Ca2+离子掺杂对Ce:LuAG荧光粉的紫外激发荧光性能的影响
Influence of Ca2+ Ion Doping on the UV Excitation Fluorescence Properties of Ce:LuAG Phosphors
DOI: 10.12677/japc.2025.142015, PDF, HTML, XML,   
作者: 饶 聪:上海理工大学光电信息与计算机工程学院,光学仪器与系统教育部工程中心,上海
关键词: 光学材料荧光转换钙离子掺杂荧光寿命Optical Material Fluorescence Conversion Calciumion Doping Fluorescence Lifetime
摘要: 文章采用固态反应法制备了一系列Ca2+离子掺杂的Ce:LuAG荧光粉,旨在研究Ca2+离子掺杂对Ce:LuAG荧光粉紫外激发荧光性能的影响。重点研究了样品的吸收谱、荧光光谱、荧光寿命以及热释光曲线。实验结果表明,随着Ca2+离子的掺杂浓度的增加,样品的光致发光谱强度显著降低。但是Ca2+离子的掺杂可以显著减少样品的荧光衰减时间。当Ca2+离子掺杂浓度为0.6 at%时,荧光衰减时间相较于未掺杂Ca2+减少了27.62 ns。热释光曲线的结果显示,Ca2+离子的掺杂会显著降低热释光的强度。表明Ca2+离子的存在有助于抑制缺陷引起的负面效果。
Abstract: In this paper, a series of Ca2+ doped Ce:LuAG phosphors were prepared using the solid-state reaction method to investigate the effect of Ca2+ doping on the ultraviolet excitation fluorescence properties of Ce:LuAG phosphors. The absorption spectra, fluorescence spectra, fluorescence lifetime and thermoluminescence curves of the samples were analyzed. The experimental results indicate that with the increase of Ca2+ ion doping concentration, the photoluminescence intensity of the sample is significantly reduced. However, the doping of Ca2+ ions can markedly decrease the fluorescence decay time of the sample. When the doping concentration of Ca2+ ions is 0.6 at%, the fluorescence decay time is reduced by 27.62 ns compared to undoped Ca2+. The results of the thermoluminescence curve demonstrate that the doping of Ca2+ ions significantly reduces the intensity of thermoluminescence. This indicates that the presence of Ca2+ ions helps to suppress the negative effects caused by defects.
文章引用:饶聪. Ca2+离子掺杂对Ce:LuAG荧光粉的紫外激发荧光性能的影响[J]. 物理化学进展, 2025, 14(2): 164-171. https://doi.org/10.12677/japc.2025.142015

1. 引言

镥铝石榴石(Lu3Al5O12)因其对各种射线的吸收系数大、物理化学性质稳定而成为一种优异的基质材料。以镥铝石榴石为基质的材料因为其独特的光学性能,在照明、激光和闪烁等领域有着广泛的应用[1]-[3]。其中Tm掺杂的LuAG晶体因其长荧光寿命、良好的吸收特性以及优异的光学性能,可以用于制造中红外波段的激光器[4]-[6]。Pr掺杂的LuAG闪烁体因其快衰减时间和荧光热稳定性,广泛应用于正电子发射扫描(PET)成像[7]-[10]。Ce掺杂的LuAG薄膜具有高发光效率和优异的物理热稳定性,常被用于高功率激光照明[11]。可以通过控制LuAG:Ce薄膜的厚度优化其发光性能。稀土离子掺杂的LuAG材料是目前研究的热门,特别是铈(Ce)离子掺杂的LuAG材料[12]-[17]。Ce3+离子具有4f-5d电子组态,是一种性能优异的激活离子。相较于其他稀土离子,Ce3+离子具有更高的荧光效率以及更快的衰减时间[18]。由于5d激发态的电子寿命极短(通常在纳秒量级),使得其荧光衰减速率比其他稀土离子快2~3个数量级。因为快衰减的特性,其在能量探测领域有着十分重要的应用[19] [20]。例如在高能射线探测领域,Ce:LuAG常常作为X射线、γ射线等高能射线探测的闪烁材料[21] [22]

