热休克蛋白110 (HSP110)在结直肠癌中的功能及作用研究进展
Advances in Functional Roles of Heat Shock Protein 110 (HSP110) in Colorectal Cancer
DOI: 10.12677/acm.2025.1551373, PDF, HTML, XML,   
作者: 赵瑾瑾, 田 赟*:南京中医药大学附属医院(江苏省中医院)肿瘤内科,江苏 南京
关键词: 热休克蛋白110结直肠癌功能作用综述Heat Shock Protein 110 Colorectal Cancer Functional Roles Review
摘要: 结直肠癌(Colorectal cancer, CRC)在我国及全球范围内的发病率和死亡率均位居前列,其发病率呈不断上升趋势,严重威胁人类健康。传统抗肿瘤治疗手段易产生耐药性,积极寻找新的分子靶点对CRC的防治至关重要。热休克蛋白(Heat shock proteins, HSPs)是一个成员庞大的多肽类蛋白质家族,在细胞内广泛存在,并通过多种途径参与细胞的生理和病理过程。HSP110作为HSPs中的一员,近年研究发现,HSP110在CRC中具有双重角色及机制复杂性的特点,而其在CRC领域的文献相对分散,缺乏系统性综述。本文归纳总结了目前国内外关于HSP110与CRC相关的研究,系统阐述了HSP110在CRC中的功能及作用。我们表明,HSP110在CRC中发挥了双重作用,有望为HSP110在CRC的诊治和研究提供新的思路与帮助。
Abstract: Colorectal cancer (CRC) remains a leading cause of global morbidity and mortality, with a steadily increasing incidence that poses significant public health challenges. Conventional anticancer therapies often develop resistance, highlighting the critical need for novel molecular targets. Heat shock proteins (HSPs), a conserved polypeptide protein family ubiquitously expressed in cells, modulate cellular physiological and pathological processes through diverse mechanisms. Recent studies reveal that HSP110, a member of the HSP family, exhibits dual roles and complex mechanisms in CRC pathogenesis. However, existing literature remains fragmented, lacking systematic synthesis. This review comprehensively reviews current research on HSP110 in CRC and systematically delineates its functional roles. We elucidate the dual regulatory roles of HSP110 in CRC progression and propose novel perspectives for diagnostic and therapeutic strategies targeting HSP110.
文章引用:赵瑾瑾, 田赟. 热休克蛋白110 (HSP110)在结直肠癌中的功能及作用研究进展[J]. 临床医学进展, 2025, 15(5): 314-323. https://doi.org/10.12677/acm.2025.1551373

1. 引言

根据最新的全球癌症统计数据表明,我国及全球范围内结直肠癌(Colorectal cancer, CRC)的发病率及死亡率均位居前四[1]。随着公众对肿瘤预防意识的提高、医疗技术的发展,饮食结构、生活习惯及社会环境等因素的影响,我国CRC发病人群呈现逐年上升及年轻化趋势[2]。CRC早期发病隐匿,临床症状不明显,常以大便改变及胃肠道症状为主,且容易与痔疮、肠道息肉、结肠炎性疾病等良性疾病混淆,许多患者在发现时已进入中晚期,治疗难度加大,预后较差。目前针对CRC的抗肿瘤治疗仍以手术、放疗、化疗、免疫及靶向治疗为主导,然而这些疗法大多在CRC进展的早期阶段有效,并且随着病程的进展,抗肿瘤药物可能产生耐药性及相关不良反应,影响后续治疗。积极寻找新的分子靶点及治疗药物对CRC的防治至关重要。

