儿童临床下放电研究进展
Research Advances in Subclinical Discharges in Children
DOI: 10.12677/acm.2025.1551361, PDF, HTML, XML,   
作者: 穆燕燕, 吴 鹏*:重庆医科大学附属儿童医院神经内科/国家儿童健康与疾病临床医学研究中心/重庆市重点实验室/儿童发育疾病研究教育部重点实验室,重庆
关键词: 临床下放电儿童认知损害睡眠障碍Subclinical Discharges Children Cognitive Impairment Sleep Disturbances
摘要: 临床下放电(subclinical discharges),又称亚临床放电或临床下痫样放电(subclinical epileptiform discharges SEDs),或发作间期癫痫样放电(Interictal Epileptiform Discharges, IED),是指脑电图上发现尖波、棘波等癫痫样放电波但不同时出现临床痫性发作的现象,其常见于癫痫、脑瘫、脑损伤、抽动障碍、原发性神经认知障碍如注意缺陷/多动障碍、孤独症谱系障碍等患儿脑电图,也可见于约2%~4%的健康儿童。目前大部分研究认为临床下放电是认知损害的独立影响因素。本文总结了近年来的相关文献,将从认知损害、癫痫发生、睡眠、辅助检查、治疗等方面对其做一综述。
Abstract: Subclinical discharges, also known as subclinical epileptiform discharges (SEDs) or interictal epileptiform discharges (IEDs), refer to epileptiform waveforms such as spikes and sharp waves observed on electroencephalography (EEG) that are not accompanied by clinical seizures. These discharges are commonly detected in children with conditions such as epilepsy, cerebral palsy, brain injury, tic disorders, primary neurocognitive disorders (e.g., attention-deficit/hyperactivity disorder [ADHD], autism spectrum disorder [ASD]), and are also present in approximately 2%~4% of healthy children. Current research largely supports the notion that subclinical discharges act as an independent risk factor for cognitive impairment. This article synthesizes recent literature, providing a comprehensive review of their associations with cognitive deficits, epileptogenesis, sleep disturbances, diagnostic evaluations, and therapeutic interventions.
文章引用:穆燕燕, 吴鹏. 儿童临床下放电研究进展[J]. 临床医学进展, 2025, 15(5): 214-220. https://doi.org/10.12677/acm.2025.1551361

1. 引言

临床下放电(subclinical discharges),又称亚临床放电或临床下痫样放电(subclinical epileptiform discharges, SEDs),或发作间期癫痫样放电(Interictal Epileptiform Discharges, IED),是指脑电图上发现尖波、棘波等癫痫样放电波但不同时出现临床痫性发作的现象[1],其常见于癫痫、脑瘫、脑损伤、抽动障碍、原发性神经认知障碍如注意缺陷/多动障碍、孤独症谱系障碍等患儿脑电图,也可见于约2%~4%的健康儿童[2]。自从Gibbs等人[3]于1936年发现临床下放电现象以来,各学者对此种现象有较大关注,尤其重视其与癫痫发生、认知损害的关系及相应治疗。目前多数研究认为持续发作间期放电活动频率的降低可能成为改善患儿神经认知功能的有价值的临床目标。良性癫痫伴中央颞区棘波(Benign epilepsy with centrotemporal spikes, BECTs)是儿童时期常见的癫痫综合征,由于其癫痫发作次数一般较少且存在明确的脑电图放电,对于儿童SEDs的研究多基于此类患儿。SEDs的病理生理机制尚未完全阐明,由于SEDs在脑电图上与癫痫患者表现的相似,可能考虑SEDs的发生同样与离子通道异常、神经递质失衡或更深入的遗传因素相关,但此处不作重点讨论。本文总结了近年来的相关文献,将从认知损害、癫痫发生、睡眠、辅助检查、治疗等临床相关方面进行简要概括以期为后续研究提供一定参考。

