[1]
|
Jiang, N., Zhao, Y., Zhu, Z., Li, W., Qu, H., Chen, H., et al. (2019) Fabrication and Laser Performance of Planar Waveguide LuAG/Yb: LuAG/LuAG Ceramics. Optical Materials, 89, 149-156. https://doi.org/10.1016/j.optmat.2019.01.033
|
[2]
|
Huang, C., Li, S., Zhao, C. and Hang, Y. (2023) Emission Cross Section Redetermination of Nd: LuAG Crystals. Optics Letters, 48, 5507-5510. https://doi.org/10.1364/ol.506166
|
[3]
|
Quan, J., Yang, X., Long, S., Yang, M., Ma, D., Huang, J., et al. (2019) Growth and Fluorescence Characteristics of Er: LuAG Laser Crystals. Journal of Crystal Growth, 507, 321-326. https://doi.org/10.1016/j.jcrysgro.2018.11.037
|
[4]
|
Li, Q., Shi, Z., Song, Q., Tian, J., Liu, J., Xu, X., et al. (2021) The Micro-Pulling-Down Growth of Tm: LuAG and Tm, Pr: LuAG Crystals and Optical Properties. Optical Materials, 118, Article ID: 111275. https://doi.org/10.1016/j.optmat.2021.111275
|
[5]
|
Song, Q., Xu, X., Zhou, Z., Xu, B., Li, D., Liu, P., et al. (2018) Laser Operation in a Tm: LuAG Crystal Grown by the Micro-Pulling-down Technique. IEEE Photonics Technology Letters, 30, 1913-1916. https://doi.org/10.1109/lpt.2018.2872008
|
[6]
|
Chen, Y., Wang, R., Yao, B., Liu, G., Yang, C., Dai, T., et al. (2019) Acousto-Optic Mode-Locked Tm: LuAG Laser with Nearly Diffraction-Limited Beam. Optical and Quantum Electronics, 51, Article No. 353. https://doi.org/10.1007/s11082-019-2069-4
|
[7]
|
Kumar, S.A. and Senthilselvan, J. (2019) Silica Encapsulated LuAG: Pr3+ Nanocrystals by Surfactant Assisted Co-Precipitation and Microwave Calcination: Structural, Growth Mechanism, Photoluminescence and Thermoluminescence Properties. Materials Chemistry and Physics, 233, 296-309. https://doi.org/10.1016/j.matchemphys.2019.05.062
|
[8]
|
Trofimov, A.A., Marchewka, M.R. and Jacobsohn, L.G. (2019) Effects of Sintering Temperature on the Microstructure and Luminescence of LuAG: Pr Ceramics. Radiation Measurements, 122, 34-39. https://doi.org/10.1016/j.radmeas.2019.01.005
|
[9]
|
Hu, Z., Chen, X., Dai, J., Chen, H., Shi, Y., Kou, H., et al. (2018) The Influences of Stoichiometry on the Sintering Behavior, Optical and Scintillation Properties of Pr: LuAG Ceramics. Journal of the European Ceramic Society, 38, 4252-4259. https://doi.org/10.1016/j.jeurceramsoc.2018.05.014
|
[10]
|
周鼎, 施鹰, 范灵聪, 等. Ce, Pr离子双掺LuAG透明陶瓷制备及光学性能[J]. 无机材料学报, 2016, 31(10): 1099-1102.
|
[11]
|
Liu, S., Xue, B., Zhou, L., Cui, H., Liu, M., Chen, L., et al. (2024) Tailoring Thermal Behavior and Luminous Performance in LuAG: Ce Films via Thickness Control for High-Power Laser Lighting Applications. Rare Metals, 43, 6537-6548. https://doi.org/10.1007/s12598-024-03023-x
|
[12]
|
Arun Kumar, S., Subalakshmi, K., Ashok Kumar, K., Sandhu, S., Dang Quang, L.N., Jana, A., et al. (2020) Microstructure, Luminescence, and Dielectric Properties of Microwave-Sintered Ce: LuAG Nano-Ceramics. Ceramics International, 46, 27092-27098. https://doi.org/10.1016/j.ceramint.2020.07.186
|
[13]
|
Inkrataite, G., Skruodiene, M. and Skaudzius, R. (2024) Synthesis and Investigation of Novel Boron and Magnesium-Doped YAG: Ce and LuAG: Ce Phosphor Ceramics. Luminescence, 39, e4673. https://doi.org/10.1002/bio.4673
|
[14]
|
Kuznetsova, Y.V., Popov, I.D., Yakovleva, S.A., Bykov, V.A., Barakovskikh, D.S. and Vlasova, S.G. (2024) Yellow-White Emitting Phosphor-In-Glass with LuAG: Ce and Embedded CdS Quantum Dots. Journal of Luminescence, 269, Article ID: 120500. https://doi.org/10.1016/j.jlumin.2024.120500
|
[15]
|
Khanin, V., Meijerink, A., Houtepen, A.J., Jagt, H.J.B. and de Boer, D.K.G. (2021) Photosaturation in Luminescent LuAG: Ce Garnet Concentrator Rods. Advanced Photonics Research, 2, 1-11. https://doi.org/10.1002/adpr.202100055
|
[16]
|