热休克蛋白(Heat Shock Proteins, HSPs)在各种应激情况下被诱导产生并对细胞产生保护作用,它们作为细胞和膜上一些蛋白质之间的分子结合剂,也就是众所周知的分子伴侣,协助蛋白质完成正确折叠或降解[3],能够维持生物体适应压力的平衡。HSP与癌细胞的生长、增殖、转移和抗癌药物的耐药性相关,有助于介导免疫细胞功能和免疫反应,在癌症发展中发挥了关键作用,成为癌症治疗的目标[4]。热休克蛋白根据其分子量分为5个亚家族:HSP110 (HSPH)、HSP90 (HSPC)、HSP70 (HSPA)、HSP60 (HSPD)和小热休克蛋白(HSPB) [small Heat Shock Proteins (sHSPs)] [5]。HSP110是HSP70家族的一个分支,在一系列细胞活动中有重要作用,是一个由不同种类蛋白构成的分子伴侣家族,随着人们对HSP110研究的不断深入,其在肿瘤治疗和预防中的意义已经引起广泛关注。

2. HSP110的分子结构与生物学功能

2.1. HSP110分子结构

HSP110是一组结构上高度保守的大分子HSP家族,广泛存在于哺乳动物细胞内,其结构与HSP70相似[6]。HSP70包含两个功能结构域,N端的核苷酸结合结构域(nucleotide-bindingdomain, NBD)和C端的底物结合结构域(substrate-binding domain, SBD),这两个结构域均有其本身固有的活性[7]-[9]。HSP110由于其酸性SBD大量片段的插入以及一段较长的C末端延伸使得其具有了较大的分子量[10]。HSP110属于HSP70超家族,分子量约110 kDa,包含ATP酶区、肽结合区、C端α螺旋结构域,其中α螺旋结构域这一结构特征可以鉴别HSP110家族成员,因为HSP110家族成员有高度的序列同源性[11]。HSP110与HSP70的相似性使其具备核苷酸交换因子(NEF)功能,协助HSP70完成蛋白质折叠,而HSP110分子伴侣的功能主要与其多肽结合区和C末端区域有关[11]

2.2. 生物学功能

2.2.1. 分子伴侣作用

HSP110的产生主要由热应激引起,在体外HSP110选择性地识别变性蛋白质以防止其在热休克的过程中聚集,并通过与HSP70相互作用,参与新合成或错误折叠蛋白的正确折叠。本质上,HSP110具有两种分子伴侣功能,抗聚集的直接功能和通过其作为HSP70蛋白的核交换因子作用的间接功能[12]。HSP110的缓冲性能在识别变性蛋白质及保护热损伤蛋白质方面比HSP70更有效,它能够在应激期间挽救易错折叠的蛋白质[13] [14]。与HSP70相比,HyunJu Oh等人的研究表明HSP110在将热损伤蛋白保持在可溶可折叠状态的能力更强,并具有强大的多肽结合能力[14] [15]。在肿瘤方面,由于癌细胞必须重新连接其新陈代谢,因此它们的生存需要高含量的应激诱导伴侣。而HSP110作为分子伴侣网络的一部分,其对于癌细胞的存活是重要的,但对于正常细胞并非如此[16]

2.2.2. 促癌抗凋亡作用

HSP110可以被不同的应激诱导,并帮助细胞在这些应激情况下生存,显示出抗凋亡特性。HSP110表达的显著上调已在多种癌症中得到充分证实,其中HSP110通过阻断细胞色素c从线粒体释放和BAX蛋白线粒体易位来抑制半胱天冬酶9和半胱天冬酶3活化,从而抑制癌细胞凋亡,促进肿瘤细胞生长[17] [18]。且HSP70-HSP110复合体的形成能够诱导自噬发生[19]

STAT3是一个被很好地描述的参与结肠癌细胞增殖的途径,HSP110能够与STAT3直接结合,通过JAK2促进STAT3的磷酸化及转录活性,并促进其易位至细胞核,促进癌细胞增殖和存活、转移、血管生成[20]。研究表明,在CRC小鼠模型和患者中,HSP110水平与磷酸化STAT3和肿瘤生长相关[15] [21]。因此,HSP110在结肠癌中的表达有助于STAT3依赖性肿瘤生长,并且该伴侣的频繁失活突变可能是显示MSI的结肠癌预后改善的重要事件。此外,HSP110也被证明能够激活影响Wnt/B-catenin通路促进癌细胞存活[22]

