[1]
|
Hwang, J., Park, H., Kim, H., Kansara, S. and Sun, Y. (2025) Advanced Cathodes for Practical Lithium-Sulfur Batteries. Accounts of Materials Research, 6, 245-258. https://doi.org/10.1021/accountsmr.4c00368
|
[2]
|
Tiwari, S., Yadav, V., Poonia, A.K. and Pal, D. (2024) Exploring Advances in Sulfur Composite Cathodes for Lithium-Sulfur Batteries: A Comprehensive Review. Journal of Energy Storage, 94, Article ID: 112347. https://doi.org/10.1016/j.est.2024.112347
|
[3]
|
Ma, T., Yue, H., Xiao, Y., Huang, Y., Li, X., Gao, X., et al. (2025) A Review of Organic Sulfur Applications in Lithium-Sulfur Batteries. Journal of Power Sources, 625, Article ID: 235717. https://doi.org/10.1016/j.jpowsour.2024.235717
|
[4]
|
Feng, J., Shi, C., Zhao, X., Zhang, Y., Chen, S., Cheng, X., et al. (2024) Physical Field Effects to Suppress Polysulfide Shuttling in Lithium-Sulfur Battery. Advanced Materials, 36, Article ID: 2414047. https://doi.org/10.1002/adma.202414047
|
[5]
|
Rao, X., Xiang, S., Zhou, J., Zhang, Z., Xu, X., Xu, Y., et al. (2024) Recent Progress and Strategies of Cathodes toward Polysulfides Shuttle Restriction for Lithium-Sulfur Batteries. Rare Metals, 43, 4132-4161. https://doi.org/10.1007/s12598-024-02708-7
|
[6]
|
Jiang, J., Lu, Z., Ding, Y., Liu, S., Qi, Z., Tang, T., et al. (2025) Staged Dendrite Suppression for High Safe and Stable Lithium-Sulfur Batteries. Journal of Energy Chemistry, 100, 674-683. https://doi.org/10.1016/j.jechem.2024.09.006
|
[7]
|
Sun, L., Li, H., Zhou, J., Wu, Z., Liao, R., Peng, Z., et al. (2024) Bifunctional Separator with Nest-Like Mnooh Network via Facile in Situ Synthesis for Highly Stable and “Li-Dendrite Free” Lithium-Sulfur Batteries. Materials Today Energy, 40, Article ID: 101489. https://doi.org/10.1016/j.mtener.2024.101489
|
[8]
|
Wang, J., Yi, S., Liu, J., Sun, S., Liu, Y., Yang, D., et al. (2020) Suppressing the Shuttle Effect and Dendrite Growth in Lithium-Sulfur Batteries. ACS Nano, 14, 9819-9831. https://doi.org/10.1021/acsnano.0c02241
|
[9]
|
Wei, Y., Liu, C., Cai, M., Hou, R., Li, K., Yuan, J., Zhang, P., Shao, G. and Zhang, P. (2025) Electrospinning Meets Heterostructures in Lithium-Sulfur Batteries. Small.