2. 认知损害

认知功能是大脑反映客观事物的特征、状态及其相互联系,并揭示事物对人的意义与作用的判断能力,是一种高级心理功能,包括感知觉、记忆、注意、思维、执行、语言、情绪等。目前大多研究认为SEDs会影响患儿多个领域的认知表现并可能影响患儿的学业成绩和社会适应能力。SEDs患儿的具体认知损害表现与SEDs的频率、放电部位密切相关。1939年,Schwab [4]通过一个简单的反应时间任务首次证明,在没有任何明显癫痫发作的情况下,患者对广泛的临床下放电时出现的刺激没有反应,或者表现出反应时间延长,表明SEDs与认知下降有关。Colin D Binnie等人[5] [6]通过短期记忆任务等连续的心理测试发现与临床下放电几乎同时发生的短暂的认知功能受损(transitory cognitive impairment, TCI),这种认知损害是物质和部位特定的:偏侧放电与放电发生的半球所调节的功能缺陷有关。相反,特定的任务可以激活或抑制参与相关认知活动的大脑区域的焦点放电。Vaucheret E等人[7]在对一名患有药物难治性局灶性癫痫的23岁年轻女性进行侵入性视频脑电图监测时发现,在存在额上回和中回、中央前回、左颞下回和中回SEDs时,患者10秒内阅读相同文本提取的字数明显降低,由此可以认为SEDs对优势半球的上、中额叶回、中央前回、中、下颞叶回皮质的干扰可能会导致阅读障碍。Sun等人[8]对67名成年癫痫患者的研究发现额叶SEDs可能导致有关记忆、计算、执行功能、语言理解、情绪识别、心智理论、认知共情方面、长期注意力、社交能力缺陷及记忆等方面的障碍,Hernan等人[9]的动物实验也发现有额叶放电的幼年大鼠表现出明显的注意力不集中。但Milovanovic Maja等[10]对于112名ASD患儿的研究提出了不同的结论,他们将这112名患儿按视频脑电图结果及临床发作情况分为癫痫组、放电组及无放电组,并对各组患儿进行自闭症核心症状及适应行为技能评分,发现三组患儿核心症状评分无显著差异,而适应行为技能评分仅发现无放电组技能评分稍高,由此认为SEDs对自闭症患者的运动技能影响很小,对适应性行为的沟通、社交、日常生活技能没有影响。Reed等人[11]对接受颅内电极监测的难治性癫痫患者进行记忆分析后发现海马SEDs与正确检索现有记忆的可能性降低有关,可损害记忆的维持和回忆。更多研究提示左半大脑半球放电常引起言语认知方面的损伤,而右半大脑半球放电常与视觉空间认知方面的损伤相关[5] [12] [13]。Cheng等[14]通过对于97例有SEDs的儿童特发性癫痫患者、77例无SEDs的儿童特发性癫痫患者和71例健康儿童进行一系列认知功能测试,发现SEDs组患儿普遍存在算术障碍,而算术成绩障碍可以由认知缺陷解释。

SEDs的认知损害为众多学者关注,但其导致认知损害的机制尚不明确,有研究者认为可能与SEDs所致脑功能连接网络紊乱、脑结构改变及睡眠障碍有关。

3. 癫痫发生

癫痫对脑功能及正常社会生活的不良影响已深入人心,由于SEDs与癫痫在脑电图上的相类似,众学者对于SEDs与癫痫发生的关系有较多关注,但目前对于SEDs在癫痫发生中所起到的作用尚不明确。Wei-Chih Chang等人[15]通过对体外海马切片的电生理信号记录分析证明SEDs既有致痫作用,又有抗癫痫作用,癫痫组织弹性的进行性丧失可能是SEDs向临床癫痫发作过渡的特征。Jan Chvojka等人[16]认为稳定状态下的刺激可能表现出癫痫发作延迟效应,而不稳定状态下的刺激可能会增加癫痫的发生概率,SEDs对于癫痫发生所起的作用这种一分为二的看法可能由于SEDs产生的潜在细胞和网络机制不同所致。Karoly Philippa J等人[17]的研究也认为在SEDs和癫痫发作表现出类似的概率分布表明,他们并非完全独立的过程。Diamond JM等人[18]通过对40名药物难治性癫痫患者进行颅内脑电图检测,发现发作间期放电于发作期放电局限于相似的区域,二者有很强的对应关系。