2019年Peter T. Dickens团队发表了一篇关于铈(Ce)和钙(Ca)共掺钇铝石榴石(YAG)的闪烁体的论文,详细地研究了Ca/Ce:YAG闪烁体的闪烁性能以及晶体缺陷[23]。结果表明,Ca共掺杂显著降低了闪烁衰减时间但产生了更多的空位缺陷。2019年Jiang Benxue等人发表了一篇论文,报道了Ce、Ca共掺杂的LuAG闪烁体[24]。该闪烁体具有快衰减的特性。2020年,Jiang Benxue等人发表了一篇关于Ce、Ca共掺杂的LuAG闪烁陶瓷的论文[25]。通过Ca2+的共掺杂,大大提高了LuAG:Ce的闪烁性能。Ca2+/Ce3+:LuAG闪烁陶瓷具有更高的光产额以及更快的衰减时间。2022年Li Jiang等人研究了Ca2+离子掺杂浓度对于Ca2+/Ce3+:LuAG闪烁陶瓷闪烁性能的影响[26]。虽然Ca2+离子共掺杂可以提升LuAG:Ce的闪烁性能,但是对于紫外荧光性能的影响是未知的。

本文通过固态反应法制备了一系列Ce、Ca共掺杂的LuAG荧光粉末,研究了其结构、吸收和荧光光谱特性。重点探究了Ca2+离子掺杂对Ce:LuAG荧光粉的紫外激发荧光性能的影响。

2. 实验过程

2.1. 材料制备

Ce3+,Ca2+共掺杂的镥铝石榴石荧光粉是采用固态反应法制备的。其中Ce3+离子的掺杂浓度固定为0.8 at%,Ca2+离子的掺杂浓度分别为0.2 at%、0.4 at%、0.6 at%和0.8 at%。将纯氧化铝(99.99%纯度)、纯氧化镥(99.99%纯度)、纯氧化铈(99.99%纯度)和纯氧化钙(99.99%纯度)按照配比加入到玛瑙研磨仪中,并加入无水乙醇进行研磨,直至无水乙醇完全挥发。将混合均匀的粉体装入刚玉坩埚中,放入马费炉中1600℃煅烧3 h。煅烧结束后将冷却的样品研磨成粉。

2.2. 材料结构和光学性能的表征与测试

首先,利用X射线衍射法(MiniFlex800,Rigaku,日本)对样品的物相进行了分析。随后,通过紫外–可见光近红外分光光度计(SolidSpec-700i,Shimadzu,日本)对样品的吸收谱进行了精确测量。为了进一步探究样品的紫外激发荧光性能,利用稳/瞬态荧光光谱仪(Fls1000,Edinburgh,英国)对样品的光致发光发射谱和荧光衰减谱进行测量。最后,使用热释光光谱仪(TOSL-3DS,容帆,中国)对样品的热释光曲线进行了测试,分析Ca2+离子掺杂对LuAG:Ce荧光粉缺陷的影响。

3. 结果与讨论

图1为不同浓度Ca2+离子共掺杂的0.8 at% Ce3+:LuAG荧光粉的X射线衍射图谱(XRD)。通过对比样品的衍射峰与LuAG标准卡片(PDF#73-1368),衍射峰的位置基本一致,说明样品已经成了镥铝石榴石相。样品的XRD图谱中还存在Lu2O3的杂相,这是荧光粉烧结不充分导致的。如图1(b)所示,将样品33˚~34.5˚范围内的XRD图谱放大。可以发现随着掺杂Ca2+浓度的增加,衍射峰向小角度发生偏移,衍射峰从33.8˚偏移到33.78˚。衍射峰的偏移由于Ca2+离子取代了Lu3+离子的格位导致。Ca2+离子的离子半径为99 pm,Lu3+离子的离子半径为84.8 pm,所以Ca2+离子的掺杂会使LuAG的晶格膨胀,导致衍射峰向小角度偏移。这种偏移现象也可以证明Ca2+离子成功掺杂进晶格内部。

Figure 1. (a) X-ray diffraction pattern of Ca2+/Ce3+:LuAG phosphor; (b) Ca2+/Ce3+:LuAG phosphor diffraction peak amplification diagram in the range of 33˚~34.5˚

