维持性血液透析患者肌少症的生物标志物研究进展
Research Progress on Biomarkers of Sarcopenia in Maintenance Hemodialysis Patients
DOI: 10.12677/acm.2025.1551368, PDF, HTML, XML,   
作者: 傅汝婷, 张梦维:绍兴文理学院医学院,浙江 绍兴;汪艳艳, 毛丹璐, 沈水娟*:绍兴文理学院附属第一医院(绍兴市人民医院)肾内科,浙江 绍兴
关键词: 维持性血液透析肌少症生物标志物Maintenance Hemodialysis Sarcopenia Biomarker
摘要: 肌少症是一种进行性、全身性的骨骼肌疾病,主要表现为肌肉质量、力量和躯体功能的加速丧失,与不良结局的增加密切相关,包括跌倒、骨折、虚弱和死亡等。维持性血液透析患者受饮食限制、透析治疗和活动减少等因素的影响,肌肉流失加速,肌少症的发生率增加。本文通过查阅近年来国内外相关文献,对维持性血液透析患者肌少症的生物学标志物进行了一定的总结,旨在为临床早期识别并干预肌少症提供帮助,改善患者预后。
Abstract: Sarcopenia is a progressive, systemic skeletal muscle disease characterized by accelerated loss of muscle mass, strength, and somatic function and is strongly associated with increased adverse outcomes, including falls, fractures, weakness, and death. Maintenance hemodialysis patients suffer from accelerated muscle loss and an increased incidence of sarcopenia due to dietary restrictions, dialysis treatment, and reduced activity. In this paper, by reviewing the relevant literature at home and abroad in recent years, the biological markers of sarcopenia in maintenance hemodialysis patients have been summarized to some extent, aiming to provide help for the early identification and intervention of sarcopenia in the clinic and to improve the prognosis of patients.
文章引用:傅汝婷, 张梦维, 汪艳艳, 毛丹璐, 沈水娟. 维持性血液透析患者肌少症的生物标志物研究进展[J]. 临床医学进展, 2025, 15(5): 276-286. https://doi.org/10.12677/acm.2025.1551368

1. 引言

终末期肾脏病(end stage renal disease, ESRD)是慢性肾脏病(chronic kidney disease, CKD)进展至终末阶段,引起的不可逆的肾功能衰竭。维持性血液透析(maintenance hemodialysis, MHD)是ESRD患者最常见的肾脏替代疗法之一,能够在一定程度上延长ESRD患者的生命,但长期透析容易引起一系列并发症,肌少症就是ESRD患者透析过程中常见的并发症之一。肌少症是一种与年龄相关的以骨骼肌质量减少、肌肉力量丧失和躯体功能下降为特征的综合征,但在MHD患者中,肌少症的发生不仅与年龄相关,还与尿毒症毒素、代谢紊乱、炎症等多种因素有关[1]。据报道[2] [3],根据AGWS 2019标准,MHD患者肌少症的患病率可高达60%以上。血液透析(简称血透)肌少症的发生不仅会影响患者的生活质量,还会导致患者出现心血管疾病、认知功能障碍等并发症,增加死亡率[4]。因此,早期发现和干预血透肌少症的进展尤为重要。当前肌少症的筛查和诊断方法主要有双能X线吸收法、生物电阻抗分析、MRI和CT等,但这些方法存在费用昂贵、辐射暴露及测量结果易受个体差异影响等问题,可能导致评估结果不准确[5]。近年来学者们尝试寻找有效的生物学标志物,期望能在早期识别肌少症并实施干预。本文将对近年来MHD患者并发肌少症的生物学标志物做一阐述。

2. 肌肉自身相关标志物

2.1. 肌生长抑制素

肌生长抑制素(myostatin, MSTN),又称生长分化因子-8 (growth and differentiation factor 8, GDF-8),是骨骼肌生长发育的负调节因子[6]。MSTN的过度表达容易引起肌肉量降低、肌纤维数量和肌纤维面积减少,导致骨骼肌的消耗和萎缩[7]。已有研究发现[8],在连续血液透析的老年CKD患者中,血清MSTN水平与肌少症严重程度之间存在显著相关性,血清MSTN水平越高,肌少症越严重。Yasar等[9]的研究纳入了肾移植CKD、3-5期非透析依赖性CKD、血液透析CKD和腹膜透析CKD四组患者,结果显示,肌少症患者的MSTN水平高于非肌少症患者,且血透组MSTN水平最高。此外,他们还发现MSTN与握力(HGS)、白蛋白、估计肾小球滤过率(eGFR)和尿素清除指数(Kt/V)呈负相关(OR = 1.002, 95% CI: 1.001~1.005, P = 0.048)。然而,Czaja-Stolc等[10]的研究得出了相反的结论,他们发现在接受透析治疗的CKD患者中,MSTN浓度与肌少症呈负相关,与以往的研究结果不一致。这可能是由于肌少症晚期患者肌肉质量显著减少,炎症状态发生改变以及一些激素如维生素D受体激动剂等的使用共同导致MSTN水平降低。因此,未来需要更全面、更大规模的研究来进一步探索肌少症和血清MSTN水平的关系。

2.2. 鸢尾素

鸢尾素(Irisin)是一种新型能量代谢因子,由III型纤连蛋白组件包含蛋白5 (fibronectin type III domain-containing protein 5, FNDC5)裂解产生,可通过抑制MSTN分泌、下调骨硬化蛋白表达、稳定肌细胞线粒体功能等方式维持肌力,延缓肌萎缩的发生[11]。研究显示,血清鸢尾素水平预测MHD患者肌少症的曲线下面积为0.894 (95% CI: 0.089~0.762, P < 0.001),敏感度为95.44%,特异度为71.22% [12]。鸢尾素每增加1 pg/ml,血透肌少症的发生率就会降低1.7% [13]。硫酸吲哚酚(indoxyl sulfate, IS)是一种肠源性的尿毒症毒素,可激活芳烃受体途径和NADPH氧化酶来诱导MSTN和自噬蛋白atrogin-1的表达,从而诱导成肌细胞过度自噬,加速骨骼肌的分解代谢[14]。王亚美等[15]通过观察自噬基因Atg-3、Atg-12和Beclin-1的表达,发现鸢尾素能够抑制IS诱导的成肌细胞过度自噬,对肌肉起到保护作用。另外,动物研究表明FNDC5及鸢尾素的缺乏会导致老年小鼠股四头肌中的泛素连接酶MAFbx和MuRF-1水平急剧增加,从而加剧小鼠骨骼肌萎缩,当这些小鼠在外源性补充重组鸢尾素4个月后,肌肉功能明显改善[16],这为临床外源性补充鸢尾素治疗肌少症提供了可能。

