 29-41.
https://doi.org/10.1007/s00418-008-0493-9
[44] Kaufmann, J.E. and Vischer, U.M. (2003) Cellular Mechanisms of the Hemostatic Effects of Desmopressin (DDAVP). Journal of Thrombosis and Haemostasis, 1, 682-689.
https://doi.org/10.1046/j.1538-7836.2003.00190.x
[45] Knepper, M.A. (1997) Molecular Physiology of Urinary Concentrating Mechanism: Regulation of Aquaporin Water Channels by Vasopressin. American Journal of Physiology-Renal Physiology, 272, F3-F12.
https://doi.org/10.1152/ajprenal.1997.272.1.f3
[46] Caldwell, H.K. and Albers, H.E. (2015) Oxytocin, Vasopressin, and the Motivational Forces That Drive Social Behaviors. In: Simpson, E. and Balsam, P., Eds., Behavioral Neuroscience of Motivation, Springer, 51-103.
https://doi.org/10.1007/7854_2015_390
[47] Landry, D.W., Levin, H.R., Gallant, E.M., Ashton, R.C., Seo, S., D’Alessandro, D., et al. (1997) Vasopressin Deficiency Contributes to the Vasodilation of Septic Shock. Circulation, 95, 1122-1125.
https://doi.org/10.1161/01.cir.95.5.1122
[48] Sharshar, T., Blanchard, A., Paillard, M., Raphael, J.C., Gajdos, P. and Annane, D. (2003) Circulating Vasopressin Levels in Septic Shock. Critical Care Medicine, 31, 1752-1758.
https://doi.org/10.1097/01.ccm.0000063046.82359.4a
[49] Jochberger, S., Dörler, J., Luckner, G., Mayr, V.D., Wenzel, V., Ulmer, H., et al. (2009) The Vasopressin and Copeptin Response to Infection, Severe Sepsis, and Septic Shock. Critical Care Medicine, 37, 476-482.
https://doi.org/10.1097/ccm.0b013e3181957532
[50] Sharshar, T., Carlier, R., Blanchard, A., Feydy, A., Gray, F., Paillard, M., et al. (2002) Depletion of Neurohypophyseal Content of Vasopressin in Septic Shock. Critical Care Medicine, 30, 497-500.
https://doi.org/10.1097/00003246-200203000-00001
[51] Oliver, J.A. and Landry, D.W. (2007) Endogenous and Exogenous Vasopressin in Shock. Current Opinion in Critical Care, 13, 376-382.
https://doi.org/10.1097/mcc.0b013e3282435e16
[52] Farand, P., Hamel, M., Lauzier, F., Plante, G.E. and Lesur, O. (2006) Review Article: Organ per Fusion/Permeabilityrelated Effects of Norepinephrine and Vasopressin in Sepsis. Canadian Journal of Anesthesia/Journal Canadien Danesthésie, 53, 934-946.
https://doi.org/10.1007/bf03022837
[53] Barrett, L.K., Singer, M. and Clapp, L.H. (2007) Vasopressin: Mechanisms of Action on the Vasculature in Health and in Septic Shock. Critical Care Medicine, 35, 33-40.
https://doi.org/10.1097/01.ccm.0000251127.45385.cd
[54] Russell, J.A. (2007) Vasopressin in Septic Shock. Critical Care Medicine, 35, S609-S615.
https://doi.org/10.1097/01.ccm.0000279158.51481.41
[55] Russell, J.A. (2007) Vasopressin in Vasodilatory and Septic Shock. Current Opinion in Critical Care, 13, 383-391.
https://doi.org/10.1097/mcc.0b013e328263885e
[56] Gordon, A.C., Russell, J.A., Walley, K.R., Singer, J., Ayers, D., Storms, M.M., et al. (2009) The Effects of Vasopressin on Acute Kidney Injury in Septic Shock. Intensive Care Medicine, 36, 83-91.
https://doi.org/10.1007/s00134-009-1687-x
[57] Russell, J.A., Walley, K.R., Gordon, A.C., Cooper, D.J., Hébert, P.C., Singer, J., et al. (2009) Interaction of Vasopressin Infusion, Corticosteroid Treatment, and Mortality of Septic Shock. Critical Care Medicine, 37, 811-818.
https://doi.org/10.1097/ccm.0b013e3181961ace
[58] Ertmer, C., Bone, H., Morelli, A., Van Aken, H., Erren, M., Lange, M., et al. (2007) Methylprednisolone Reverses Vasopressin Hyporesponsiveness in Ovine Endotoxemia. Shock, 27, 281-288.
https://doi.org/10.1097/01.shk.0000235140.97903.90
[59] Annane, D. (2009) Vasopressin Plus Corticosteroids: The Shock Duo! Critical Care Medicine, 37, 1126-1127.
https://doi.org/10.1097/ccm.0b013e31819879c1
[60] Gordon, A.C., Mason, A.J., Thirunavukkarasu, N., Perkins, G.D., Cecconi, M., Cepkova, M., et al. (2016) Effect of Early Vasopressin vs Norepinephrine on Kidney Failure in Patients with Septic Shock: The Vanish Randomized Clinical Trial. JAMA, 316, 509-518.