1. (a) Ca2+/Ce3+:LuAG荧光粉的X射线衍射图谱;(b) Ca2+/Ce3+:LuAG荧光粉33˚~34.5˚范围内衍射峰的放大图

Ca2+/Ce3+:LuAG荧光粉的吸收图谱如图2所示,与未掺杂Ca2+离子的Ce3+:LuAG荧光粉相比,其在200~320 nm的紫外吸收峰的强度更大。这种现象可以归因于Ca2+离子的掺杂使得Ce3+:LuAG内部的Ce3+离子氧化成Ce4+离子[24]-[27]。当Ca2+离子进入到LuAG晶格中会取代Lu3+离子格位,从而将Ce3+离子氧化成Ce4+离子以保持电荷平衡。随着Ca2+离子掺杂浓度的增大,200~320 nm的紫外吸收峰的强度也随之增大。这一现象表明,Ca2+离子掺杂浓度的增大会导致样品内部更多的Ce3+离子氧化成Ce4+离子。

Figure 2. Absorption spectra of Ce3+: LuAG phosphors doped with different Ca2+ ion concentrations

2. 不同Ca2+离子浓度掺杂的Ce3+:LuAG荧光粉的吸收光谱

Figure 3. (a) The PL spectra of Ce3+:LuAG phosphors doped with different Ca2+ ion concentrations under 450 nm blue light excitation; (b) PL spectra of Ce3+:LuAG phosphors doped with different Ca2+ ion concentrations under 250 nm ultraviolet light excitation

3. (a) 不同Ca2+离子浓度掺杂Ce3+:LuAG荧光粉在450 nm蓝光激发下的PL谱;(b) 不同Ca2+离子浓度掺杂Ce3+:LuAG荧光粉在250 nm紫外光激发下的PL谱

为了研究Ca2+离子掺杂对Ce3+:LuAG荧光粉荧光性能的影响,测试了不同浓度Ca2+离子共掺杂的Ce3+:LuAG (Ce离子浓度为0.8 at%)荧光粉在450 nm蓝光和250 nm紫外光激发下的PL谱。如图3所示,Ca2+离子的掺杂会使样品的发射光荧光强度出现明显的下降。Ca2+掺杂浓度为0.2 at%的样品在450 nm蓝光的激发下,其发射光荧光强度相较于未掺杂的样品下降了70%。增加Ca2+离子掺杂浓度,发射光荧光强度会进一步降低。当Ca2+掺杂浓度达到0.8 at%时,发射光的荧光强度只有未掺杂样品的10%。在250 nm紫外光的激发,Ca2+的掺杂也存在抑制荧光强度的现象。当Ca2+掺杂浓度达到0.4 at%时,样品在250 nm紫外光的激发下完全不发光。以上抑制荧光发射现象可能是因为Ca2+离子使Ce3+离子氧化为Ce4+导致的。Ce4+离子不是典型的发光中心,其发光机制依赖于电荷转移或者缺陷[23]。当Ca2+离子浓度增加,使样品内部Ce4+离子浓度增加,Ce3+离子浓度减小,从而降低了样品的荧光发射强度。这与Ca2+/Ce3+:LuAG荧光粉吸收谱的结论一致。

Ce4+离子的存在虽然会降低发射光的荧光强度,但是会有助于缩短荧光衰减时间。为了验证这一点,测试了样品在450 nm激发下的荧光衰减图谱。如图4所示,Ca2+离子的掺杂显著缩短了样品的荧光衰减时间。随着Ca2+离子浓度的增加,荧光衰减时间逐渐减小,这与其他论文中的结论一致[24]。在其他Ce3+:LuAG荧光材料中,Mg2+离子的掺杂导致了Ce3+的氧化和{Ce3+~Mg2+}对的形成,从而导致了更快的荧光衰减[28] [29]。Ca2+离子是一种与Mg2+离子作用相似的低价离子,其共掺杂也起着相似的作用。随着Ca2+离子浓度从0 at%增加到0.6 at%,荧光衰减时间从68.60 ns降低到40.98 ns。表1汇总了不同Ca2+离子掺杂浓度样品的荧光寿命。不同Ca2+离子掺杂浓度样品的荧光衰减图谱的拟合曲线如图5所示。

Figure 4. Fluorescence decay curves of Ce3+:LuAG phosphors doped with different Ca2+ ion concentrations at 514 nm emission light

4. 不同Ca2+离子浓度掺杂的Ce3+:LuAG荧光粉514 nm发射光的荧光衰减曲线

Table 1. Fluorescence lifetime of Ce3+:LuAG phosphors doped with different Ca2+ concentrations

1. 不同Ca2+浓度掺杂Ce3+:LuAG荧光粉的荧光寿命

样品

τ1 (I1) ns (%)