3. 内分泌相关标志物

3.1. 胰岛素样生长因子

胰岛素样生长因子(insulin like growth factor-1, IGF-1)是一种合成代谢激素,对骨骼肌的生长、分化和维持至关重要。据报道[17],IGF-1可通过激活PI3K/Akt/mTOR和PI3K/Akt/GSK3β信号通路来促进蛋白质的合成,同时Akt通路的激活能够抑制叉头框转录因子(FoxO)从而阻断atrogin-1、MuRF-1等泛素连接酶的上调,起到拮抗骨骼肌分解代谢的作用。一项纳入3276名老年患者的横断面研究显示[18],肌少症组患者的IGF-1较低,且与四肢骨骼肌质量指数(ASMI)呈正相关。Widajanti等[19]研究发现MHD患者的IGF-1水平与肌肉减少状态呈负相关(r = −0.604, P < 0.001),表明IGF-1在预测肌少症方面具有一定的价值。

3.2. 维生素D及其代谢产物

维生素D是一种脂溶性维生素,不仅参与钙磷代谢调节,还通过与肌细胞中的维生素D受体结合从而促进肌细胞的增殖、分化和代谢[20]。25-(OH)D3是维生素D在人体中的主要存在形式。已有研究表明[21],低血清25-(OH)D3水平与肌肉力量丧失有关。维生素D缺乏在接受透析治疗的患者中普遍存在。Hori等[22]指出MHD患者血清25-(OH)D3水平与骨骼肌质量指数(SMI) (β = 0.145, P = 0.046)和HGS (β = 0.194, P = 0.020)独立相关。封建华[23]等比较了3组不同血清25-(OH)D3浓度的MHD患者肌少症的发病情况,发现25-(OH)D3缺乏组的肌少症发病率较高,与MHD患者的SMI (r = 0.454, P < 0.001)、4 m步速(r = 0.473, P < 0.001)和肱三头肌皮褶厚度(r = 0.381, P = 0.001)呈正相关,与HGS呈负相关(r = −0.509, P < 0.001),并指出血清25-(OH)D3预测MHD患者肌少症的曲线下面积为0.827 (95% CI: 0.791~0.865),最佳截断值为23.15 ng/ml,特异度为77.6%,敏感度为83.2%。此外,外源性补充维生素D能够改善老年肌少症患者的骨骼肌功能,降低跌倒和骨折风险[24],这为临床减缓透析患者肌肉质量损失提供了新思路。

3.3. 甘油三酯–葡萄糖指数

胰岛素抵抗(insulin resistance, IR)是MHD患者发生肌少症的重要因素之一。IR可通过增加骨骼肌蛋白质分解代谢、减少蛋白质合成、激活骨骼肌细胞自噬和上调FoxO家族表达来促进肌少症发生,而骨骼肌中异常脂肪分布和浸润、支链氨基酸水平增加以及骨骼肌I型纤维比例降低又将诱导IR发生,两者的相互作用可能形成恶性循环[25]。甘油三酯–葡萄糖(triglyceride-glucose index, TyG)指数是一种基于空腹血糖和甘油三酯水平来评估胰岛素抵抗的可靠指标[26]。已有研究表明[27],TyG指数可能是老年肌少症性肥胖(sarcopenic obesity, SO)的潜在指标,且该指数预测男性和女性SO的最佳截断值分别为≥8.72和8.67。Chen等[28]指出TyG指数与血透肌少症风险显著相关(OR = 4.21, 95% CI: 1.85~9.59, P = 0.001),当TyG指数增加一个单位,肌少症风险将增加4.21倍。施晴波等[29]也得出了类似的结论,他们发现MHD肌少症组患者的TyG指数与SMI (r = −0.365, P < 0.001)、HGS (r = −0.319, P < 0.001)和步速(r = −0.452, P < 0.001)呈负相关,可作为评估MHD肌少症风险的指标。虽然近年来已有研究表明TyG指数和肌少症之间存在相关性,但目前该领域的研究仍然有限,尤其是与MHD合并肌少症患者之间的关系,这有待于日后的进一步研究和探索。

4. 氧化应激相关标志物

4.1. 晚期氧化蛋白产物

氧化应激(oxidative stress, OS)是生物体内氧化损伤与抗氧化系统之间作用失衡的一种状态,与肌纤维丢失、肌肉质量下降和肌肉性能损害有关。晚期氧化蛋白产物(advanced oxidation protein products, AOPPs)是蛋白质氧化的标志之一,具有较好的特异性与敏感性。Kato等[30]研究发现,AOPPs可通过CD36/NADPH氧化酶途径促进活性氧产生,增加atrogin-1和MSTN表达,从而参与肌少症的发生。由于AOPP来源于白蛋白,该研究还探讨了半胱氨酸白蛋白与HGS和SMI之间的关系,结果显示半胱氨酸白蛋白与HGS呈显著负相关,但与SMI的关系存在性别差异,仅在男性患者中与SMI相关,女性患者中未见明显差异。

4.2. 晚期糖基化终产物

晚期糖基化终产物(advanced glycation end products, AGEs)是一类由过量的糖和蛋白质通过非酶促反应结合而成的化合物,衰老、炎症和氧化应激能够促进AGEs蓄积[31]。在CKD患者中,由于排泄减少、氧化与抗氧化系统之间的不平衡导致AGEs在体内积累。有研究报道[32],较高的AGEs与MHD患者较差的躯体功能显著相关。该研究还分析了AGE适配体对5/6肾切除(5/6Nx)小鼠腓肠肌的影响,发现AGE适配体能够阻止AGEs在5/6Nx小鼠腓肠肌中积累,提示AGEs可能是CKD患者肌少症治疗的潜在靶点。