|
[10]
|
Huang, Y., Jiang, A., Wang, D., Sun, Z., Li, J., Yu, W., et al. (2025) Advanced in Modification of Electrospun Non-Electrode Materials for Lithium-Sulfur Battery. Journal of Energy Storage, 107, Article ID: 114854. https://doi.org/10.1016/j.est.2024.114854
|
[11]
|
Jung, J., Lee, C., Yu, S. and Kim, I. (2016) Electrospun Nanofibers as a Platform for Advanced Secondary Batteries: A Comprehensive Review. Journal of Materials Chemistry A, 4, 703-750. https://doi.org/10.1039/c5ta06844d
|
[12]
|
Thenmozhi, S., Dharmaraj, N., Kadirvelu, K. and Kim, H.Y. (2017) Electrospun Nanofibers: New Generation Materials for Advanced Applications. Materials Science and Engineering: B, 217, 36-48. https://doi.org/10.1016/j.mseb.2017.01.001
|
[13]
|
Li, Y., Li, Q. and Tan, Z. (2019) A Review of Electrospun Nanofiber-Based Separators for Rechargeable Lithium-Ion Batteries. Journal of Power Sources, 443, Article ID: 227262. https://doi.org/10.1016/j.jpowsour.2019.227262
|
[14]
|
Xing, J., Li, J., Fan, W., Zhao, T., Chen, X., Li, H., et al. (2022) A Review on Nanofibrous Separators Towards Enhanced Mechanical Properties for Lithium-Ion Batteries. Composites Part B: Engineering, 243, Article ID: 110105. https://doi.org/10.1016/j.compositesb.2022.110105
|
[15]
|
Bicy, K., Gueye, A.B., Rouxel, D., Kalarikkal, N. and Thomas, S. (2022) Lithium-Ion Battery Separators Based on Electrospun PVDF: A Review. Surfaces and Interfaces, 31, Article ID: 101977. https://doi.org/10.1016/j.surfin.2022.101977
|
[16]
|
Gao, X., Sheng, L., Yang, L., Xie, X., Li, D., Gong, Y., et al. (2023) High-Stability Core-Shell Structured PAN/PVDF Nanofiber Separator with Excellent Lithium-Ion Transport Property for Lithium-Based Battery. Journal of Colloid and Interface Science, 636, 317-327. https://doi.org/10.1016/j.jcis.2023.01.033
|
[17]
|
Yang, L., Cao, J., Cai, B., Liang, T. and Wu, D. (2021) Electrospun MOF/PAN Composite Separator with Superior Electrochemical Performances for High Energy Density Lithium Batteries. Electrochimica Acta, 382, Article ID: 138346. https://doi.org/10.1016/j.electacta.2021.138346
|
[18]
|
Guo, M., Zhu, H., Wan, P., Xu, F., Wang, C., Lu, S., et al. (2022) Freestanding and Ultra-Flexible PAN/ZIF-67 Hybrid Membrane with Controlled Porosity for High-Performance and High-Safety Lithium Batteries Separator. Advanced Fiber Materials, 4, 1511-1524. https://doi.org/10.1007/s42765-022-00190-3
|
[19]
|
Guo, M., Xiong, J., Jin, X., Lu, S., Zhang, Y., Xu, J., et al. (2023) Mussel Stimulated Modification of Flexible Janus PAN/PVDF-HFP Nanofiber Hybrid Membrane for Advanced Lithium-Ion Batteries Separator. Journal of Membrane Science, 675, Article ID: 121533. https://doi.org/10.1016/j.memsci.2023.121533
|
[20]
|
Hao, J., Lei, G., Li, Z., Wu, L., Xiao, Q. and Wang, L. (2013) A Novel Polyethylene Terephthalate Nonwoven Separator Based on Electrospinning Technique for Lithium Ion Battery. Journal of Membrane Science, 428, 11-16. https://doi.org/10.1016/j.memsci.2012.09.058
|
[21]
|
Zhou, C., Wang, J., Zhu, X., Chen, K., Ouyang, Y., Wu, Y., et al. (2021) A Dual-Functional Poly(vinyl Alcohol)/Poly(lithium Acrylate) Composite Nanofiber Separator for Ionic Shielding of Polysulfides Enables High-Rate and Ultra-Stable Li-S Batteries. Nano Research, 14, 1541-1550. https://doi.org/10.1007/s12274-020-3213-y
|
[22]
|
Zheng, S., Zhu, X., Ouyang, Y., Chen, K., Chen, A., Fan, X., et al. (2021) Metal-Organic Framework Decorated Polymer Nanofiber Composite Separator for Physiochemically Shielding Polysulfides in Stable Lithium-Sulfur Batteries. Energy & Fuels, 35, 19154-19163. https://doi.org/10.1021/acs.energyfuels.1c02081