尽管目前部分学者认为SEDs与癫痫发作之间存在相关性,且可能由于不同的潜在病理生理机制所致结果不同,但目前关于二者关系的观点均为假说,研究样本量小且研究对象局限,并未取得广泛共识,尚有待更多的证据支持和完善。

4. 睡眠障碍

癫痫与睡眠的相互影响已成为共识,而目前的研究也表明SEDs对于睡眠存在不利影响。Parisi Pasquale等人[19]认为SEDs可能会影响睡眠结构,影响神经网络的神经塑形重建,进而影响学习和记忆的巩固。Frauscher等人[20]的研究表明SEDs可以破坏海马纺锤波进而影响睡眠纺锤波,降低睡眠的稳定性。高伟等[21]对44名伴中央颞区棘波的良性儿童癫痫(BECTS)患者的研究提示BECTs患儿REM期比例缩短,Ⅰ期睡眠比例增加,Ⅳ/Ⅲ期睡眠比例减少,而入睡潜伏期正常、Ⅱ期睡眠比例并无明显变化,且睡眠结构的失调发生与SEDs频率呈正相关,提示频繁的SEDs导致BECTS患者的深睡眠减少而浅睡眠增加,因此睡眠质量下降。而睡眠结构紊乱、睡眠稳定性降低、深睡眠减少均可对SEDs患儿的认知功能产生不利影响。

5. 脑功能网络紊乱

癫痫是一种网络疾病,在SEDs患儿中同样观察到脑网络的异常。Hirosawa Tetsu等人[22]分析对比70名自闭症谱系障碍儿童和19名典型发育期儿童的脑磁图后发现SEDs可能使自闭症谱系障碍中改变的大脑网络的偏差“正常化”,增加聚集系数,但当其影响超过耐受性时,又会反过来加剧自闭症症状。在对BECTs患儿的研究中,有学者发现患儿临床下放电时双侧额上回、双侧额中回、左侧颞中回和右侧楔前回与Rolandic区之间的动态功能连接明显降低,破坏了大脑静息网络,与痴呆、精神分裂症、癫痫、焦虑和抑郁、孤独症和注意力缺陷、多动障碍的发生相关并可引起意识波动[23] [24];也有学者发现左侧尾状核与Rolandic区联系加强,认为这与抑制、执行和注意力下降有关,可体现为攻击行为、社会问题、注意力问题和犯罪,并与放电频率相关[23];或者直接扰乱情感功能相关网络,导致焦虑、抑郁发生增加[24];又有研究者发现通过潜在网络的传播可导致皮质远端区域和皮质下区域的继发性病理改变[25]。这些特定网络和默认网络的连接改变可能是SEDs患儿认知损害的原因之一。

6. 脑结构异常

关于SEDs患儿的脑结构异常报道较少且多无特异性。Overvliet GM等人[26]将24名BECTs的患儿与正常儿童在3.0 MRI下的皮层厚度进行比较,发现BECTs患儿的左外侧脑区皮质变薄,且随年龄增长可见左侧额叶,中央顶叶和颞叶区域广泛的皮质变薄。Fujiwara等人[27]对于23名BECTs患儿的研究也得出类似结论;部分BECTs患儿存在与放电区域对应的白质微结构改变[28]。有学者认为这种结构重塑随着时间的推移而发生变化[29]。但目前相关报道较少,无法明确IED与脑结构改变是否有直接因果关系,也不能明确这些脑结构的改变是否影响SEDs患儿认知功能。

7. 辅助检查

目前常规检查方法(脑电图)阳性率不高,且时长、类别不同的脑电图阳性率不同,耗时久,无法直接体现SEDs对于脑细胞的损害;而脑磁图、脑功能核磁共振等检查临床应用价值不高;临床工作者及科研人员期望找寻更便捷、更能够反应近期脑细胞损伤情况的检验、检查手段。