4.3. 羰基化蛋白质

蛋白质羰基化(protein carbonylation, PCO)是指蛋白质在氧化应激条件下,产生醛、酮或内酰胺等羰基化合物,是蛋白质的不可逆氧化修饰之一[33]。有研究报道[34],MHD患者的羰基化蛋白质水平高于健康人群。Song等[35]研究发现,血清羰基化蛋白质水平与血透肌少症显著相关(OR = 3.41, 95% CI: 1.02~11.32, P = 0.046),且可能是预测血透患者全因死亡率的新指标(HR = 2.37, 95% CI: 1.02~5.55, P = 0.036)。

5. 肾功能相关标志物

5.1. 肌酐生成率

肌酐生成率(Creatinine Generation Rate, CGR)是能够反映MHD患者肌肉质量的指标。Mae等[36]表明CGR与骨骼肌质量之间存在相关性(r = 0.454, P < 0.001),而Kt/V是CGR的独立影响因素,因此在透析充分的患者中,CGR与骨骼肌质量之间的相关性更为显著。由于年龄、BMI和性别对CGR存在影响,该研究还应用了另一指标——%CGR,即年龄和性别调整后的CGR。当%CGR截断值为109.83时,曲线下面积为0.83,可区分肌少症患者。%CGR不仅能够反映骨骼肌质量,还可以反映慢性炎症水平,因此对预测患者的长期预后也具有重要价值,%CGR较低的患者长期预后显著较差。

5.2. 肌酐衍生指数

肌酐指数(Creatinine index, CrI)是标准化的CGR,可用于评估MHD患者的营养状况。有研究表明[37],CrI与MHD患者的骨骼肌力量独立相关(β = 2.05, P < 0.001),当CrI每增加一个单位,肌肉力量预计增加2.05个单位。Canaud等在2014年又将CrI进一步优化为简化肌酐指数(Simplified Creatinine Index, SCI),又称为改良肌酐指数(modified creatinine index, mCI),仅通过年龄、性别、透析前血清肌酐水平和spKt/V即可计算得出[38]。Tian等[39]探讨了这一指数与MHD患者肌肉力量之间的关系,结果显示mCI与肌肉力量之间呈显著正相关,该指数预测可能肌少症的曲线下面积为0.774 (男性为0.804,女性为0.787),最佳截断值为男性 ≤ 21.07 mg/kg/d,女性 ≤ 19.57 mg/kg/d。

5.3. 单室尿素清除指数

单室尿素清除指数(spKt/V)是常用的评估透析充分性的指标。有研究指出,肌少症患者的spKt/V水平高于健康人群[40]。Li等[41]发现较高水平的spKt/V与MHD患者肌少症的高风险独立相关(OR = 122.88, 95% CI: 0.64~0.87, P = 0.002),最佳截断值为1.45 (男性为1.33,女性为1.45),曲线下面积为0.739 (男性为0.793,女性为0.744),敏感性可达87.5%,因此可能作为MHD患者肌少症的预测标志物。

5.4. 血清胱抑素C

血清胱抑素C (cystatin C, Cys C)是一种表达于所有有核细胞的13-kD半胱氨酸蛋白酶抑制剂,主要通过肾小球滤过而被清除,且大多在近曲小管被重吸收,受骨骼肌质量的影响较小,因此是一种更可靠的肾功能标志物[42]。贾晨等[43]研究指出,较高水平的外周血Cys C对肌少症的发生具有促进作用,预测血透肌少症的最佳截断值为1.325 mg/ L,曲线下面积为0.815 (95% CI: 0.743~0.887)。

5.5. 肌少症指数

肌少症指数(sarcopenia index, SI)是近年来提出的一种新型预测指标,通过血清Cr与Cys C计算所得。一项纳入297名3b-5期非透析CKD患者的横断面研究指出[44],SI与非透析晚期CKD患者的总骨骼肌质量(r = 0.503, P < 0.001)、HGS (r = 0.508, P < 0.001)和步态速度(r = 0.381, P < 0.001)独立相关,在男性中预测肌少症的曲线下面积为0.646 (95% CI: 0.569~0.718, P = 0.003),女性中为0.754 (95% CI: 0.670~0.826, P < 0.001),敏感度为男性71.1%,女性81.8%。Yajima等[45]发现SI与HGS (β = 0.303, P = 0.011)和SMI (β = 0.376, P = 0.0007)独立相关,随着SI的增加,MHD患者肌少症的风险显著降低,提示SI可能是反映骨骼肌健康的指标。

6. 矿物质相关标志物

6.1. 镁

镁对肌肉代谢有重要作用,骨骼肌中的镁含量约占全身镁的27% [46]。Xiang等[47]发现血透肌少症患者的血清镁水平较低,提示血清镁是肌少症的保护因素(OR = 0.755, P = 0.042)。Liu等[48]通过一系列细胞和动物研究表明,适当的镁补充剂能够激活哺乳动物mTOR信号通路,促进肌源性分化和肌管生长,维持肌肉质量和力量。另有研究显示[49],口服镁对肌少症的保护作用存在剂量依赖性,口服足够的镁可能预防肌少症的发生。因此,未来有望通过补充镁来预防肌少症的发生。

6.2. 锰

锰是参与人体能量代谢的重要微量元素,主要储存于骨骼肌中。Huang等[50]基于2011至2018年的NHANES数据,发现重金属混合物中锰暴露与成人肌少症患病率之间存在正相关(OR = 2.61, 95% CI: 1.34~5.12, P = 0.005),且炎症在其中起到了一定作用。Xu等[51]的研究得出了类似的结论,他们还发现血Mn水平与肌少症之间呈倒U形关系,拐点为13.45 ug/L。在MHD患者中,当血液Mn水平超过10.6 μg/L时,每增加1 μg/L,肌少症的风险增加0.1倍[52]