|
[23]
|
Zhang, S., Wang, X., Liang, J., Gu, J., Feng, X. and Xu, C. (2022) Preparation of High Performance Lithium‐Ion Battery Separators by Double‐Needle Electrospinning. ChemistrySelect, 7, e202203407. https://doi.org/10.1002/slct.202203407
|
[24]
|
Leng, X., Zeng, J., Yang, M., Li, C., Vattikuti, S.V.P., Chen, J., et al. (2023) Bimetallic Ni-Co MOF@PAN Modified Electrospun Separator Enhances High-Performance Lithium-Sulfur Batteries. Journal of Energy Chemistry, 82, 484-496. https://doi.org/10.1016/j.jechem.2023.03.017
|
[25]
|
Wang, J., Zhu, Y., Wu, N., Kan, Y. and Hu, Y. (2022) Designing Thermotolerant and Flame-Resistant Pan-Based Separator via Surface Engineering with Heteroatoms Doped Carbon Framework Encapsulated with CoS2 Nanocatalysts towards Safe Lithium-Sulfur Batteries. Composites Part B: Engineering, 233, Article ID: 109644. https://doi.org/10.1016/j.compositesb.2022.109644
|
[26]
|
Zhou, C., He, Q., Li, Z., Meng, J., Hong, X., Li, Y., et al. (2020) A Robust Electrospun Separator Modified with in Situ Grown Metal-Organic Frameworks for Lithium-Sulfur Batteries. Chemical Engineering Journal, 395, Article ID: 124979. https://doi.org/10.1016/j.cej.2020.124979
|
[27]
|
Zhu, Y., Zhang, Y., Jin, S., Li, M., Zhao, H., Cui, J., et al. (2023) Toward Safe and High-Performance Lithium-Sulfur Batteries via Polyimide Nanosheets-Modified Separator. ACS Sustainable Chemistry & Engineering, 11, 1434-1447. https://doi.org/10.1021/acssuschemeng.2c05999
|
[28]
|
Luo, X., Lu, X., Chen, X., Chen, Y., Song, C., Yu, C., et al. (2020) A Robust Flame Retardant Fluorinated Polyimide Nanofiber Separator for High-Temperature Lithium-Sulfur Batteries. Journal of Materials Chemistry A, 8, 14788-14798. https://doi.org/10.1039/d0ta00439a
|
[29]
|
Li, L., Liu, P., Fu, Q.S., Gong, Y., Zhang, S.R., He, H.J., et al. (2019) Study on Preparation of Polyacrylonitrile/Polyimide Composite Lithium-Ion Battery Separator by Electrospinning. Journal of Materials Research, 34, 642-651. https://doi.org/10.1557/jmr.2019.8
|
[30]
|
Ye, A., De Guzman, M.R., Ye, J., Xu, C., Zhou, F., Chen, X., et al. (2024) Mechanically Enhanced Battery Separator Prepared by Hot‐Pressing Electrospun Polyvinylidene Fluoride@polymethyl Methacrylate Membranes with Different Fiber Orientations in Adjacent Layers. Polymer Engineering & Science, 64, 1835-1847. https://doi.org/10.1002/pen.26660
|
[31]
|
Parsaei, S., Zebarjad, S.M. and Moghim, M.H. (2022) Fabrication and Post‐Processing of PI/PVDF-HFP/PI Electrospun Sandwich Separators for Lithium‐Ion Batteries. Polymer Engineering & Science, 62, 3641-3651. https://doi.org/10.1002/pen.26133
|
[32]
|
Sun, X., Guo, J., Zhi, X., Xu, J., Bian, Y., Hou, K., et al. (2024) Improved Ionic Conductivity and Cycling Stability via Composite Separator Constructed by Coating Organic-Modified Sepiolite/PVDF Layer on PP via Electrospinning Technology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 691, Article ID: 133925. https://doi.org/10.1016/j.colsurfa.2024.133925
|
[33]
|
Feng, P., Dong, K., Xu, Y., Zhang, X., Jia, H., Prell, H., et al. (2024) Efficient and Homogenous Precipitation of Sulfur within a 3D Electrospun Heterocatalytic Rutile/Anatase TiO2−x Framework in Lithium-Sulfur Batteries. Advanced Fiber Materials, 6, 810-824. https://doi.org/10.1007/s42765-024-00380-1
|
[34]
|
Chan, T. and Chung, S. (2024) Stability Enhancement of Lithium-Sulfur Batteries Using Electrospun Separator/Electrolyte Membranes. ACS Sustainable Chemistry & Engineering, 12, 14230-14238. https://doi.org/10.1021/acssuschemeng.4c04531
|