IGF-1是在脑发育过程中支持神经增值与分化的重要神经营养因子,同时也是在各种神经退行性疾病和脑损伤中起着重要作用的神经保护和存活因子。有研究[30]报道SEDs会导致血清IGF-1表达上调,且棘波指数(即单位时间内的棘波数量)与血清IGF-1含量呈显著正相关。可将IGF-1作为反映SEDs脑细胞损伤的指标。但目前相关研究少,该指标是否可用于临床诊疗还需更多证据支持。

8. 治疗

目前有报道的可能对于SEDs患儿脑电图放电和认知功能有改善的治疗手段主要包括各种理疗(三叉神经刺激、经颅直流电刺激等) [31] [32]和抗癫痫药物(左乙拉西坦、奥卡西平等)治疗,而目前认为核心抗放电手段是抗癫痫药物,但是部分抗癫痫药物本身对于认知功能存在一定影响[33],癫痫患儿SEDs的治疗方案时常更新,但非癫痫患儿SEDs的治疗目前尚存争议。是否治疗及选择何种药物治疗不同的学者有不同的答案。以色列大学一项针对17名BECTs伴ADHD患儿的研究认为抗癫痫药物改善脑电图效果明显,但是对注意力改善效果短暂或不显著[34];类似地,一项纳入70例新诊BECTs但初始智商正常患儿的研究显示奥卡西平可以预防癫痫发作和促进脑电图正常化,但对认知改善只有轻微作用[35]。另一项研究则认为抗癫痫药物对于BECT患儿认知改善无效,但是此项研究仅治疗6月即开始评估,对比其他研究随访时间较短,其结论与其他研究的差异可能与此有关[36]。也有学者认为左乙拉西坦可以降低BECT患儿相关认知区域失活[37],奥卡西平可诱发BECTs患儿睡眠期间癫痫性电持续状态(ESES),加重癫痫发作的报道也时有发生[38] [39]。还有国内未批准使用的药物如大麻二酚或其他不常用药物如拉莫三嗪和新一代抗癫痫药物如唑尼沙胺等。放电频繁且伴有明显认知功能损害的患儿应该使用抗癫痫药物治疗基本取得共识,然而对于“频繁”的定义尚无定论。

9. 讨论

SEDs可损害患儿认知功能,但目前基于儿童的研究较少,对于SEDs患儿的认知评价的研究多通过量表判断,具有一定主观性,精度把控困难,且参与研究的对象多存在认知功能的基础疾病(癫痫、孤独症谱系障碍等),单纯SEDs对认知的影响可能被夸大。而治疗方面,药物介入时机及药物选择尚未达成共识。要解决上述问题,需更多高水平的同质化研究进行进一步的探索。