7. 炎症相关标志物

7.1. 炎症因子

MHD患者因长期透析导致感染发生率升高,机体处于微炎症状态,全身慢性低强度炎症容易导致骨骼肌质量和力量的下降[53]。有研究报道[54],较高水平的炎症标志物如CRP、IL-6、TNFα和GDF15与较低的骨骼肌强度和肌肉质量之间存在显著关联,并且这种相关性在男性和老年人群中更强。王雨涛等[55]研究发现,相较于非肌少症组,肌少症组的SMI、HGS、4m步速较低而IL-6、Cys C、TNF-α水平较高,提示血清IL-6、Cys C、TNF-α水平与肌少症的发生有关,三者的联合应用还有助于对肌少症患者死亡风险的评估。然而,这些炎症标志物容易受到感染、应激等其他多种因素的影响,特异性较差[56]。此外,骨骼肌可以主动改变促炎和抗炎免疫系统,调节体内免疫反应,因而全身炎症标志物水平的升高可能是肌肉质量低的直接结果[57]。因此,单一的炎症指标难以有效预测MHD患者肌少症的发生。

7.2. 中性粒细胞与淋巴细胞比值

中性粒细胞与淋巴细胞比值(NLR)是一种新型炎症指标,能够反映全身炎症状态。一项纳入220名MHD患者的研究指出[58],肌少症组的NLR较高,且与HGS、步速、SMI呈负相关,当NLR每增加一个单位,肌少症风险将增加1.55倍。Nie等[59]进一步发现NLR与肌少症风险之间的关联受MHD患者超重状态的影响,NLR与超重组患者的肌少症风险显著相关(OR = 1.60, 95% CI: 1.15~2.24, P = 0.006),而在非超重组中不显著。最近的一项研究[60]也指出NLR与肥胖性肌少症的相关性更强(OR = 1.15, 95% CI: 1.00~1.32, P = 0.049)。这表明在肥胖患者中,炎症可能在肌肉萎缩中发挥更为重要的作用。

7.3. 循环游离线粒体DNA

循环游离线粒体DNA (ccf-mtDNA)是一种可能引起炎症的内源性危险物质。有研究报道[61],MHD患者的ccf-mtDNA显著升高,且与IL-6和TNF-α呈正相关,提示ccf-mtDNA与MHD患者体内的炎症状态相关,而炎症在肌少症的发展中起着重要作用。Fan等[62]探讨了这一指标与MHD患者肌少症的相关性,结果表明,ccf-mtDNA的高拷贝数与MHD患者的肌少症风险显著相关,可能作为MHD相关肌少症的预测指标。

8. 肠道微生物相关标志物

健康肠道微生物群的多样性和整体组成对维持人体内环境稳态至关重要。MHD患者受炎症刺激和尿毒症毒素等因素的影响,肠道微生物群多样性显著降低。Zhou等[63]研究指出血透肌少症患者肠道中的巨单胞菌属和粪球菌属丰度显著降低。Tang等[64]收集了接受MHD的肌少症患者(MS)和非肌少症患者(MNS)的粪便样本,从中提取细菌后分别移植到小鼠身上,结果显示MS患者肠道微生物群定植的小鼠肌肉功能和质量显著下降,且厚壁菌门/拟杆菌门的比例显著降低。然而,目前关于肠道–肌肉轴之间的研究仍然较少,对肠道菌群与肌少症之间的作用机制尚不清楚,且目前关于肠道–肌肉轴的研究大多集中在动物模型上,未来仍需要进一步研究来确定是否可通过对肠道–肌肉轴进行干预来延缓肌肉萎缩,改善肌肉功能。

9. 其他标志物

9.1. 精胺与亚精胺比值

多胺(ployamines, PA)是一类脂肪族含氮碱,主要包括精胺(spermine, SPM)、亚精胺(spermidine, SPD)和腐胺(putrescine, PUT),具有抗炎、抗氧化、抗凋亡以及调节自噬的作用,对细胞的生长、分化至关重要[65]。Sanayama等[66]分析了MHD患者与健康人群中PA浓度与健康相关指标的关系,结果显示SPM/SPD与SMI (ρ = 0.309, P = 0.017)和HGS (ρ = 0.260, P = 0.046)呈正相关,提示SPM/SPD比值可能是预测MHD患者肌少症和预后的新指标。

9.2. 脑源性神经营养因子

脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)是一种具有神经营养作用的蛋白质,可诱导神经肌肉接头突触的发育、运动神经元的存活以及肌肉的代谢,这表明BDNF在改善肌肉质量和功能方面具有积极的影响[67] [68]。有研究发现[69],患有严重肌少症或虚弱的MHD患者血浆BDNF水平显著降低,且血浆BDNF浓度与血清IS水平及血透时间相关,血清IS水平越高,血透时间越长,血浆BDNF浓度越低。施晴波等[29]的研究发现MHD患者血清BDNF水平与SMI (r = 0.326, P < 0.001)、HGS (r = 0.275, P < 0.003)和步速(r = 0.395, P < 0.001)呈正相关,以TyG指数联合BDNF预测血透肌少症的曲线下面积为0.939 (95% CI: 0.882~0.974, P < 0.001),高于单独诊断。

9.3. 骨硬化蛋白

骨硬化蛋白(sclerostin, SOST)是一种分泌型糖蛋白,主要由骨细胞分泌,可通过抑制Wnt/β-catenin信号通路来调控骨骼肌代谢[70]。MHD患者的血清SOST水平比健康个体高3~4倍[71]。在接受血透的糖尿病患者中,较高的血清SOST水平与较低的SMI以及糖尿病的存在独立相关,且男性的SOST水平高于女性[72]

9.4. 同型半胱氨酸

同型半胱氨酸(homocysteinemia, Hcy)是含硫氨基酸的一种,与MHD患者氧化应激、动脉粥样硬化、心脑血管疾病的发生密切相关[73]。一项纳入269名MHD患者的研究显示[74],血清Hcy水平与SMI (r = −0.171, P = 0.005)、步速(r = −0.141, P = 0.021)和HGS (r = −0.174, P = 0.004)之间呈负相关,高同型半胱氨酸血症(血清Hcy浓度 ≥ 15 umol/L)是血透肌少症的独立影响因素(OR = 3.346, 95% CI: 1.710~6.546, P < 0.001)。