τ2 (I2) ns (%)

τm (ns)

0 at% Ca

23.56 (18%)

56.25 (82%)

68.60

0.2 at% Ca

14.12 (19%)

52.57 (81%)

45.31

0.4 at% Ca

0 (0%)

47.55 (100%)

47.55

0.6 at% Ca

0 (0%)

40.98 (100%)

40.98

0.8 at% Ca

0 (0%)

46.82 (100%)

46.82

热激发发光是研究荧光材料缺陷的一种有效方法,图6为不同Ca2+离子浓度掺杂的Ce3+:LuAG荧光粉在365 nm的紫外光照射一段时间后测试的热释光曲线(TSL)。结果显示,Ca2+离子的掺杂可以降低热释光强度,对缺陷引起的负面效果有显著抑制[23]-[26]。结合Ce4+可以降低荧光衰减时间,所以Ca2+离子掺杂的Ce3+:LuAG荧光粉的快衰减特性是合理的。

Figure 5. The fitting curve of the fluorescence decay spectrum of Ca2+/Ce3+:LuAG phosphor at 514 nm emission light

5. Ca2+/Ce3+:LuAG荧光粉514 nm发射光的荧光衰减图谱拟合曲线

Figure 6. Thermoluminescence curves (TSL) of Ce3+:LuAG phosphors doped with different Ca2+ ion concentrations

6. 不同Ca2+离子浓度掺杂的Ce3+:LuAG荧光粉的热释光曲线(TSL)

4. 结论

本文制备了不同Ca2+离子浓度掺杂的Ce3+:LuAG荧光粉,并对其紫外荧光性能进行了深入的研究。结果表明,Ca2+离子掺杂会极大地降低荧光发射谱的强度。当Ca2+掺杂浓度为0.4 at%时,样品在250 nm紫外光激发下无响应。这是由于Ca2+的引入会导致发光中心Ce3+离子氧化成Ce4+离子。而Ce4+离子由于4f轨道缺乏参与发光的电子,不是常规的发光中心。Ca2+离子浓度的增加会加剧这个过程,从样品的吸收谱中可以证明这一点。Ce4+离子的引入可以缩短荧光材料的荧光衰减时间。荧光衰减图谱的结果显示,Ca2+离子的引入极大地缩短了样品的荧光衰减时间。当掺杂0.8 at%的Ca2+离子时,荧光寿命从68.60 ns缩短至46.82 ns。虽然Ca2+离子掺杂可以极大地缩短荧光衰减的时间,但是会显著抑制紫外光激发的光致发光强度。