2.2.3. 免疫调节

HSP110有强效的分子伴侣功能,可以呈递肿瘤特异性的抗原肽给抗原呈递细胞(antigen presenting cell, APC),从而激活特异性的抗肿瘤细胞免疫[23];HSP110与APC相互作用,使MHC-II类分子、CD40的表达和共刺激分子上调,从而增强APC的抗原递呈能力[6] [24]。HSP110还可以诱导前炎症因子(如IL-12、TNF-α)分泌,作为“危险信号”强化免疫应答[25]。与之相反,在过去几年中,清道夫受体SRA/CD204已被描述为HSP110等高分子量HSP的受体,HSP110能够通过与清道夫受体结合抑制树突状细胞的免疫激活,形成免疫抑制微环境[26]

HSP110在肿瘤微环境中丰富,这种细胞外HSP110有利于促进肿瘤表型(M2型)巨噬细胞极化,促进炎症反应及肿瘤进展[27] [28]。而使用化学抑制剂或突变体HSP110ΔE9等抑制HSP110,则能够诱导抗肿瘤(M1型)巨噬细胞的肿瘤内浸润,增强其细胞毒性、抑制肿瘤生长[16] [29]。这可以解释表达大量HSP110ΔE9的预后良好的MSI结肠癌与丰富的细胞毒性免疫细胞相关[30]

3. HSP110在结直肠癌中的表达与功能

3.1. HSP110在CRC中的异常表达

HSP110高表达驱动肿瘤进展,癌细胞对诸如HSP110之类的伴侣有强烈的需求,以帮助癌细胞在应激情况下存活。HSP110在结直肠癌中高表达,并通过稳定致癌蛋白(激活IL-6-STAT3通路)、促进DNA损伤修复(NHEJ通路)及抑制细胞凋亡等途径推动肿瘤增殖与转移[18] [31] [32]。研究表明,与邻近的非肿瘤组织相比,HSP110在CRC肿瘤中的表达明显上调;此外,HSP110的表达与CRC中阳性淋巴结转移呈高度正相关关系,与CRC患者的总体生存率呈负相关关系[33]

CRC根据微卫星状态可分为微卫星稳定(microsatellite stable, MSS)和微卫星高度不稳定(microsatellite instability-high, MSI-H)两类。在MSI型CRC细胞系和原发肿瘤中,位于HSP110内含子8中的一个大的微卫星序列(T17单核苷酸重复序列)发生了系统突变,肿瘤DNA中该重复序列的缩短与外显子9的跳跃(HSP110ΔE9)导致异常HSP110转录物合成的增加有关,这不利于野生型HSP110 mRNA的合成[34]。HSP110ΔE9是迄今为止在癌症中发现的第一个HSP突变体[27],与HSP110本身相反,HSP110ΔE9具有促凋亡、化疗增敏等抑癌作用。细胞外HSP110的量因突变体HSP110ΔE9的表达而强烈减少,HSP110ΔE9与野生型HSP110以1:1结合,以显性负效应抑制野生型HSP110的功能,从而抑制HSP110的伴侣活性及抗凋亡功能、阻断STAT3磷酸化,起到抑制肿瘤增殖的作用[15] [27] [34]

研究报道,HSP110在所有MSI型的CRC中都发生了系统突变[35],这一发现在胃癌、子宫内膜癌的研究中也得到证实[36] [37],其可能的机制是错配修复(MMR)缺陷导致T17重复序列无法修复,促使HSP110ΔE9积累,尽管其对肿瘤有害,但因MMR缺失成为进化“必然后果”[38]。此外,HSP110ΔE9常见于同时携带BRAF V600E突变的MSI-H型CRC患者,提示其在特定分子亚型中的重要性[39]。MSI型CRC中HSP110呈现高突变负荷,增强的免疫浸润,通常与良好预后相关;而HSP110在MSS型CRC中突变负荷较低,HSP110的高表达往往与肿瘤的侵袭性和治疗抵抗性存在关联[40] [41]