10. 结语与展望

肌少症在MHD患者中呈现出较高的发病率且严重影响患者的生存预后,早期识别并有效管理至关重要。目前肌少症的筛查和诊断主要依赖于影像学技术,但存在设备依赖度高、费用昂贵等局限,因此,寻找简易、有效且经济的生物学标志物对肌少症的早期诊断和干预具有重要意义。然而,肌少症的发病机制复杂,且MHD患者多伴有其他基础疾病,单一生物标志物诊断和评估肌少症的准确性有限。因此,未来的研究可将不同的生物标志物进行组合,并借助机器学习、多变量回归模型等方法,提高诊断的准确性和可靠性,同时开展更多的队列研究以动态监测标志物在疾病发展不同阶段的变化。此外,一些生物学标志物(如鸢尾素、维生素D、镁制剂等)的应用有助于降低肌少症的发生风险,未来需进一步验证这些标志物的临床实用性和安全性,以实现对MHD患者肌少症的早期干预,从而改善患者的生活质量。

NOTES

*通讯作者。

参考文献

[1] Cruz-Jentoft, A.J. and Sayer, A.A. (2019) Sarcopenia. The Lancet, 393, 2636-2646.
https://doi.org/10.1016/s0140-6736(19)31138-9
[2] Matsuzawa, R., Yamamoto, S., Suzuki, Y., Imamura, K., Harada, M., Matsunaga, A., et al. (2021) The Clinical Applicability of Ultrasound Technique for Diagnosis of Sarcopenia in Hemodialysis Patients. Clinical Nutrition, 40, 1161-1167.
https://doi.org/10.1016/j.clnu.2020.07.025
[3] 张琦, 秦海峰, 简桂花, 等. 老年血液透析患者肌少症临床特点及危险因素分析[J]. 中华老年医学杂志, 2020, 39(9): 1046-1049.
[4] Damluji, A.A., Alfaraidhy, M., AlHajri, N., Rohant, N.N., Kumar, M., Al Malouf, C., et al. (2023) Sarcopenia and Cardiovascular Diseases. Circulation, 147, 1534-1553.
https://doi.org/10.1161/circulationaha.123.064071
[5] 罗楠. 维持性血液透析相关肌肉减少症的患病率及危险因素研究[D]: [硕士学位论文]. 张家口: 河北北方学院, 2021.
[6] Esposito, P., Picciotto, D., Battaglia, Y., Costigliolo, F., Viazzi, F. and Verzola, D. (2022) Myostatin: Basic Biology to Clinical Application. Advances in Clinical Chemistry, 106, 181-234.
https://doi.org/10.1016/bs.acc.2021.09.006
[7] 赵琴, 杨军杰, 钟炎平, 等. 肌肉生长抑制素与终末期肝病肌肉减少症的关系[J]. 临床肝胆病杂志, 2021, 37(11): 2692-2695.
[8] Asikin, M.D., Widajanti, N., Firdausi, H. and Widodo (2021) Myostatin and Sarcopenia in Elderly among Haemodyalisis Patient. Journal of Natural Science, Biology and Medicine, 12, 290-299.
[9] Yasar, E., Tek, N.A., Tekbudak, M.Y., Yurtdaş, G., Gülbahar, Ö., Uyar, G.Ö., et al. (2022) The Relationship between Myostatin, Inflammatory Markers, and Sarcopenia in Patients with Chronic Kidney Disease. Journal of Renal Nutrition, 32, 677-684.
https://doi.org/10.1053/j.jrn.2022.01.011
[10] Czaja-Stolc, S., Chatrenet, A., Potrykus, M., Ruszkowski, J., Torreggiani, M., Lichodziejewska-Niemierko, M., et al. (2024) Adipokines and Myokines as Markers of Malnutrition and Sarcopenia in Patients Receiving Kidney Replacement Therapy: An Observational, Cross-Sectional Study. Nutrients, 16, Article 2480.
https://doi.org/10.3390/nu16152480
[11] 闫国胜, 杜文慧, 张宏涛. 鸢尾素在血液透析中的研究进展[J]. 中国血液净化, 2023, 22(5): 377-380.
[12] 宝群, 闫燕, 丁秀和. 维持性血液透析患者肌少症与同型半胱氨酸、鸢尾素及营养不良-炎症评分的关系[J]. 中国血液净化, 2022, 21(10): 744-748.
[13] 邵雯. 维持性血液透析合并肌肉减少症患者血清Irisin的变化[D]: [硕士学位论文]. 晋中: 山西医科大学, 2020.
[14] Enoki, Y., Watanabe, H., Arake, R., Sugimoto, R., Imafuku, T., Tominaga, Y., et al. (2016) Indoxyl Sulfate Potentiates Skeletal Muscle Atrophy by Inducing the Oxidative Stress-Mediated Expression of Myostatin and Atrogin-1. Scientific Reports, 6, Article No. 32084.
https://doi.org/10.1038/srep32084
[15] 王亚美, 刘风勋, 邢利, 等. Irisin与维持性血液透析患者肌肉减少症的相关性研究[J]. 中国血液净化, 2019, 18(10): 677-680.
[16] Guo, M., Yao, J., Li, J., Zhang, J., Wang, D., Zuo, H., et al. (2022) Irisin Ameliorates Age‐Associated Sarcopenia and Metabolic Dysfunction. Journal of Cachexia, Sarcopenia and Muscle, 14, 391-405.
https://doi.org/10.1002/jcsm.13141
[17] Mori, K. (2021) Maintenance of Skeletal Muscle to Counteract Sarcopenia in Patients with Advanced Chronic Kidney Disease and Especially Those Undergoing Hemodialysis. Nutrients, 13, Article 1538.
https://doi.org/10.3390/nu13051538
[18] Bian, A., Ma, Y., Zhou, X., Guo, Y., Wang, W., Zhang, Y., et al. (2020) Association between Sarcopenia and Levels of Growth Hormone and Insulin-Like Growth Factor-1 in the Elderly. BMC Musculoskeletal Disorders, 21, Article No. 214.
https://doi.org/10.1186/s12891-020-03236-y
[19] Widajanti, N., Soelistijo, S., Hadi, U., Thaha, M., Aditiawardana, Widodo, et al. (2022) Association between Sarcopenia and Insulin-Like Growth Factor-1, Myostatin, and Insulin Resistance in Elderly Patients Undergoing Hemodialysis. Journal of Aging Research, 2022, Article ID: 1327332.
https://doi.org/10.1155/2022/1327332
[20] 邵伟华, 高丽霞, 王素星, 等. 维生素D联合阻抗训练对老年肌少症患者骨骼肌质量、日常生活活动能力及血清学指标的影响[J]. 中华老年多器官疾病杂志, 2020, 19(9): 656-660.
[21] Remelli, F., Vitali, A., Zurlo, A. and Volpato, S. (2019) Vitamin D Deficiency and Sarcopenia in Older Persons. Nutrients, 11, Article 2861.