Inkrataite, G., Keil, J., Zarkov, A., Jüstel, T. and Skaudzius, R. (2023) The Effect of Boron and Scandium Doping on the Luminescence of LuAG: Ce and GdAG: Ce for Application as Scintillators. Journal of Alloys and Compounds, 966, Article ID: 171634. https://doi.org/10.1016/j.jallcom.2023.171634
|
[17]
|
Zhou, M., Sun, J., Zhang, B., Hua, Y., Huang, F., Ma, H., et al. (2023) Ultra-High Efficiency Green-Emitting LuAG: Ce Phosphor-in-Ceramic Applied for High-Power Laser Lighting. Journal of the European Ceramic Society, 43, 3563-3571. https://doi.org/10.1016/j.jeurceramsoc.2023.01.055
|
[18]
|
Tang, Y., Qiang, M., Lou, W., Ding, Y., Lin, H., Hong, R., et al. (2024) Ga/Al Ratio Induced Afterglow Behavior of Ce3+: GAGG Scintillation Ceramics. Ceramics International, 50, 36286-36294. https://doi.org/10.1016/j.ceramint.2024.07.012
|
[19]
|
Matsumoto, S. and Ito, A. (2022) High-Throughput Production of LuAG-Based Highly Luminescent Thick Film Scintillators for Radiation Detection and Imaging. Scientific Reports, 12, Article No. 19319. https://doi.org/10.1038/s41598-022-23839-w
|
[20]
|
Wang, T., Hu, S., Ji, T., Zhu, X., Zeng, G., Huang, L., et al. (2024) High-Temperature X-Ray Imaging with Transparent Ceramics Scintillators. Laser & Photonics Reviews, 18, Article 2300892. https://doi.org/10.1002/lpor.202300892
|
[21]
|
Yanagida, T., Fujimoto, Y., Yokota, Y., Kamada, K., Yanagida, S., Yoshikawa, A., et al. (2011) Comparative Study of Transparent Ceramic and Single Crystal Ce Doped LuAG Scintillators. Radiation Measurements, 46, 1503-1505. https://doi.org/10.1016/j.radmeas.2011.03.039
|
[22]
|
Kobayashi, M., Aogaki, S., Takeutchi, F., Tamagawa, Y. and Usuki, Y. (2012) Performance of Thin Long Scintillator Strips of GSO: Ce, LGSO: Ce and LuAG: Pr for Low Energy Γ-Rays. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 693, 226-235. https://doi.org/10.1016/j.nima.2012.07.045
|
[23]
|
Dickens, P.T., Haven, D.T., Friedrich, S. and Lynn, K.G. (2019) Scintillation Properties and Increased Vacancy Formation in Cerium and Calcium Co-Doped Yttrium Aluminum Garnet. Journal of Crystal Growth, 507, 16-22. https://doi.org/10.1016/j.jcrysgro.2018.10.059
|
[24]
|
Ma, W., Jiang, B., Chen, S., Feng, X., Zhu, Q., Zhang, L., et al. (2019) A Fast Lutetium Aluminum Garnet Scintillation Ceramic with Ce3+ and Ca2+ Co-Dopants. Journal of Luminescence, 216, Article 116728. https://doi.org/10.1016/j.jlumin.2019.116728
|
[25]
|
Ma, W., Jiang, B., Feng, X., Huang, X., Wang, W., Sreebunpeng, K., et al. (2020) On Fast LuAG: Ce Scintillation Ceramics with Ca2+ Co-Dopants. Journal of the American Ceramic Society, 104, 966-973. https://doi.org/10.1111/jace.17506
|
[26]
|
Zhu, D., Chen, X., Beitlerova, A., Kucerkova, R., Li, X., Liu, Z., et al. (2022) Influence of Calcium Doping Concentration on the Performance of Ce, Ca: LuAG Scintillation Ceramics. Journal of the European Ceramic Society, 42, 6075-6084. https://doi.org/10.1016/j.jeurceramsoc.2022.06.023
|
[27]
|
Tyagi, M., Meng, F., Koschan, M., Donnald, S.B., Rothfuss, H. and Melcher, C.L. (2013) Effect of Codoping on Scintillation and Optical Properties of a Ce-Doped Gd3Ga3Al2O12 Scintillator. Journal of Physics D: Applied Physics, 46, Article ID: 475302. https://doi.org/10.1088/0022-3727/46/47/475302
|
[28]
|
Babin, V., Boháček, P., Jurek, K., Kučera, M., Nikl, M. and Zazubovich, S. (2018) Dependence of Ce3+-Related Photo-and Thermally Stimulated Luminescence Characteristics on Mg2+ Content in Single Crystals and Epitaxial Films of Gd3(Ga, Al)5O12: Ce, Mg. Optical Materials, 83, 290-299. https://doi.org/10.1016/j.optmat.2018.05.087
|
[29]
|
Babin, V., Herman, P., Kucera, M., Nikl, M. and Zazubovich, S. (2019) Effect of Mg2+ Co-Doping on the Photo and Thermally Stimulated Luminescence of the (Lu, Gd)3(Ga, Al)5O12: Ce Epitaxial Films. Journal of Luminescence, 215, Article ID: 116608. https://doi.org/10.1016/j.jlumin.2019.116608
|