HSP110在CRC中呈现“双刃剑”特性:野生型HSP110通过促癌机制推动肿瘤进展,而突变体HSP110ΔE9则通过抑制野生型功能改善预后。MSI-H型CRC中HSP110ΔE9的积累揭示了MMR缺陷与分子伴侣功能失衡的独特关联,为靶向HSP110的精准治疗(如开发模拟HSP110ΔE9的抑制剂)提供了理论依据。未来需进一步探索其在不同分子亚型中的调控网络及临床应用潜力。

3.2. HSP110与化疗耐药

放疗及许多化疗药物通过靶向肿瘤细胞DNA造成损伤,从而达到治疗目的。但随着时间的推移,肿瘤细胞会有效激活细胞内DNA修复的相关信号通路对受损的DNA进行修复,使得肿瘤细胞逃避死亡信号得以继续存活,进而对放化疗产生抵抗性[42]。在结直肠癌细胞中,HSP110在接受奥沙利铂等遗传毒性化疗后易位到细胞核中,与Ku70/Ku80异二聚体结合,增强DNA损伤修复能力,降低化疗敏感性[43]

与正常细胞相比,癌细胞对伴侣蛋白的生存需求更高,在癌症治疗中使用HSP抑制剂作为化学增敏剂是有充分理由的。约有25%的II~III期MSI型CRC患者对化疗反应良好,这反映了HSP110 T17重复序列的大缺失;由于HSP110ΔE9缺乏HSP110底物结合结构域,能够通过抑制野生型HSP110的核转位及功能,显著提高肿瘤细胞对5-氟尿嘧啶和奥沙利铂的敏感性[21] [34]

4. HSP110作为结直肠癌的生物标志物

4.1. 诊断与预后价值

HSP110 T17重复序列的大片段缺失(≥5 bp)与MSI-H型结直肠癌密切相关,可作为MSI检测的补充标志物,其灵敏度和特异性优于传统五重微卫星标志物[31] [35]。多中心临床研究表明,HSP110失活突变的存在与结直肠癌患者的良好预后之间存在直接关联[16]。在MSI CRC细胞系和原发肿瘤中,位于HSP110内含子8的T17单核苷酸重复大缺失(低HSP110/高HSP110ΔE9)的MSI患者的无复发生存期(RFS)明显长于T17小缺失(高HSP110/低HSP11ΔE9)的患者,而T17小缺失的MSI CRC患者的RFS与MSS CRC患者无明显差异,这表明CRC细胞对HSP110有很强的依赖性[34]。并且HSP110 T17缺失可用于识别将从5-氟尿嘧啶和奥沙利铂辅助化疗中受益的CRC患者。

但另一项研究结果显示,在III期微卫星不稳定性结肠癌患者中,HSP110 T17缺失并与无病生存期(DFS)无显著相关性;Gaelle Tachon等人的研究也指出HSP110表达或HSP110 T17缺失对辅助化疗无明显预后价值或预测价值,提示在HSP110 T17缺失的背景下,还需考虑个体基因、环境等其他因素,这突显了预后评估的复杂性[44] [45]

HSP110在大多数CRC肿瘤中强表达,参与致癌蛋白的稳定化,促进癌细胞增殖、转移和不良预后,而以野生型HSP110为代价形成的HSP110ΔE9高表达始终与化疗反应良好及生存期延长相关,其存在可预测化疗反应及生存获益[21]。HSP110的突变和HSP110表达的变异代表了与MSI-H CRCI预后异质性相关的分子异质性,预计这些分子改变可以用作MSI-H CRC的预测标志物和治疗靶点[46]。HSP110ΔE9 mRNA表达水平高的MSI-H CRC患者的存活时间更长,并且在III期和辅助化疗治疗的亚组中均维持了这种改善的生存率[21]。此外,HSP110ΔE9也可通过增强癌细胞对奥沙利铂和5-氟尿嘧啶的敏感性,改善CRC患者预后。