NOTES

*通讯作者。

参考文献

[1] Kural, M.A., Duez, L., Sejer Hansen, V., Larsson, P.G., Rampp, S., Schulz, R., et al. (2020) Criteria for Defining Interictal Epileptiform Discharges in EEG. Neurology, 94, e2139-e2147.
https://doi.org/10.1212/wnl.0000000000009439
[2] 吕慧, 毓青. 发作间期癫痫样放电与认知功能损害的研究进展[J]. 癫痫与神经电生理学杂志, 2022, 31(1): 49-52.
[3] Gibbs, F.A. (1936) The Electro-Encephalogram in Diagnosis and in Localization of Epileptic Seizures. Archives of Neurology and Psychiatry, 36, 1225-1235.
https://doi.org/10.1001/archneurpsyc.1936.02260120072005
[4] Schwab, R.S. (1939) A Method of Measuring Consciousness in Petit-Mal Epilepsy. The Journal of Nervous and Mental Disease, 89, 690-691.
[5] Binnie, C.D. (2003) Cognitive Impairment during Epileptiform Discharges: Is It Ever Justifiable to Treat the EEG? The Lancet Neurology, 2, 725-730.
https://doi.org/10.1016/s1474-4422(03)00584-2
[6] Binnie, C.D., Kasteleijn-Nolst Trenité, D.G.A., Smit, A.M. and Wilkins, A.J. (1987) Interactions of Epileptiform EEG Discharges and Cognition. Epilepsy Research, 1, 239-245.
https://doi.org/10.1016/0920-1211(87)90031-3
[7] Vaucheret Paz, E., Peralta, J.M., García Basalo, M., Agosta, G. and Silva, W.H. (2019) Trastornos transitorios de la lectura asociados a descargas paroxísticas epileptiformes interictales en videocorticografía invasive [Transient Reading Disorders Associated with Interictal Epileptiform Paroxysmal Discharges in Invasive Videocorticography]. Revista de Neurología, 68, 517-523.
https://doi.org/10.33588/rn.6812.2018391
[8] Sun, L., Zheng, X., Liu, C., Shi, M. and Lv, Y. (2019) The Detection of the Negative Effects of Interictal Epileptiform Discharges on Cognition: An Event-Related Potential Study. Journal of Nervous & Mental Disease, 207, 209-216.
https://doi.org/10.1097/nmd.0000000000000945
[9] Hernan, A.E., Alexander, A., Jenks, K.R., Barry, J., Lenck-Santini, P., Isaeva, E., et al. (2014) Focal Epileptiform Activity in the Prefrontal Cortex Is Associated with Long-Term Attention and Sociability Deficits. Neurobiology of Disease, 63, 25-34.
https://doi.org/10.1016/j.nbd.2013.11.012
[10] Milovanovic, M., Radivojevic, V., Radosavljev-Kircanski, J., Grujicic, R., Toskovic, O., Aleksić-Hil, O., et al. (2019) Epilepsy and Interictal Epileptiform Activity in Patients with Autism Spectrum Disorders. Epilepsy & Behavior, 92, 45-52.
https://doi.org/10.1016/j.yebeh.2018.12.011
[11] Reed, C.M., Mosher, C.P., Chandravadia, N., Chung, J.M., Mamelak, A.N. and Rutishauser, U. (2019) Extent of Single-Neuron Activity Modulation by Hippocampal Interictal Discharges Predicts Declarative Memory Disruption in Humans. The Journal of Neuroscience, 40, 682-693.
https://doi.org/10.1523/jneurosci.1380-19.2019
[12] Bedoin, N., Herbillon, V., Lamoury, I., Arthaud-Garde, P., Ostrowsky, K., De Bellescize, J., et al. (2006) Hemispheric Lateralization of Cognitive Functions in Children with Centrotemporal Spikes. Epilepsy & Behavior, 9, 268-274.
https://doi.org/10.1016/j.yebeh.2006.06.002
[13] Riva, D., Vago, C., Franceschetti, S., Pantaleoni, C., D’Arrigo, S., Granata, T., et al. (2007) Intellectual and Language Findings and Their Relationship to EEG Characteristics in Benign Childhood Epilepsy with Centrotemporal Spikes. Epilepsy & Behavior, 10, 278-285.
https://doi.org/10.1016/j.yebeh.2006.12.003