https://doi.org/10.3390/nu11122861
[22] Hori, M., Takahashi, H., Kondo, C., Hayashi, F., Tokoroyama, S., Mori, Y., et al. (2024) Association between Serum 25-Hydroxyvitamin D Levels and Sarcopenia in Patients Undergoing Chronic Haemodialysis. American Journal of Nephrology, 55, 399-405.
https://doi.org/10.1159/000536582
[23] 封建华, 叶建明, 郁丽霞, 等. 血清25-羟维生素D3对维持性血液透析患者肌少症预测价值[J]. 临床误诊误治, 2021, 34(11): 83-87.
[24] Uchitomi, R., Oyabu, M. and Kamei, Y. (2020) Vitamin D and Sarcopenia: Potential of Vitamin D Supplementation in Sarcopenia Prevention and Treatment. Nutrients, 12, Article 3189.
https://doi.org/10.3390/nu12103189
[25] Liu, Z. and Zhu, C. (2023) Causal Relationship between Insulin Resistance and Sarcopenia. Diabetology & Metabolic Syndrome, 15, Article No. 46.
https://doi.org/10.1186/s13098-023-01022-z
[26] Chamroonkiadtikun, P., Ananchaisarp, T. and Wanichanon, W. (2020) The Triglyceride-Glucose Index, a Predictor of Type 2 Diabetes Development: A Retrospective Cohort Study. Primary Care Diabetes, 14, 161-167.
https://doi.org/10.1016/j.pcd.2019.08.004
[27] Kim, B., Kim, G., Lee, Y., Taniguchi, K., Isobe, T. and Oh, S. (2023) Triglyceride-Glucose Index as a Potential Indicator of Sarcopenic Obesity in Older People. Nutrients, 15, Article 555.
https://doi.org/10.3390/nu15030555
[28] Chen, R., Zhang, L., Zhang, M., Wang, Y., Liu, D., Li, Z., et al. (2022) The Triglyceride-Glucose Index as a Novel Marker Associated with Sarcopenia in Non-Diabetic Patients on Maintenance Hemodialysis. Renal Failure, 44, 1616-1622.
https://doi.org/10.1080/0886022x.2022.2128373
[29] 施晴波, 樊璠. 三酰甘油-葡萄糖指数、脑源性神经营养因子对非糖尿病维持性血液透析患者的肌肉减少症的诊断价值分析[J]. 中国血液净化, 2024, 23(1): 30-34.
[30] Kato, H., Watanabe, H., Imafuku, T., Arimura, N., Fujita, I., Noguchi, I., et al. (2021) Advanced Oxidation Protein Products Contribute to Chronic Kidney Disease‐Induced Muscle Atrophy by Inducing Oxidative Stress via CD36/NADPH Oxidase Pathway. Journal of Cachexia, Sarcopenia and Muscle, 12, 1832-1847.
https://doi.org/10.1002/jcsm.12786
[31] Dozio, E., Caldiroli, L., Molinari, P., Castellano, G., Delfrate, N.W., Romanelli, M.M.C., et al. (2023) Accelerated Ageing: The Impact of Advanced Glycation End Products on the Prognosis of Chronic Kidney Disease. Antioxidants, 12, Article 584.
https://doi.org/10.3390/antiox12030584
[32] Yabuuchi, J., Ueda, S., Yamagishi, S., Nohara, N., Nagasawa, H., Wakabayashi, K., et al. (2020) Association of Advanced Glycation End Products with Sarcopenia and Frailty in Chronic Kidney Disease. Scientific Reports, 10, Article No. 17647.
https://doi.org/10.1038/s41598-020-74673-x
[33] 周杰. 乳清蛋白中羰基化蛋白质和羰基化脂质过氧化产物的含量分析及其影响因素研究[D]: [硕士学位论文]. 成都: 成都大学, 2022.
[34] Colombo, G., Reggiani, F., Angelini, C., Finazzi, S., Astori, E., Garavaglia, M.L., et al. (2020) Plasma Protein Carbonyls as Biomarkers of Oxidative Stress in Chronic Kidney Disease, Dialysis, and Transplantation. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 2975256.
https://doi.org/10.1155/2020/2975256
[35] Song, Y.R., Kim, J., Lee, H., Kim, S.G. and Choi, E. (2020) Serum Levels of Protein Carbonyl, a Marker of Oxidative Stress, Are Associated with Overhydration, Sarcopenia and Mortality in Hemodialysis Patients. BMC Nephrology, 21, Article No. 281.
https://doi.org/10.1186/s12882-020-01937-z
[36] Mae, Y., Takata, T., Yamada, K., Hamada, S., Yamamoto, M., Iyama, T., et al. (2021) Creatinine Generation Rate Can Detect Sarcopenia in Patients with Hemodialysis. Clinical and Experimental Nephrology, 26, 272-277.
https://doi.org/10.1007/s10157-021-02142-4
[37] Plytzanopoulou, P., Politis, P., Papachrysanthou, T., Andriopoulos, C., Drakou, A., Papachristou, E., et al. (2021) Creatinine Index as a Predictive Marker of Sarcopenia in Patients under Hemodialysis. International Urology and Nephrology, 54, 1565-1573.
https://doi.org/10.1007/s11255-021-03032-0
[38] Canaud, B., Granger Vallée, A., Molinari, N., Chenine, L., Leray-Moragues, H., Rodriguez, A., et al. (2014) Creatinine Index as a Surrogate of Lean Body Mass Derived from Urea Kt/V, Pre-Dialysis Serum Levels and Anthropometric Characteristics of Haemodialysis Patients. PLOS ONE, 9, e93286.
https://doi.org/10.1371/journal.pone.0093286