4.2. 临床应用

微卫星不稳定性(MSI)是CRC的重要生物标志物,影响预后和治疗决策。目前,国内外权威指南和专家共识推荐MSI检测方法主要是2B3D Panel (该Panel包括2个单核苷酸位点BAT-25和BAT-26和3个双核苷酸位点D2S123、D5S346和D17S250)和Promega Panel (包括5个单核苷酸位点BAT-25、BAT-26、NR-21、MONO-27和NR-24和2个对照位点Penta C、Penta D) [47]。临床上,也常通过对CRC肿瘤组织进行免疫组化(IHC)检测错配修复(MMR)蛋白状态(如MLH1、MSH2、MSH6、PMS2)来确定MSI表型。尽管两组检测方法的一致性很高,但仍有不一致的情况存在。

HSP110 T17是MSI阳性结直肠癌(CRC)中突变最频繁的靶基因。研究表明HSP110 T17可作为传统五重微卫星标记检测的补充标志物,在免疫组化与传统五重检测结果不一致时,其可以准确地对MSI状态进行分类,减少漏诊风险[35] [45] [48]。HSP110 T17单核苷酸重复序列检测的灵敏度(98.4%)高于传统五重微卫星标记(95.1%),特异性均达99.7%,并在Lynch综合征患者中表现出优异的MSI识别能力[35]。HSP110 T17作为单一标记物,操作简便且成本较低,适用于临床广泛筛查,可加速治疗决策。其临床应用不仅可提高MSI分型的准确性,还可通过联合IHC和PCR技术优化诊疗流程。

值得注意的是,HSP110与化疗、免疫治疗及预后的密切关联使其具有动态监测潜力:细胞外HSP110或可作为肿瘤微环境中的无创标志物,实时评估治疗反应及复发风险,进一步拓展其在精准医疗中的应用价值。

5. 靶向HSP110的治疗策略

5.1. 小分子抑制剂

HSP110在CRC中的表达上调与促癌作用已被证实,抑制HSP110有可能成为抗击结直肠癌有力的新策略。Gustavo J. Gozzi等人结合晶体结构的研究及计算机模拟技术,从化学分子库中成功鉴定了一种靶向HSP110核苷酸结合域(ATP酶区)的潜在先导抑制剂——非天然折叠体(foldamer 33);在体外和体内模型中,其能够抑制CRC癌细胞的增殖生长、诱导癌细胞凋亡,并具有对正常细胞毒性低,口服生物利用度良好的特点[16]

在包括CRC在内的大部分癌症中均有STAT3的活化并与不良预后有关,STAT3是HSP110的已知伴侣,HSP110与STAT3结合有利于其磷酸化[18] [49] [50]。Foldamer 33能够与HSP110结合并阻断HSP110在STAT3磷酸化中的作用,抑制STAT3下游促癌信号通路。由于STAT3是一种必需的转录因子,是许多细胞功能所必需的,因而STAT3抑制剂是抗癌治疗的方向但其不良反应也应重视,通过靶向HSP110而非直接抑制STAT3,可能避免传统STAT3抑制剂对正常细胞的广泛毒性。因此HSP110作为一种分子伴侣蛋白,开发靶向HSP110抑制剂进而抑制HSP110的分子伴侣功能,可能是一种新的药物靶点及治疗策略。

5.2. 免疫治疗

HSP110是一种效应显著的免疫佐剂,可以激活免疫效应细胞进而启动免疫应答反应,其免疫佐剂效应源于其与免疫系统相互作用时发挥的双重功能,即同时诱导固有免疫和适应性免疫[25]