[14] Cheng, D., Yan, X., Xu, K., Zhou, X. and Chen, Q. (2020) The Effect of Interictal Epileptiform Discharges on Cognitive and Academic Performance in Children with Idiopathic Epilepsy. BMC Neurology, 20, Article No. 233.
https://doi.org/10.1186/s12883-020-01807-z
[15] Chang, W., Kudlacek, J., Hlinka, J., Chvojka, J., Hadrava, M., Kumpost, V., et al. (2018) Loss of Neuronal Network Resilience Precedes Seizures and Determines the Ictogenic Nature of Interictal Synaptic Perturbations. Nature Neuroscience, 21, 1742-1752.
https://doi.org/10.1038/s41593-018-0278-y
[16] Chvojka, J., Kudlacek, J., Chang, W., Novak, O., Tomaska, F., Otahal, J., et al. (2021) The Role of Interictal Discharges in Ictogenesis—A Dynamical Perspective. Epilepsy & Behavior, 121, Article ID: 106591.
https://doi.org/10.1016/j.yebeh.2019.106591
[17] Karoly, P.J., Freestone, D.R., Boston, R., Grayden, D.B., Himes, D., Leyde, K., et al. (2016) Interictal Spikes and Epileptic Seizures: Their Relationship and Underlying Rhythmicity. Brain, 139, 1066-1078.
https://doi.org/10.1093/brain/aww019
[18] Diamond, J.M., Withers, C.P., Chapeton, J.I., Rahman, S., Inati, S.K. and Zaghloul, K.A. (2023) Interictal Discharges in the Human Brain Are Travelling Waves Arising from an Epileptogenic Source. Brain, 146, 1903-1915.
https://doi.org/10.1093/brain/awad015
[19] Parisi, P., Bruni, O., Pia Villa, M., Verrotti, A., Miano, S., Luchetti, A., et al. (2010) The Relationship between Sleep and Epilepsy: The Effect on Cognitive Functioning in Children. Developmental Medicine & Child Neurology, 52, 805-810.
https://doi.org/10.1111/j.1469-8749.2010.03662.x
[20] Frauscher, B., Bernasconi, N., Caldairou, B., von Ellenrieder, N., Bernasconi, A., Gotman, J., et al. (2015) Interictal Hippocampal Spiking Influences the Occurrence of Hippocampal Sleep Spindles. Sleep, 38, 1927-1933.
https://doi.org/10.5665/sleep.5242
[21] 高伟, 吴立文. 频繁的临床下癫痫样放电对睡眠结构的影响[J]. 国际神经病学神经外科学杂志, 2008, 35(5): 403-406.
[22] Hirosawa, T., An, K., Soma, D., Shiota, Y., Sano, M., Kameya, M., et al. (2021) Epileptiform Discharges Relate to Altered Functional Brain Networks in Autism Spectrum Disorders. Brain Communications, 3, fcab184.
https://doi.org/10.1093/braincomms/fcab184
[23] Xiao, F., An, D., Lei, D., Li, L., Chen, S., Wu, X., et al. (2016) Real-Time Effects of Centrotemporal Spikes on Cognition in Rolandic Epilepsy. Neurology, 86, 544-551.
https://doi.org/10.1212/wnl.0000000000002358
[24] Sarco, D.P., Boyer, K., Lundy-Krigbaum, S.M., Takeoka, M., Jensen, F., Gregas, M., et al. (2011) Benign Rolandic Epileptiform Discharges Are Associated with Mood and Behavior Problems. Epilepsy & Behavior, 22, 298-303.
https://doi.org/10.1016/j.yebeh.2011.06.023
[25] Li, R., Liao, W., Yu, Y., Chen, H., Guo, X., Tang, Y., et al. (2017) Differential Patterns of Dynamic Functional Connectivity Variability of Striato-Cortical Circuitry in Children with Benign Epilepsy with Centrotemporal Spikes. Human Brain Mapping, 39, 1207-1217.
https://doi.org/10.1002/hbm.23910
[26] Overvliet, G.M., Besseling, R.M.H., Jansen, J.F.A., van der Kruijs, S.J.M., Vles, J.S.H., Hofman, P.A.M., et al. (2013) Early Onset of Cortical Thinning in Children with Rolandic Epilepsy. NeuroImage: Clinical, 2, 434-439.
https://doi.org/10.1016/j.nicl.2013.03.008
[27] Fujiwara, H., Tenney, J., Kadis, D.S., Byars, A., Altaye, M., Spencer, C., et al. (2018) Cortical Morphology, Epileptiform Discharges, and Neuropsychological Performance in BECTs. Acta Neurologica Scandinavica, 138, 432-440.