https://doi.org/10.1001/jama.2016.10485
[61] Oberti, F., Veal, N., Kaassis, M., Pilette, C., Rifflet, H., Trouvé, R., et al. (1998) Hemodynamic Effects of Terlipressin and Octreotide Administration Alone or in Combination in Portal Hypertensive Rats. Journal of Hepatology, 29, 103-111.
https://doi.org/10.1016/s0168-8278(98)80184-0
[62] Bernadich, C., Bandi, J., Melin, P. and Bosch, J. (1998) Effects of F-180, a New Selective Vasoconstrictor Peptide, Compared with Terlipressin and Vasopressin on Systemic and Splanchnic Hemodynamics in a Rat Model of Portal Hypertension. Hepatology, 27, 351-356.
https://doi.org/10.1002/hep.510270206
[63] Asfar, P., Hauser, B., Iványi, Z., Ehrmann, U., Kick, J., Albicini, M., et al. (2005) Low-Dose Terlipressin during Long-Term Hyperdynamic Porcine Endotoxemia: Effects on Hepatosplanchnic Perfusion, Oxygen Exchange, and Metabolism. Critical Care Medicine, 33, 373-380.
https://doi.org/10.1097/01.ccm.0000152253.45901.fb
[64] Morelli, A., Ertmer, C., Rehberg, S., Lange, M., Orecchioni, A., Cecchini, V., et al. (2009) Continuous Terlipressin versus Vasopressin Infusion in Septic Shock (TERLIVAP): A Randomized, Controlled Pilot Study. Critical Care, 13, Article No. R130.
https://doi.org/10.1186/cc7990
[65] Vincent, J. and De Backer, D. (2013) Circulatory Shock. New England Journal of Medicine, 369, 1726-1734.
https://doi.org/10.1056/nejmra1208943
[66] Laporte, R., Kohan, A., Heitzmann, J., Wiśniewska, H., Toy, J., La, E., et al. (2011) Pharmacological Characterization of FE 202158, a Novel, Potent, Selective, and Short-Acting Peptidic Vasopressin V1a Receptor Full Agonist for the Treatment of Vasodilatory Hypotension. The Journal of Pharmacology and Experimental Therapeutics, 337, 786-796.
https://doi.org/10.1124/jpet.111.178848
[67] Wiśniewski, K., Galyean, R., Tariga, H., Alagarsamy, S., Croston, G., Heitzmann, J., et al. (2011) New, Potent, Selective, and Short-Acting Peptidic V1a Receptor Agonists. Journal of Medicinal Chemistry, 54, 4388-4398.
https://doi.org/10.1021/jm200278m
[68] O’Callaghan, D.J.P. and Gordon, A.C. (2015) What’s New in Vasopressin? Intensive Care Medicine, 41, 2177-2179.
https://doi.org/10.1007/s00134-015-3849-3
[69] Rehberg, S., Enkhbaatar, P., Rehberg, J., La, E., Ferdyan, N., Qi, S., et al. (2012) Unlike Arginine Vasopressin, the Selective V1a Receptor Agonist FE 202158 Does Not Cause Procoagulant Effects by Releasing Von Willebrand Factor. Critical Care Medicine, 40, 1957-1960.
https://doi.org/10.1097/ccm.0b013e31824e0fe5
[70] Maybauer, M.O., Maybauer, D.M., Enkhbaatar, P., Laporte, R., Wiśniewska, H., Traber, L.D., et al. (2014) The Selective Vasopressin Type 1a Receptor Agonist Selepressin (FE 202158) Blocks Vascular Leak in Ovine Severe Sepsis. Critical Care Medicine, 42, e525-e533.
https://doi.org/10.1097/ccm.0000000000000300
[71] He, X., Su, F., Taccone, F.S., Laporte, R., Kjølbye, A.L., Zhang, J., et al. (2016) A Selective V1A Receptor Agonist, Selepressin, Is Superior to Arginine Vasopressin and to Norepinephrine in Ovine Septic Shock. Critical Care Medicine, 44, 23-31.
https://doi.org/10.1097/ccm.0000000000001380
[72] Vincent, J., Sakr, Y., Sprung, C.L., Ranieri, V.M., Reinhart, K., Gerlach, H., et al. (2006) Sepsis in European Intensive Care Units: Results of the SOAP Study. Critical Care Medicine, 34, 344-353.
https://doi.org/10.1097/01.ccm.0000194725.48928.3a
[73] Boyd, J.H., Forbes, J., Nakada, T., Walley, K.R. and Russell, J.A. (2011) Fluid Resuscitation in Septic Shock: A Positive Fluid Balance and Elevated Central Venous Pressure Are Associated with Increased Mortality. Critical Care Medicine, 39, 259-265.
https://doi.org/10.1097/ccm.0b013e3181feeb15
[74] Boucheix, O., Blakytny, R., Haroutunian, G., Henriksson, M., Laporte, R., Milano, S., et al. (2016) Selepressin and Arginine Vasopressin Do Not Display Cardiovascular Risk in Atherosclerotic Rabbit. PLOS ONE, 11, e0165422.
https://doi.org/10.1371/journal.pone.0165422
[75] (2012) Abstracts of the 42nd Critical Care Congress. January 19-23, 2013. San Juan, Puerto Rico. Critical Care Medicine, 40, 1-328.
[76] Marini, J.J., Vincent, J. and Annane, D. (2015) Critical Care Evidence—New Directions. JAMA, 313, 893-894.
https://doi.org/10.1001/jama.2014.18484