致 谢

首先我要感谢我的导师在我研究上提供支持,让我的实验能够顺利进行。然后感谢我的同门以及师弟师妹对我的帮助。

参考文献

[1] Jiang, N., Zhao, Y., Zhu, Z., Li, W., Qu, H., Chen, H., et al. (2019) Fabrication and Laser Performance of Planar Waveguide LuAG/Yb: LuAG/LuAG Ceramics. Optical Materials, 89, 149-156.
https://doi.org/10.1016/j.optmat.2019.01.033
[2] Huang, C., Li, S., Zhao, C. and Hang, Y. (2023) Emission Cross Section Redetermination of Nd: LuAG Crystals. Optics Letters, 48, 5507-5510.
https://doi.org/10.1364/ol.506166
[3] Quan, J., Yang, X., Long, S., Yang, M., Ma, D., Huang, J., et al. (2019) Growth and Fluorescence Characteristics of Er: LuAG Laser Crystals. Journal of Crystal Growth, 507, 321-326.
https://doi.org/10.1016/j.jcrysgro.2018.11.037
[4] Li, Q., Shi, Z., Song, Q., Tian, J., Liu, J., Xu, X., et al. (2021) The Micro-Pulling-Down Growth of Tm: LuAG and Tm, Pr: LuAG Crystals and Optical Properties. Optical Materials, 118, Article ID: 111275.
https://doi.org/10.1016/j.optmat.2021.111275
[5] Song, Q., Xu, X., Zhou, Z., Xu, B., Li, D., Liu, P., et al. (2018) Laser Operation in a Tm: LuAG Crystal Grown by the Micro-Pulling-down Technique. IEEE Photonics Technology Letters, 30, 1913-1916.
https://doi.org/10.1109/lpt.2018.2872008
[6] Chen, Y., Wang, R., Yao, B., Liu, G., Yang, C., Dai, T., et al. (2019) Acousto-Optic Mode-Locked Tm: LuAG Laser with Nearly Diffraction-Limited Beam. Optical and Quantum Electronics, 51, Article No. 353.
https://doi.org/10.1007/s11082-019-2069-4
[7] Kumar, S.A. and Senthilselvan, J. (2019) Silica Encapsulated LuAG: Pr3+ Nanocrystals by Surfactant Assisted Co-Precipitation and Microwave Calcination: Structural, Growth Mechanism, Photoluminescence and Thermoluminescence Properties. Materials Chemistry and Physics, 233, 296-309.
https://doi.org/10.1016/j.matchemphys.2019.05.062
[8] Trofimov, A.A., Marchewka, M.R. and Jacobsohn, L.G. (2019) Effects of Sintering Temperature on the Microstructure and Luminescence of LuAG: Pr Ceramics. Radiation Measurements, 122, 34-39.
https://doi.org/10.1016/j.radmeas.2019.01.005
[9] Hu, Z., Chen, X., Dai, J., Chen, H., Shi, Y., Kou, H., et al. (2018) The Influences of Stoichiometry on the Sintering Behavior, Optical and Scintillation Properties of Pr: LuAG Ceramics. Journal of the European Ceramic Society, 38, 4252-4259.
https://doi.org/10.1016/j.jeurceramsoc.2018.05.014
[10] 周鼎, 施鹰, 范灵聪, 等. Ce, Pr离子双掺LuAG透明陶瓷制备及光学性能[J]. 无机材料学报, 2016, 31(10): 1099-1102.
[11] Liu, S., Xue, B., Zhou, L., Cui, H., Liu, M., Chen, L., et al. (2024) Tailoring Thermal Behavior and Luminous Performance in LuAG: Ce Films via Thickness Control for High-Power Laser Lighting Applications. Rare Metals, 43, 6537-6548.
https://doi.org/10.1007/s12598-024-03023-x
[12] Arun Kumar, S., Subalakshmi, K., Ashok Kumar, K., Sandhu, S., Dang Quang, L.N., Jana, A., et al. (2020) Microstructure, Luminescence, and Dielectric Properties of Microwave-Sintered Ce: LuAG Nano-Ceramics. Ceramics International, 46, 27092-27098.
https://doi.org/10.1016/j.ceramint.2020.07.186
[13] Inkrataite, G., Skruodiene, M. and Skaudzius, R. (2024) Synthesis and Investigation of Novel Boron and Magnesium-Doped YAG: Ce and LuAG: Ce Phosphor Ceramics. Luminescence, 39, e4673.
https://doi.org/10.1002/bio.4673
[14] Kuznetsova, Y.V., Popov, I.D., Yakovleva, S.A., Bykov, V.A., Barakovskikh, D.S. and Vlasova, S.G. (2024) Yellow-White Emitting Phosphor-In-Glass with LuAG: Ce and Embedded CdS Quantum Dots. Journal of Luminescence, 269, Article ID: 120500.
https://doi.org/10.1016/j.jlumin.2024.120500
[15] Khanin, V., Meijerink, A., Houtepen, A.J., Jagt, H.J.B. and de Boer, D.K.G. (2021) Photosaturation in Luminescent LuAG: Ce Garnet Concentrator Rods. Advanced Photonics Research, 2, 1-11.
https://doi.org/10.1002/adpr.202100055