https://doi.org/10.1111/ane.12997
[28] Garcia‐Ramos, C., Jackson, D.C., Lin, J.J., Dabbs, K., Jones, J.E., Hsu, D.A., et al. (2015) Cognition and Brain Development in Children with Benign Epilepsy with Centrotemporal Spikes. Epilepsia, 56, 1615-1622.
https://doi.org/10.1111/epi.13125
[29] Pardoe, H.R., Berg, A.T., Archer, J.S., Fulbright, R.K. and Jackson, G.D. (2013) A Neurodevelopmental Basis for BECTS: Evidence from Structural MRI. Epilepsy Research, 105, 133-139.
https://doi.org/10.1016/j.eplepsyres.2012.11.008
[30] 宋玉成, 李娜. 临床下癫痫放电对癫痫患者认知功能及IGF-1水平的影响[C]//中华医学会(Chinese Medical Asso-ciation), 中华医学会神经病学分会(Chinese Society of Neurology). 中华医学会第十八次全国神经病学学术会议论文汇编(上). 成都: 中华医学会, 2015: 2.
[31] Ginatempo, F., Fois, C., De Carli, F., Todesco, S., Mercante, B., Sechi, G., et al. (2019) Effect of Short-Term Transcutaneous Trigeminal Nerve Stimulation on EEG Activity in Drug-Resistant Epilepsy. Journal of the Neurological Sciences, 400, 90-96.
https://doi.org/10.1016/j.jns.2019.03.004
[32] Hao, J., Luo, W., Xie, Y., Feng, Y., Sun, W., Peng, W., et al. (2021) Functional Network Alterations as Markers for Predicting the Treatment Outcome of Cathodal Transcranial Direct Current Stimulation in Focal Epilepsy. Frontiers in Human Neuroscience, 15, Article 637071.
https://doi.org/10.3389/fnhum.2021.637071
[33] Besag, F.M.C. and Vasey, M.J. (2021) Neurocognitive Effects of Antiseizure Medications in Children and Adolescents with Epilepsy. Pediatric Drugs, 23, 253-286.
https://doi.org/10.1007/s40272-021-00448-0
[34] Schneebaum-Sender, N., Goldberg-Stern, H., Fattal-Valevski, A. and Kramer, U. (2012) Does a Normalizing Electroencephalogram in Benign Childhood Epilepsy with Centrotemporal Spikes Abort Attention Deficit Hyperactivity Disorder? Pediatric Neurology, 47, 279-283.
https://doi.org/10.1016/j.pediatrneurol.2012.06.009
[35] Tzitiridou, M., Panou, T., Ramantani, G., Kambas, A., Spyroglou, K. and Panteliadis, C. (2005) Oxcarbazepine Monotherapy in Benign Childhood Epilepsy with Centrotemporal Spikes: A Clinical and Cognitive Evaluation. Epilepsy & Behavior, 7, 458-467.
https://doi.org/10.1016/j.yebeh.2005.07.012
[36] Tacke, M., Gerstl, L., Heinen, F., Heukaeufer, I., Bonfert, M., Bast, T., et al. (2016) Effect of Anticonvulsive Treatment on Neuropsychological Performance in Children with BECTs. European Journal of Paediatric Neurology, 20, 874-879.
https://doi.org/10.1016/j.ejpn.2016.07.015
[37] Zhang, Q., Yang, F., Hu, Z., Xu, Q., Bernhardt, B.C., Quan, W., et al. (2018) Antiepileptic Drug of Levetiracetam Decreases Centrotemporal Spike-Associated Activation in Rolandic Epilepsy. Frontiers in Neuroscience, 12, Article 796.
https://doi.org/10.3389/fnins.2018.00796
[38] Grosso, S., Balestri, M., Di Bartolo, R.M., Corbini, L., Vatti, G., Curatolo, P., et al. (2006) Oxcarbazepine and Atypical Evolution of Benign Idiopathic Focal Epilepsy of Childhood. European Journal of Neurology, 13, 1142-1145.
https://doi.org/10.1111/j.1468-1331.2006.01464.x
[39] Kanemura, H., Sano, F., Ohyama, T. and Aihara, M. (2018) Efficacy of Levetiracetam for Reducing Rolandic Discharges in Comparison with Carbamazepine and Valproate Sodium in Rolandic Epilepsy. Seizure, 62, 79-83.
https://doi.org/10.1016/j.seizure.2018.10.002