[39] Tian, R., Chang, L., Liu, D., Luo, F., Zhang, Y., Cheng, L., et al. (2022) Association of the Modified Creatinine Index with Muscle Strength and Mortality in Patients Undergoing Hemodialysis. Renal Failure, 44, 1742-1752.
https://doi.org/10.1080/0886022x.2022.2134027
[40] Wang, M., Liu, L., Shen, X., Li, Y. and He, Q. (2021) Assessing Lean Tissue by Bioelectrical Impedance Analysis Pre Hemodialysis Underestimates the Prevalence of Sarcopenia in Maintenance Hemodialysis Patients. European Journal of Clinical Nutrition, 75, 1407-1413.
https://doi.org/10.1038/s41430-020-00835-9
[41] Li, Y., Xing, T., Xu, R., Liu, Y., Zhong, X., Liu, Y., et al. (2024) Single-pool Model Urea Clearance Index Is Associated with Sarcopenia and Nutritional Status in Patients Undergoing Maintenance Hemodialysis: A Cross-Sectional Study. BMC Nephrology, 25, Article No. 80.
https://doi.org/10.1186/s12882-024-03510-4
[42] Hsu, B., Wang, C., Lai, Y., Kuo, C. and Lin, Y. (2024) Novel Equations Incorporating the Sarcopenia Index Based on Serum Creatinine and Cystatin C to Predict Appendicular Skeletal Muscle Mass in Patients with Nondialysis CKD. Clinical Nutrition, 43, 765-772.
https://doi.org/10.1016/j.clnu.2024.01.029
[43] 贾晨, 高俊瑞, 王鹤宏. 胱抑素C对维持性血液透析患者肌肉减少症的预测价值分析[J]. 中国中西医结合肾病杂志, 2021, 22(8): 709-711.
[44] Lin, Y., Wang, C., Chang, I. and Hsu, B. (2022) A Novel Application of Serum Creatinine and Cystatin C to Predict Sarcopenia in Advanced CKD. Frontiers in Nutrition, 9, Article 828880.
https://doi.org/10.3389/fnut.2022.828880
[45] Yajima, T. and Yajima, K. (2023) Serum Creatinine-to-Cystatin C Ratio as an Indicator of Sarcopenia in Hemodialysis Patients. Clinical Nutrition ESPEN, 56, 200-206.
https://doi.org/10.1016/j.clnesp.2023.06.002
[46] Pickering, M. (2021) Cross-talks between the Cardiovascular Disease-Sarcopenia-Osteoporosis Triad and Magnesium in Humans. International Journal of Molecular Sciences, 22, Article 9102.
https://doi.org/10.3390/ijms22169102
[47] Xiang, T., Fu, P. and Zhou, L. (2023) Sarcopenia and Osteosarcopenia among Patients Undergoing Hemodialysis. Frontiers in Endocrinology, 14, Article 1181139.
https://doi.org/10.3389/fendo.2023.1181139
[48] Liu, Y., Wang, Q., Zhang, Z., Fu, R., Zhou, T., Long, C., et al. (2021) Magnesium Supplementation Enhances mTOR Signalling to Facilitate Myogenic Differentiation and Improve Aged Muscle Performance. Bone, 146, Article ID: 115886.
https://doi.org/10.1016/j.bone.2021.115886
[49] Yang, S., Chen, Y. and Chen, W. (2022) Association between Oral Intake Magnesium and Sarcopenia: A Cross-Sectional Study. BMC Geriatrics, 22, Article No. 816.
https://doi.org/10.1186/s12877-022-03522-5
[50] Huang, Q., Wan, J., Nan, W., Li, S., He, B. and Peng, Z. (2024) Association between Manganese Exposure in Heavy Metals Mixtures and the Prevalence of Sarcopenia in US Adults from NHANES 2011-2018. Journal of Hazardous Materials, 464, Article ID: 133005.
https://doi.org/10.1016/j.jhazmat.2023.133005
[51] Xu, B., Chen, Z., Zhou, W., Su, J. and Zhou, Q. (2024) Associations between Blood Manganese Levels and Sarcopenia in Adults: Insights from the National Health and Nutrition Examination Survey. Frontiers in Public Health, 12, Article 1341479.
https://doi.org/10.3389/fpubh.2024.1351479
[52] Hu, R., Zeng, Q., Xu, Q., Zhou, H., Tan, R., Zhong, X., et al. (2024) The Non-Linear Associations between Blood Manganese Level and Sarcopenia in Patients Undergoing Maintenance Hemodialysis: A Multicenter Cross-Sectional Study. Journal of Trace Elements in Medicine and Biology, 84, Article ID: 127465.
https://doi.org/10.1016/j.jtemb.2024.127465
[53] 蔡琪, 池向耿, 许敏玲. 维持性血液透析患者骨骼肌减少症及影响因素分析[J]. 中国血液净化, 2019, 18(9): 626-629.
[54] Hortegal, E., Alves, J., Santos, E., et al. (2020) Sarcopenia and Inflammation in Patients Undergoing Hemodialysis. Nutrición Hospitalaria, 37, 855-862.
[55] 王雨涛, 柳娟. 慢性肾脏病患者血清IL-6、Cys C、TNF-α与肌肉减少症的关系及对患者死亡风险的影响[J]. 昆明医科大学学报, 2024, 45(10): 85-90.
[56] 景海蓉, 陈雅雯, 付泓博, 等. 肌少症的血清生物标志物[J]. 中华老年多器官疾病杂志, 2022, 21(8): 616-620.
[57] Looijaard, S.M.L.M., te Lintel Hekkert, M.L., Wüst, R.C.I., Otten, R.H.J., Meskers, C.G.M. and Maier, A.B. (2020) Pathophysiological Mechanisms Explaining Poor Clinical Outcome of Older Cancer Patients with Low Skeletal Muscle Mass. Acta Physiologica, 231, e13516.
https://doi.org/10.1111/apha.13516