[16] Inkrataite, G., Keil, J., Zarkov, A., Jüstel, T. and Skaudzius, R. (2023) The Effect of Boron and Scandium Doping on the Luminescence of LuAG: Ce and GdAG: Ce for Application as Scintillators. Journal of Alloys and Compounds, 966, Article ID: 171634.
https://doi.org/10.1016/j.jallcom.2023.171634
[17] Zhou, M., Sun, J., Zhang, B., Hua, Y., Huang, F., Ma, H., et al. (2023) Ultra-High Efficiency Green-Emitting LuAG: Ce Phosphor-in-Ceramic Applied for High-Power Laser Lighting. Journal of the European Ceramic Society, 43, 3563-3571.
https://doi.org/10.1016/j.jeurceramsoc.2023.01.055
[18] Tang, Y., Qiang, M., Lou, W., Ding, Y., Lin, H., Hong, R., et al. (2024) Ga/Al Ratio Induced Afterglow Behavior of Ce3+: GAGG Scintillation Ceramics. Ceramics International, 50, 36286-36294.
https://doi.org/10.1016/j.ceramint.2024.07.012
[19] Matsumoto, S. and Ito, A. (2022) High-Throughput Production of LuAG-Based Highly Luminescent Thick Film Scintillators for Radiation Detection and Imaging. Scientific Reports, 12, Article No. 19319.
https://doi.org/10.1038/s41598-022-23839-w
[20] Wang, T., Hu, S., Ji, T., Zhu, X., Zeng, G., Huang, L., et al. (2024) High-Temperature X-Ray Imaging with Transparent Ceramics Scintillators. Laser & Photonics Reviews, 18, Article 2300892.
https://doi.org/10.1002/lpor.202300892
[21] Yanagida, T., Fujimoto, Y., Yokota, Y., Kamada, K., Yanagida, S., Yoshikawa, A., et al. (2011) Comparative Study of Transparent Ceramic and Single Crystal Ce Doped LuAG Scintillators. Radiation Measurements, 46, 1503-1505.
https://doi.org/10.1016/j.radmeas.2011.03.039
[22] Kobayashi, M., Aogaki, S., Takeutchi, F., Tamagawa, Y. and Usuki, Y. (2012) Performance of Thin Long Scintillator Strips of GSO: Ce, LGSO: Ce and LuAG: Pr for Low Energy Γ-Rays. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 693, 226-235.
https://doi.org/10.1016/j.nima.2012.07.045
[23] Dickens, P.T., Haven, D.T., Friedrich, S. and Lynn, K.G. (2019) Scintillation Properties and Increased Vacancy Formation in Cerium and Calcium Co-Doped Yttrium Aluminum Garnet. Journal of Crystal Growth, 507, 16-22.
https://doi.org/10.1016/j.jcrysgro.2018.10.059
[24] Ma, W., Jiang, B., Chen, S., Feng, X., Zhu, Q., Zhang, L., et al. (2019) A Fast Lutetium Aluminum Garnet Scintillation Ceramic with Ce3+ and Ca2+ Co-Dopants. Journal of Luminescence, 216, Article 116728.
https://doi.org/10.1016/j.jlumin.2019.116728
[25] Ma, W., Jiang, B., Feng, X., Huang, X., Wang, W., Sreebunpeng, K., et al. (2020) On Fast LuAG: Ce Scintillation Ceramics with Ca2+ Co-Dopants. Journal of the American Ceramic Society, 104, 966-973.
https://doi.org/10.1111/jace.17506
[26] Zhu, D., Chen, X., Beitlerova, A., Kucerkova, R., Li, X., Liu, Z., et al. (2022) Influence of Calcium Doping Concentration on the Performance of Ce, Ca: LuAG Scintillation Ceramics. Journal of the European Ceramic Society, 42, 6075-6084.
https://doi.org/10.1016/j.jeurceramsoc.2022.06.023
[27] Tyagi, M., Meng, F., Koschan, M., Donnald, S.B., Rothfuss, H. and Melcher, C.L. (2013) Effect of Codoping on Scintillation and Optical Properties of a Ce-Doped Gd3Ga3Al2O12 Scintillator. Journal of Physics D: Applied Physics, 46, Article ID: 475302.
https://doi.org/10.1088/0022-3727/46/47/475302
[28] Babin, V., Boháček, P., Jurek, K., Kučera, M., Nikl, M. and Zazubovich, S. (2018) Dependence of Ce3+-Related Photo-and Thermally Stimulated Luminescence Characteristics on Mg2+ Content in Single Crystals and Epitaxial Films of Gd3(Ga, Al)5O12: Ce, Mg. Optical Materials, 83, 290-299.
https://doi.org/10.1016/j.optmat.2018.05.087
[29] Babin, V., Herman, P., Kucera, M., Nikl, M. and Zazubovich, S. (2019) Effect of Mg2+ Co-Doping on the Photo and Thermally Stimulated Luminescence of the (Lu, Gd)3(Ga, Al)5O12: Ce Epitaxial Films. Journal of Luminescence, 215, Article ID: 116608.
https://doi.org/10.1016/j.jlumin.2019.116608