纳米菲汀(Nanofitins)是一种替代性支架蛋白,可用于特异性和亲和性分子识别[51] [52]。Guillaume Marcion等人通过定制生成特异性抗HSP110 Nanofitins来解决其成药性,研究发现Nanofitins特异性结合HSP110的肽结合结构域,阻断其与免疫抑制性配体的相互作用,抑制其促M2型巨噬细胞极化的能力,克服因巨噬细胞介导的免疫检查点抑制剂耐药性,增强抗肿瘤免疫反应,联合PD-L1抑制剂可协同增效[53]。总之,这种靶向HSP110的Nanofitins似乎是一种很有前景的新型免疫治疗先导化合物。整合纳米抗体、免疫检查点抑制剂及化疗,克服耐药性;HSP110作为关键免疫调控节点,其靶向治疗策略为结直肠癌的精准免疫治疗提供了新思路,未来有望通过机制优化与临床实践显著改善患者预后。

5.3. 疫苗开发

HSP110是疫苗制备中最常用的分子伴侣之一,凭借其强大的多肽结合能力,可高效捕获肿瘤特异性抗原,形成稳定的抗原复合物,增强抗原的免疫原性,在肿瘤疫苗及免疫治疗中被寄予很大的期望[54] [55]。HSP多肽复合物在结肠癌中表现出保护性免疫反应,其作为疫苗用于结直肠癌的临床治疗已显示出明显的优势[13] [56] [57],并且HSP110作为内源性蛋白,免疫原性低,不易引发强烈副作用。从结肠癌C26细胞中纯化的热休克蛋白HSP110,将其单独接种以及和自体来源DC细胞共接种小鼠,都诱导出强烈的抗肿瘤作用,并发现发热水平的热疗可以增强疫苗效应[58]。基于HSP110独特的分子伴侣特性及免疫激活能力,未来可参考患者特异性突变谱,开发个体化HSP110-新抗原复合疫苗。

5.4. 联合化疗

HSP110通过调控非同源末端连接(NHEJ)通路,修复如奥沙利铂等化疗引起的DNA双链断裂(DSB),降低抗肿瘤药物的杀伤效果,并与化疗耐药相关[43]。NHEJ通路抑制剂SCR7可绕开HSP110对NHEJ通路的调控,直接减少NHEJ表达,通过抑制DNA修复通路,从而增加肿瘤细胞对奥沙利铂的敏感性,逆转HSP110介导的化疗耐药[31]

研究表明,患者突变为低水平HSP110对奥沙利铂有较高的敏感性,但大部分CRC患者不存在天然的HSP110突变,因此增加肿瘤患者对奥沙利铂等化疗药物的敏感性仍是难题。HSP110敲低的细胞在经过奥沙利铂处理后,γ-H2AX (DSB损伤的主要指标)表达增多,提示DNA损伤累积,增强化疗敏感性[31] [59]。在体外,HSP110ΔE9的表达以剂量依赖的方式使结肠癌细胞对奥沙利铂和5-氟尿嘧啶等抗癌药物敏感[15] [60],因此开发模拟HSP110ΔE9的抗癌化疗增敏作用的HSP110抑制剂也是一个有前途的前景。

6. 小结

HSP110作为一种与CRC关联密切的伴侣蛋白,在CRC的发生、发展和治疗抵抗性等方面发挥作用,被认为是一个有希望的治疗靶点,尤其是在处理MSI型CRC方面。HSP110在CRC中呈现“双刃剑”特性:HSP110通过调控蛋白稳态、DNA修复及免疫微环境等多重机制参与结直肠癌的恶性进展与治疗抵抗,其突变体HSP110ΔE9为预后分层和化疗增敏提供了新方向。靶向HSP110的抑制剂和联合治疗策略具有重要转化潜力,靶向HSP110的分子策略有望突破传统化疗瓶颈,为结直肠癌的精准治疗开辟新路径。

然而,HSP110作为治疗靶点也面临一些挑战。HSP110与多种细胞蛋白质的广泛互作使精准靶向成为挑战,抑制HSP110可能对正常细胞功能产生的非特异性影响造成药物相关不良反应。未来我们需通过整合多组学数据、优化HSP110抑制剂的化学结构、探索HSP110与其他分子通路的交互影响、展开并收集相关的多中心大规模临床试验与数据等方法,从而推动HSP110作为CRC标志物和治疗靶点的精准应用。

NOTES

*通讯作者。

参考文献

[1] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[2] Wang, Z. and Fang, J. (2014) Colorectal Cancer in Inflammatory Bowel Disease: Epidemiology, Pathogenesis and Surveillance. Gastrointestinal Tumors, 1, 146-154.
https://doi.org/10.1159/000365309
[3] Szyller, J. and Bil-Lula, I. (2015) Heat Shock Proteins in Oxidative Stress and Ischemia/Reperfusion Injury and Benefits from Physical Exercises: A Review to the Current Knowledge. Oxidative Medicine and Cellular Longevity, 6, 101-109.
[4] Wu, Y., Zhao, J., Tian, Y. and Jin, H. (2023) Cellular Functions of Heat Shock Protein 20 (HSPB6) in Cancer: A Review. Cellular Signalling, 112, Article ID: 110928.
https://doi.org/10.1016/j.cellsig.2023.110928
[5] Bondy, S.C. (2014) Prolonged Exposure to Low Levels of Aluminum Leads to Changes Associated with Brain Aging and Neurodegeneration. Toxicology, 315, 1-7.
https://doi.org/10.1016/j.tox.2013.10.008
[6] 徐煌, 韩冬, 程惠平. 热休克蛋白110的研究进展[J]. 嘉兴学院学报, 2008, 20(6): 15-17, 73.
[7] Mayer, M.P. and Bukau, B. (2005) Hsp70 Chaperones: Cellular Functions and Molecular Mechanism. Cellular and Molecular Life Sciences, 62, 670-684.
https://doi.org/10.1007/s00018-004-4464-6
[8] Bukau, B., Weissman, J. and Horwich, A. (2006) Molecular Chaperones and Protein Quality Control. Cell, 125, 443-451.
https://doi.org/10.1016/j.cell.2006.04.014
[9] Young, J.C. (2010) Mechanisms of the Hsp70 Chaperone Systemthis Paper Is One of a Selection of Papers Published in This Special Issue Entitled “Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting—Protein Folding: Principles and Diseases” and Has Undergone the Journal’s Usual Peer Review Process. Biochemistry and Cell Biology, 88, 291-300.
https://doi.org/10.1139/o09-175
[10] 杨营. 热休克蛋白Sse1的表达纯化以及生化性质研究[D]: [硕士学位论文]. 天津: 天津科技大学, 2016.
[11] Oh, H.J., Easton, D., Murawski, M., Kaneko, Y. and Subjeck, J.R. (1999) The Chaperoning Activity of Hsp110: Identification of Functional Domains by Use of Targeted Deletions. Journal of Biological Chemistry, 274, 15712-15718.
https://doi.org/10.1074/jbc.274.22.15712
[12] Javid, H., Hashemian, P., Yazdani, S., Sharbaf Mashhad, A. and Karimi‐Shahri, M. (2022) The Role of Heat Shock Proteins in Metastatic Colorectal Cancer: A Review. Journal of Cellular Biochemistry, 123, 1704-1735.
https://doi.org/10.1002/jcb.30326
[13] Wang, X. and Subjeck, J.R. (2013) High Molecular Weight Stress Proteins: Identification, Cloning and Utilisation in Cancer Immunotherapy. International Journal of Hyperthermia, 29, 364-375.
https://doi.org/10.3109/02656736.2013.803607
[14] Oh, H.J., Chen, X. and Subjeck, J.R. (1997) Hsp110 Protects Heat-Denatured Proteins and Confers Cellular Thermoresistance. Journal of Biological Chemistry, 272, 31636-31640.
https://doi.org/10.1074/jbc.272.50.31636
[15] Berthenet, K., Boudesco, C., Collura, A., Svrcek, M., Richaud, S., Hammann, A., et al. (2016) Extracellular HSP110 Skews Macrophage Polarization in Colorectal Cancer. OncoImmunology, 5, e1170264.
https://doi.org/10.1080/2162402x.2016.1170264
[16] Gozzi, G.J., Gonzalez, D., Boudesco, C., Dias, A.M.M., Gotthard, G., Uyanik, B., et al. (2019) Selecting the First Chemical Molecule Inhibitor of HSP110 for Colorectal Cancer Therapy. Cell Death & Differentiation, 27, 117-129.
https://doi.org/10.1038/s41418-019-0343-4
[17] Chatterjee, S. and Burns, T. (2017) Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach. International Journal of Molecular Sciences, 18, Article 1978.
https://doi.org/10.3390/ijms18091978
[18] Berthenet, K., Bokhari, A., Lagrange, A., Marcion, G., Boudesco, C., Causse, S., et al. (2016) HSP110 Promotes Colorectal Cancer Growth through STAT3 Activation. Oncogene, 36, 2328-2336.
https://doi.org/10.1038/onc.2016.403
[19] Hjerpe, R., Bett, J.S., Keuss, M.J., Solovyova, A., McWilliams, T.G., Johnson, C., et al. (2016) UBQLN2 Mediates Autophagy-Independent Protein Aggregate Clearance by the Proteasome. Cell, 166, 935-949.
https://doi.org/10.1016/j.cell.2016.07.001
[20] Abi Zamer, B., El-Huneidi, W., Eladl, M.A. and Muhammad, J.S. (2021) Ins and Outs of Heat Shock Proteins in Colorectal Carcinoma: Its Role in Carcinogenesis and Therapeutic Perspectives. Cells, 10, Article 2862.
https://doi.org/10.3390/cells10112862
[21] Dorard, C., de Thonel, A., Collura, A., Marisa, L., Svrcek, M., Lagrange, A., et al. (2011) Expression of a Mutant HSP110 Sensitizes Colorectal Cancer Cells to Chemotherapy and Improves Disease Prognosis. Nature Medicine, 17, 1283-1289.
https://doi.org/10.1038/nm.2457
[22] Yu, N., Kakunda, M., Pham, V., Lill, J.R., Du, P., Wongchenko, M., et al. (2015) HSP105 Recruits Protein Phosphatase 2A to Dephosphorylate β-Catenin. Molecular and Cellular Biology, 35, 1390-1400.
https://doi.org/10.1128/mcb.01307-14
[23] Bharathi, Shamasundar, N.M., Sathyanarayana Rao, T.S., Dhanunjaya Naidu, M., Ravid, R. and Rao, K.S.J. (2006) A New Insight on Al-Maltolate-Treated Aged Rabbit as Alzheimer’s Animal Model. Brain Research Reviews, 52, 275-292.
https://doi.org/10.1016/j.brainresrev.2006.04.003
[24] Delamarche, C. (1993) A Molecular Mechanism of Aluminum Neurotoxicity. Journal of Neurochemistry, 60, 384-385.
https://doi.org/10.1111/j.1471-4159.1993.tb05866.x
[25] 任发亮, 任巧丽, 田志强, 等. HSP110与肿瘤免疫[J]. 免疫学杂志, 2018, 34(7): 641-644.
[26] Facciponte, J.G., Wang, X. and Subjeck, J.R. (2007) Hsp110 and Grp170, Members of the Hsp70 Superfamily, Bind to Scavenger Receptor‐A and Scavenger Receptor Expressed by Endothelial Cells‐I. European Journal of Immunology, 37, 2268-2279.
https://doi.org/10.1002/eji.200737127
[27] Duval, A., Collura, A., