4D Flow MRI在肝硬化门脉高压定量评估中的应用
Application of 4D Flow MRI in Quantitative Evaluation of Portal Hypertension in Cirrhosis
DOI: 10.12677/acm.2025.1551369, PDF, HTML, XML,   
作者: 胡 琼, 郭大静*:重庆医科大学附属第二医院放射科,重庆
关键词: 肝硬化门脉高压4D Flow MR血流动力学Cirrhosis Portal Hypertension 4D Flow MR Hemodynamics
摘要: 肝硬化是慢性肝病的常见终末期表现,门静脉高压症是肝硬化患者最常见、最致命的并发症,门静脉高压症及其并发症是肝硬化患者死亡的主要原因。肝硬化患者在门静脉高压症发展过程中,血流会发生剧烈变化。因此门静脉系统血流动力学的评价在肝硬化病变的诊断与评估起着重要作用。4D Flow MRI是一种能无创性定量评估血流动力学的技术,本文将对目前4D Flow MRI在肝硬化门静脉高压中的应用进行综述。
Abstract: Cirrhosis is a common end-stage manifestation of chronic liver disease, and portal hypertension is the most common and fatal complication in patients with cirrhosis. Portal hypertension and its complications are the main cause of death in patients with cirrhosis. During the development of portal hypertension, patients with cirrhosis may experience significant changes in blood flow. Therefore, the evaluation of portal vein hemodynamics plays an important role in the diagnosis and assessment of liver cirrhosis lesions. 4D Flow MRI is a non-invasive quantitative assessment technique for hemodynamics. In this review, we will summarize the current research progress of 4D Flow MRI in portal hypertension in liver cirrhosis.
文章引用:胡琼, 郭大静. 4D Flow MRI在肝硬化门脉高压定量评估中的应用[J]. 临床医学进展, 2025, 15(5): 287-293. https://doi.org/10.12677/acm.2025.1551369

1. 引言

肝硬化是慢性肝病的常见终末期途径,门静脉高压症是肝硬化患者最常见、最致命的并发症[1]

门静脉高压症及其并发症是肝硬化患者死亡的主要原因。肝硬化患者在门静脉高压症发展过程中,血流会发生剧烈变化,因此门静脉系统血流动力学的评价在肝硬化评估中起着重要作用。

常规使用的无创性影像技术如CT、MRI及超声,通常关注血流动力学或解剖成像。且具有不同的局限性。CT和MRI可以在解剖学上评估门静脉高压引起的门静脉增宽的形态学改变、对侧支循环进行识别,但CT和MRI无法评估门脉高压形成早期的门静脉血流动力学的变化[2]。不能提供门静脉系统的血流动力学信息。多普勒超声(US)也是常用的诊断工具,但多普勒超声的诊断受到多种因素干扰,如体位及肠内气体覆盖的影响,多普勒超声只能在大血管(例如门静脉主血管)中进行,也无法同时观察深层区域和多个部位,并且观察者间重现性差[3]-[5]。多普勒超声的各种局限性,导致多普勒超声在门静脉循环的实际测量中存在不同程度的误差。

4D Flow MRI是一项新型的磁共振血管成像技术,它可以显示血管的形态学和血流动力学,对血管进行定性和定量分析。4D Flow MRI通过在3D成像体积中同时无创采集时间分辨血流信息和解剖信息,在显示血管解剖的同时,实现血流的3D可视化及量化。有助于更全面地了解病理生理机制。以前4D Flow MRI常用于动脉系统,由于门静脉系统血管口径小、流速慢和呼吸运动,在静脉系统中的应用具有挑战性。有文献报道了4D Flow MRI评价门静脉系统血流的可行性[6] [7]。Utaroh Motosugi等人[8],评估了4D Flow MRI作为肝硬化患者静脉曲张出血风险分层的无创成像标记物的可行性。Eric J. Keller等人研究了4D血流MRI与脾功能亢进之间的关系,并报道了肝硬化和门静脉高压症患者脾脏体积和血流量增加以及门体分流术与门功能亢进相关[9]。除了前面所提的研究,该技术目前在肝硬化中应用广泛。在这篇综述文章中,我们将回顾讨论4D Flow MRI在门静脉系统中的潜在临床应用。

2. 4D Flow MRI的成像特点

4D Flow MRI是一种同时具有三维解剖及三个血流方向速度编码的时间分辨成像技术,可在3D成像体积中同时无创性的采集时间分辨血流信息和解剖信息。在扫描期间,通过记录整个心动周期内扫描体积的三个空间方向上的血流速度数据,获得体积时间分辨速度矢量场,在显示血管解剖的同时,实现血流的3D可视化及量化。4D Flow MRI作为二维电影相位对比磁共振成像(2D PCMRI)的发展。不仅可以提供解剖学信息,而且可以提供多种血流信息,它具有多种优点,如可在离线状态下进行后处理、通过在血管感兴趣区自由放置多个分析平面的方式,可计算血管任何横截面中的流速和流速,获得多条血管中血流的多方向流速、对血流动力学进行可视化、回顾性的评价多种血流参数、获取血管中的矢量信息和剪切应力[4] [5]

3. 4D Flow MRI在肝硬化门脉高压中的应用及研究进展

3.1. 肝硬化门脉高压症的病理生理学及其与健康人的比较

4D Flow MRI在门静脉系统的早期研究主要集中在健康受试者和肝硬化患者成像方法的验证上[1] [10]-[12]。在肝硬化患者中,由于肝纤维化、肝窦压力升高等作用使血管阻力增加,引起一系列全身血流反映,最终导致门静脉血流量以及压力的进一步增加[12]-[15],随着肝硬化的进展,伴随侧支循环的形成[10] [11],引起门静脉主干的血流量减少[16]。4D Flow MRI可以同时评估这些肝内和肝外门静脉区域以及主要侧支血管的形态、流向及流速,能更加全面评估每位患者的血流动力学变化。Brunsing等人发现,与无门体分流(PSS)的肝硬化患者和健康受试者相比,患有PSS的肝硬化患者的肠系膜上静脉和门静脉血流更高,这也可能表明肝硬化伴随门静脉的高动力状态[17]。门静脉系统的血流是动态的,饮食会影响血流的变化。之前有文献报道了餐后门静脉系统血流的变化,据报道肝硬化患者餐后门静脉血流的增加程度低于健康受试者[18] [19]。Roldan-Alzate等人在餐前和餐后20分钟对健康受试者和门静脉高压症患者进行了4D Flow MRI成像,结果显示门静脉高压症患者的门静脉系统餐后血流量增加总体低于健康受试者[20]。此外他们最近还报道了门静脉血流量的昼夜变化[21]。4D Flow MRI的主要优势是可以同时评估整个腹部的生理或病理的血流动力学变化,这是其他方法所不具备的。

3.2. 肝硬化门脉高压症的诊断和危险分层

肝硬化的特征在于晚期肝纤维化、肝功能衰竭和门静脉高压。肝窦纤维化导致肝硬度增加,提高了血流的阻力,从而提高了门静脉的压力。流向肝脏的血流量减少导致循环内源性血管扩张剂,随着内脏血流量的增加矛盾地加剧了门静脉压力。导管插入术能够直接测量门静脉的压力,但该测量方法是侵入性的,它的适用人群受限,并且价格昂贵,不适合常规测试[22]。相比之下,4D Flow MRI是一种无创性评估工具,并且适合重复评估。虽然4D Flow MRI不能直接测量门静脉的压力,但它可以评价静脉曲张的形态、血流方向和流速,从而间接评价门静脉高压[23] [24]。Motosugi等人研究对比了肝硬化患者食管静脉曲张的内镜检查结果与4D Flow MRI测量结果,发现奇静脉血流量 > 0.1 L/min和门静脉 < 0的血流变化分数(门静脉血流 < 肠系膜上静脉 + 脾静脉血流)与内镜检查结果的高风险食管静脉曲张相关[12]。当这两种结果同时存在时,表现为100%的灵敏度和100%的特异性,该研究表明4D Flow MRI可能有助于评估食管静脉曲张破裂的风险。4D Flow MRI具备的无创性优势,在将来可能为临床提供另一种诊断门静脉高压症以及评估食管静脉曲张破裂风险的工具,为患者提供更多的诊断技术选择。该研究具有一定的局限性,研究中提出的门静脉血流变化分数的计算没有考虑解剖变异,例如,当存在左胃静脉引流到脾静脉时,门静脉血流变化分数的计算公式或许存在一定误差,因此该技术需要适应个体的解剖变异。这些研究结果需要在更大的患者队列中得到证实,解剖变异的数据有待校正。4D Flow MRI具备的无创性优势,可以减少不必要的食管胃内窥镜检查(EGD)程序,并通过无创方法增加胃食管静脉曲张(GEV)监测的依从性。在将来可能为临床提供另一种诊断门静脉高压症以及评估食管静脉曲张破裂风险的工具,为患者提供更多的诊断技术选择。

3.3. 手术计划和随访

严重门静脉高压症引起的并发症包括食管胃静脉曲张出血、难治性腹水和脾功能增强引起的全血细胞减少[25] [26]。不能通过药物治疗控制的门静脉高压症患者可以通过建立门体静脉分流术(TIPS)来治疗。TIPS通过在门静脉和肝静脉之间建立新分流,可以将门静脉血流直接引入体循环。该技术被广泛用于直接降低门静脉压力并减轻这些并发症[27]-[30]。TIPS的两个主要长期并发症是分流过多,可能增加肝性脑病(HE)的风险,分流过少不能充分降低压力梯度以降低出血风险[31],因此TIPS建立后,应持续评估其分流功能。静脉造影被认为是评估分流功能的金标准,但它是侵入性的、价格昂贵,且不适合重复测量[32]。因此,4D Flow MRI作为一种定量、定性的无创性血流评价工具,可以用于TIPS术后的随访及疗效评价。Stancovic等人证明了4D Flow MRI测量TIPS分流的可行性。该研究使用4D Flow MRI评价了11例难治性腹水或静脉曲张出血患者TIPS术前和术后4周的腹部血流[33]。Bannas等人在7例患者中使用4D Flow MRI评价了TIPS术前及TIPS术后2周和12周的肝脏血流[34]。此外Owen等人对16例TIPS术后患者进行了4D Flow MRI分析,以静脉造影或6个月临床随访作为参考标准,与多普勒超声、静脉造影进行对比,研究了4D Flow MRI在评估TIPS功能障碍的应用[35]。研究发现存在TIPS通路速度异常(>190 cm/s或<90 cm/s)和局灶性湍流的病例,其静脉造影发现病理性狭窄的灵敏度为100%,特异性为100%。这些报告表明,4D Flow MRI存在用于TIPS通路的术前评价和随访的价值。然而在Owen等人的研究中,他们在6名患者中发现了湍流或异常速度,而没有分流功能障碍的证据。他们得出结论,这两个参数必须异常才能以高特异性和灵敏度检测狭窄。不幸的是,他们没有在本文中定义术语“湍流”,也没有提供图像示例。分流分数、峰值流速(比率)和异常血流模式这些参数,是4D Flow MRI全面评估TIPS功能的有希望的参数,但需要在长期随访的大型研究中进一步评估这些参数,以确定其诊断性能和临床实用性。

肝性脑病是一种常见的肝硬化晚期并发症[36] [37]。HE能引起脑功能障碍、意识丧失、行为异常和运动障碍。晚期肝硬化患者出现大侧支分流,大量肠系膜上静脉血流直接分流到体循环中,而不是流向肝脏,使得未脱氨的氨和代谢物直接从肠道流入体循环,引起肝性脑病。在这种情况下分流栓塞术可能会改善HE,因为它可以防止肠系膜上静脉的血流直接分流到体循环中[38]-[41]

Hyodo R等人在2例伴有大分流的肝性脑病病例中,对比了弹簧圈栓塞术前后血管造影图像和临床症状与4D Flow MRI的测量结果[42]。该研究报道,4D Flow MRI的流线图可以准确地显示血管造影图像和导管放置上游的血流,这是血管造影无法显示的。并观察到分流栓塞维持了肠系膜上静脉的入肝血流,门静脉血流量得以增加,与临床上观察到的术后较低的血清氨水平和脑功能改善相符。因此,4D Flow MRI可用于评价弹簧圈栓塞术后的疗效,未来或许还可用于评价复发和再治疗。

以上的研究表明,4D Flow MRI可用于评价门静脉高压症患者手术治疗后的门静脉血流动力学变化,后期需要在长期随访的大型研究列队中进一步研究,以确定其诊断性能和临床实用性。

3.4. 技术挑战、局限性及发展方向

尽管4D Flow MRI前景广阔,但该技术在临床应用的推广中仍面临一些挑战。首先,4D Flow MRI的图像采集时间较长,尽管4D Flow MRI采集技术上已经有了一定程度的进展,图像采集时间得到了一定程度的缩短,但是4D Flow MRI的采集时间仍然较长,增加了运动伪影的风险,特别是肝硬化晚期,存在肝性脑病的患者对图像采集时间的要求更高。其次,4D Flow MRI图像采集后需要进行后处理,而其数据量大且数据复杂,生成的大量数据需要强大的计算工具和专业知识进行处理和解释,数据后处理流程及技术仍存在优化的空间。此外4D Flow MRI技术对设备要求较高,高昂的设备和运行成本限制了在资源有限地区的应用。4D Flow MRI研究和技术进步正在推动4D Flow MRI的改进,目前的研究为我们展示了该技术未来的发展方向。在数据采集方面,需要更快的成像序列和压缩传感方法,以缩短扫描时间并提高图像质量。在图像后处理及数据分析方面,机器学习和人工智能的整合可以简化数据处理,提高后处理准确性并减少观察者间差异。4D Flow MRI技术可与多参数MRI整合,将4D Flow MRI与扩散加权成像或MR弹性成像等技术结合,可在一次检查中全面评估肝脏的结构、功能和血流动力学,提高检查效率,节省成本。

4. 小结和展望

4D Flow MRI作为一种无创性的诊断技术,可对门静脉系统的血流进行定性、定量的评估,可以同时提供血流动力学和形态学的时间分辨信息。针对肝硬化门脉高压症患者,该技术展示了多种临床诊断的潜力,不仅能反映肝硬化患者门静脉系统血流的变化,还能对食管静脉曲张出血进行危险分层。此外,4D Flow MRI在手术计划和多种肝脏介入术的随访中也表现出有用性。随着相关技术的进一步完善,未来将促进4D Flow MRI技术在临床的广泛应用。

NOTES

*通讯作者。

参考文献

[1] Roldán‐Alzate, A., Frydrychowicz, A., Niespodzany, E., Landgraf, B.R., Johnson, K.M., Wieben, O., et al. (2012) In Vivo Validation of 4D Flow MRI for Assessing the Hemodynamics of Portal Hypertension. Journal of Magnetic Resonance Imaging, 37, 1100-1108.
https://doi.org/10.1002/jmri.23906
[2] Lee, W., Chang, S.D., Duddalwar, V.A., Comin, J.M., Perera, W., Lau, W.E., et al. (2011) Imaging Assessment of Congenital and Acquired Abnormalities of the Portal Venous System. RadioGraphics, 31, 905-926.
https://doi.org/10.1148/rg.314105104
[3] Rosenthal, S.J., Harrison, L.A., Baxter, K.G., Wetzel, L.H., Cox, G.G. and Batnitzky, S. (1995) Doppler US of Helical Flow in the Portal Vein. RadioGraphics, 15, 1103-1111.
https://doi.org/10.1148/radiographics.15.5.7501853
[4] Oechtering, T.H., Roberts, G.S., Panagiotopoulos, N., Wieben, O., Reeder, S.B. and Roldán-Alzate, A. (2022) Clinical Applications of 4D Flow MRI in the Portal Venous System. Magnetic Resonance in Medical Sciences, 21, 340-353.
https://doi.org/10.2463/mrms.rev.2021-0105
[5] Hyodo, R., Takehara, Y. and Naganawa, S. (2022) 4D Flow MRI in the Portal Venous System: Imaging and Analysis Methods, and Clinical Applications. La radiologia medica, 127, 1181-1198.
https://doi.org/10.1007/s11547-022-01553-x
[6] Bannas, P., Roldán-Alzate, A., Johnson, K.M., Woods, M.A., Ozkan, O., Motosugi, U., et al. (2016) Longitudinal Monitoring of Hepatic Blood Flow before and after TIPS by Using 4D-Flow MR Imaging. Radiology, 281, 574-582.
https://doi.org/10.1148/radiol.2016152247
[7] Dyvorne, H., Knight-Greenfield, A., Jajamovich, G., Besa, C., Cui, Y., Stalder, A., et al. (2015) Abdominal 4D Flow MR Imaging in a Breath Hold: Combination of Spiral Sampling and Dynamic Compressed Sensing for Highly Accelerated Acquisition. Radiology, 275, 245-254.
https://doi.org/10.1148/radiol.14140973
[8] Motosugi, U., Roldán-Alzate, A., Bannas, P., Said, A., Kelly, S., Zea, R., et al. (2019) Four-dimensional Flow MRI as a Marker for Risk Stratification of Gastroesophageal Varices in Patients with Liver Cirrhosis. Radiology, 290, 101-107.
https://doi.org/10.1148/radiol.2018180230
[9] Keller, E.J., Kulik, L., Stankovic, Z., Lewandowski, R.J., Salem, R., Carr, J.C., et al. (2017) Journal Club: Four-Dimensional Flow MRI-Based Splenic Flow Index for Predicting Cirrhosis-Associated Hypersplenism. American Journal of Roentgenology, 209, 46-54.
https://doi.org/10.2214/ajr.16.17620
[10] Stankovic, Z., Frydrychowicz, A., Csatari, Z., Panther, E., Deibert, P., Euringer, W., et al. (2010) MR‐Based Visualization and Quantification of Three‐dimensional Flow Characteristics in the Portal Venous System. Journal of Magnetic Resonance Imaging, 32, 466-475.
https://doi.org/10.1002/jmri.22248
[11] Frydrychowicz, A., Landgraf, B.R., Niespodzany, E., Verma, R.W., Roldán‐Alzate, A., Johnson, K.M., et al. (2011) Four‐dimensional Velocity Mapping of the Hepatic and Splanchnic Vasculature with Radial Sampling at 3 Tesla: A Feasibility Study in Portal Hypertension. Journal of Magnetic Resonance Imaging, 34, 577-584.
https://doi.org/10.1002/jmri.22712
[12] Stankovic, Z., Csatari, Z., Deibert, P., Euringer, W., Blanke, P., Kreisel, W., et al. (2012) Normal and Altered Three-Dimensional Portal Venous Hemodynamics in Patients with Liver Cirrhosis. Radiology, 262, 862-873.
https://doi.org/10.1148/radiol.11110127
[13] Moller, S., Hobolth, L., Winkler, C., Bendtsen, F. and Christensen, E. (2011) Determinants of the Hyperdynamic Circulation and Central Hypovolaemia in Cirrhosis. Gut, 60, 1254-1259.
https://doi.org/10.1136/gut.2010.235473
[14] Zardi, E.M., Dobrina, A., Uwechie, V., Cacciapaglia, F., Rollo, M., Laghi, V., Ambrosino, G. and Lumachi, F. (2008) Postmeal Portal Flow Variations in HCV-Related Chronic Hepatitis and Liver Cirrhosis with and without Hyperdynamic Syndrome. In Vivo, 22, 509-512.
[15] Bhathal, P.S. and Grossman, H.J. (1985) Reduction of the Increased Portal Vascular Resistance of the Isolated Perfused Cirrhotic Rat Liver by Vasodilators. Journal of Hepatology, 1, 325-337.
https://doi.org/10.1016/s0168-8278(85)80770-4
[16] Burkart, D.J., Johnson, C.D., Ehman, R.L., Weaver, A.L. and Ilstrup, D.M. (1993) Evaluation of Portal Venous Hypertension with Cine Phase-Contrast MR Flow Measurements: High Association of Hyperdynamic Portal Flow with Variceal Hemorrhage. Radiology, 188, 643-648.
https://doi.org/10.1148/radiology.188.3.8351326
[17] Brunsing, R.L., Brown, D., Almahoud, H., Kono, Y., Loomba, R., Vodkin, I., et al. (2021) Quantification of the Hemodynamic Changes of Cirrhosis with Free‐Breathing Self‐Navigated MRI. Journal of Magnetic Resonance Imaging, 53, 1410-1421.
https://doi.org/10.1002/jmri.27488
[18] Schiedermaier, P., Koch, L., Mojón, A., Hermida, R., Layer, G. and Sauerbruch, T. (2006) Circadian Rhythm of Fasting and Postprandial Portal Blood Flow in Cirrhosis. Scandinavian Journal of Gastroenterology, 41, 826-832.
https://doi.org/10.1080/00365520500463290
[19] de Vries, P.J., Hooge, P.D., Hoekstra, J.B.L. and Hattum, J.V. (1994) Blunted Postprandial Reaction of Portal Venous Flow in Chronic Liver Disease, Assessed with Duplex Doppler: Significance for Prognosis. Journal of Hepatology, 21, 966-973.
https://doi.org/10.1016/s0168-8278(05)80603-8
[20] Roldán‐Alzate, A., Frydrychowicz, A., Said, A., Johnson, K.M., Francois, C.J., Wieben, O., et al. (2015) Impaired Regulation of Portal Venous Flow in Response to a Meal Challenge as Quantified by 4D Flow MRI. Journal of Magnetic Resonance Imaging, 42, 1009-1017.
https://doi.org/10.1002/jmri.24886
[21] Roldán-Alzate, A., Campo, C.A., Mao, L., Said, A., Wieben, O. and Reeder, S.B. (2022) Characterization of Mesenteric and Portal Hemodynamics Using 4D Flow MRI: The Effects of Meals and Diurnal Variation. Abdominal Radiology, 47, 2106-2114.
https://doi.org/10.1007/s00261-022-03513-5
[22] Suk, K.T. (2014) Hepatic Venous Pressure Gradient: Clinical Use in Chronic Liver Disease. Clinical and Molecular Hepatology, 20, 6-14.
https://doi.org/10.3350/cmh.2014.20.1.6
[23] Eshmuminov, D., Raptis, D.A., Linecker, M., Wirsching, A., Lesurtel, M. and Clavien, P. (2016) Meta-Analysis of Associating Liver Partition with Portal Vein Ligation and Portal Vein Occlusion for Two-Stage Hepatectomy. British Journal of Surgery, 103, 1768-1782.
https://doi.org/10.1002/bjs.10290
[24] Thabut, D., Moreau, R. and Lebrec, D. (2011) Noninvasive Assessment of Portal Hypertension in Patients with Cirrhosis. Hepatology, 53, 683-694.
https://doi.org/10.1002/hep.24129
[25] Allaire, M., Walter, A., Sutter, O., Nahon, P., Ganne-Carrié, N., Amathieu, R., et al. (2020) TIPS for Management of Portal-Hypertension-Related Complications in Patients with Cirrhosis. Clinics and Research in Hepatology and Gastroenterology, 44, 249-263.
https://doi.org/10.1016/j.clinre.2019.09.003
[26] Wolff, M. and Hirner, A. (2003) Current State of Portosystemic Shunt Surgery. Langenbecks Archives of Surgery, 388, 141-149.
https://doi.org/10.1007/s00423-003-0367-5
[27] Lee, H.L. and Lee, S.W. (2022) The Role of Transjugular Intrahepatic Portosystemic Shunt in Patients with Portal Hypertension: Advantages and Pitfalls. Clinical and Molecular Hepatology, 28, 121-134.
https://doi.org/10.3350/cmh.2021.0239
[28] Luo, S., Zhou, M., Cai, M., Han, S., Zhang, X. and Chu, J. (2023) Reduction of Portosystemic Gradient during Transjugular Intrahepatic Portosystemic Shunt Achieves Good Outcome and Reduces Complications. World Journal of Gastroenterology, 29, 2336-2348.
https://doi.org/10.3748/wjg.v29.i15.2336
[29] Colombato, L. (2007) The Role of Transjugular Intrahepatic Portosystemic Shunt (TIPS) in the Management of Portal Hypertension. Journal of Clinical Gastroenterology, 41, S344-S351.
https://doi.org/10.1097/mcg.0b013e318157e500
[30] Horhat, A., Bureau, C., Thabut, D. and Rudler, M. (2021) Transjugular Intrahepatic Portosystemic Shunt in Patients with Cirrhosis: Indications and Posttransjugular Intrahepatic Portosystemic Shunt Complications in 2020. United European Gastroenterology Journal, 9, 203-208.
https://doi.org/10.1177/2050640620952637
[31] Frydrychowicz, A., Roldan-Alzate, A., Winslow, E., Consigny, D., Campo, C.A., Motosugi, U., et al. (2017) Comparison of Radial 4D Flow-MRI with Perivascular Ultrasound to Quantify Blood Flow in the Abdomen and Introduction of a Porcine Model of Pre-Hepatic Portal Hypertension. European Radiology, 27, 5316-5324.
https://doi.org/10.1007/s00330-017-4862-4
[32] Burkart, D.J., Johnson, C.D., Morton, M.J., Wolf, R.L. and Ehman, R.L. (1993) Volumetric Flow Rates in the Portal Venous System: Measurement with Cine Phase-Contrast MR Imaging. American Journal of Roentgenology, 160, 1113-1118.
https://doi.org/10.2214/ajr.160.5.8470589
[33] Yzet, T., Bouzerar, R., Baledent, O., Renard, C., Lumbala, D.M., Nguyen-Khac, E., et al. (2010) Dynamic Measurements of Total Hepatic Blood Flow with Phase Contrast MRI. European Journal of Radiology, 73, 119-124.
https://doi.org/10.1016/j.ejrad.2008.09.032
[34] Annet, L., Materne, R., Danse, E., Jamart, J., Horsmans, Y. and Van Beers, B.E. (2003) Hepatic Flow Parameters Measured with MR Imaging and Doppler US: Correlations with Degree of Cirrhosis and Portal Hypertension. Radiology, 229, 409-414.
https://doi.org/10.1148/radiol.2292021128
[35] Owen, J.W., Saad, N.E., Foster, G. and Fowler, K.J. (2018) The Feasibility of Using Volumetric Phase-Contrast MR Imaging (4D Flow) to Assess for Transjugular Intrahepatic Portosystemic Shunt Dysfunction. Journal of Vascular and Interventional Radiology, 29, 1717-1724.
https://doi.org/10.1016/j.jvir.2018.07.022
[36] Ginès, P., Krag, A., Abraldes, J.G., Solà, E., Fabrellas, N. and Kamath, P.S. (2021) Liver Cirrhosis. The Lancet, 398, 1359-1376.
https://doi.org/10.1016/s0140-6736(21)01374-x
[37] Vilstrup, H., Amodio, P., Bajaj, J., Cordoba, J., Ferenci, P., Mullen, K.D., et al. (2014) Hepatic Encephalopathy in Chronic Liver Disease: 2014 Practice Guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology, 60, 715-735.
https://doi.org/10.1002/hep.27210
[38] Lynn, A.M., Singh, S., Congly, S.E., Khemani, D., Johnson, D.H., Wiesner, R.H., et al. (2016) Embolization of Portosystemic Shunts for Treatment of Medically Refractory Hepatic Encephalopathy. Liver Transplantation, 22, 723-731.
https://doi.org/10.1002/lt.24440
[39] Kako, Y., Yamakado, K., Jomoto, W., Nasada, T., Asada, K., Takaki, H., et al. (2017) Changes in Liver Perfusion and Function before and after Percutaneous Occlusion of Spontaneous Portosystemic Shunt. Japanese Journal of Radiology, 35, 366-372.
https://doi.org/10.1007/s11604-017-0647-6
[40] Naeshiro, N., Kakizawa, H., Aikata, H., Kan, H., Fujino, H., Fukuhara, T., et al. (2013) Percutaneous Transvenous Embolization for Portosystemic Shunts Associated with Encephalopathy: Long‐Term Outcomes in 14 Patients. Hepatology Research, 44, 740-749.
https://doi.org/10.1111/hepr.12181
[41] Laleman, W., Simon-Talero, M., Maleux, G., Perez, M., Ameloot, K., Soriano, G., et al. (2013) Embolization of Large Spontaneous Portosystemic Shunts for Refractory Hepatic Encephalopathy: A Multicenter Survey on Safety and Efficacy. Hepatology, 57, 2448-2457.
https://doi.org/10.1002/hep.26314
[42] Hyodo, R., Takehara, Y., Mizuno, T., Ichikawa, K., Ishizu, Y., Sugiyama, M., et al. (2021) Time‐Resolved 3D Cine Phase‐Contrast Magnetic Resonance Imaging (4D‐Flow MRI) Can Quantitatively Assess Portosystemic Shunt Severity and Confirm Normalization of Portal Flow after Embolization of Large Portosystemic Shunts. Hepatology Research, 51, 343-349.
https://doi.org/10.1111/hepr.13616