[58] Wang, J., Xu, M., Huang, L., Li, B., Yang, L. and Deng, X. (2023) Value of Neutrophil-to-Lymphocyte Ratio for Diagnosing Sarcopenia in Patients Undergoing Maintenance Hemodialysis and Efficacy of Baduanjin Exercise Combined with Nutritional Support. Frontiers in Neurology, 14, Article 1072986.
https://doi.org/10.3389/fneur.2023.1072986
[59] Nie, H., Liu, Y., Zeng, X. and Chen, M. (2024) Neutrophil-to-Lymphocyte Ratio Is Associated with Sarcopenia Risk in Overweight Maintenance Hemodialysis Patients. Scientific Reports, 14, Article No. 3669.
https://doi.org/10.1038/s41598-024-54056-2
[60] M., Y., Parmar, P.A., Sharma, S., Kakadiya, J.P. and Lakkad, D. (2025) Neutrophil-to-Lymphocyte Ratio as a Novel Predictor of Sarcopenia in Maintenance Hemodialysis Patients: A Cross-Sectional Study Exploring Associations across Body Composition Categories. BMC Musculoskeletal Disorders, 26, Article No. 39.
https://doi.org/10.1186/s12891-025-08291-x
[61] Zhong, X., Guo, Y. and Fan, Z. (2022) Increased Level of Free‐Circulating MTDNA in Maintenance Hemodialysis Patients: Possible Role in Systemic Inflammation. Journal of Clinical Laboratory Analysis, 36, e24558.
https://doi.org/10.1002/jcla.24558
[62] Fan, Z., Guo, Y. and Zhong, X. (2021) Circulating Cell-Free Mitochondrial DNA: A Potential Blood-Based Biomarker for Sarcopenia in Patients Undergoing Maintenance Hemodialysis. Medical Science Monitor, 28, e934679.
https://doi.org/10.12659/msm.934679
[63] Zhou, Q., Zhang, H., Yin, L., Li, G., Liang, W. and Chen, G. (2021) Characterization of the Gut Microbiota in Hemodialysis Patients with Sarcopenia. International Urology and Nephrology, 54, 1899-1906.
https://doi.org/10.1007/s11255-021-03056-6
[64] Tang, J., Zhang, H., Yin, L., Zhou, Q. and Zhang, H. (2023) The Gut Microbiota from Maintenance Hemodialysis Patients with Sarcopenia Influences Muscle Function in Mice. Frontiers in Cellular and Infection Microbiology, 13, Article 1225991.
https://doi.org/10.3389/fcimb.2023.1225991
[65] Galasso, L., Cappella, A., Mulè, A., Castelli, L., Ciorciari, A., Stacchiotti, A., et al. (2023) Polyamines and Physical Activity in Musculoskeletal Diseases: A Potential Therapeutic Challenge. International Journal of Molecular Sciences, 24, Article 9798.
https://doi.org/10.3390/ijms24129798
[66] Sanayama, H., Ito, K., Ookawara, S., Uemura, T., Imai, S., Kiryu, S., et al. (2023) Positive Correlation between Relative Concentration of Spermine to Spermidine in Whole Blood and Skeletal Muscle Mass Index: A Possible Indicator of Sarcopenia and Prognosis of Hemodialysis Patients. Biomedicines, 11, Article 746.
https://doi.org/10.3390/biomedicines11030746
[67] Colucci-D’Amato, L., Speranza, L. and Volpicelli, F. (2020) Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. International Journal of Molecular Sciences, 21, Article 7777.
https://doi.org/10.3390/ijms21207777
[68] Delezie, J., Weihrauch, M., Maier, G., Tejero, R., Ham, D.J., Gill, J.F., et al. (2019) BDNF Is a Mediator of Glycolytic Fiber-Type Specification in Mouse Skeletal Muscle. Proceedings of the National Academy of Sciences of the United States of America, 116, 16111-16120.
https://doi.org/10.1073/pnas.1900544116
[69] Miyazaki, S., Iino, N., Koda, R., Narita, I. and Kaneko, Y. (2020) Brain‐derived Neurotrophic Factor Is Associated with Sarcopenia and Frailty in Japanese Hemodialysis Patients. Geriatrics & Gerontology International, 21, 27-33.
https://doi.org/10.1111/ggi.14089
[70] 周敏, 杨爱霞, 郭雪娟, 等. 血清骨硬化蛋白及戊糖素与2型糖尿病肾病患者并发肌少症的关系[J]. 疑难病杂志, 2024, 23(5): 563-568.
[71] Nakagawa, Y., Komaba, H., Hamano, N., Tanaka, H., Wada, T., Ishida, H., et al. (2021) Interrelationships between Sclerostin, Secondary Hyperparathyroidism, and Bone Metabolism in Patients on Hemodialysis. The Journal of Clinical Endocrinology & Metabolism, 107, e95-e105.
https://doi.org/10.1210/clinem/dgab623
[72] Medeiros, M.C., Rocha, N., Bandeira, E., Dantas, I., Chaves, C., Oliveira, M., et al. (2020) Serum Sclerostin, Body Composition, and Sarcopenia in Hemodialysis Patients with Diabetes. International Journal of Nephrology, 2020, Article ID: 4596920.
https://doi.org/10.1155/2020/4596920
[73] 廖星月, 杨茜岚, 何慧薇. 血同型半胱氨酸与肌少症关系的研究进展[J]. 实用老年医学, 2024, 38(3): 304-307.
[74] 吴梅. 同型半胱氨酸水平与血液透析患者肌少症的相关性研究[D]: [硕士学位论文]. 西宁: 青海大学, 2023.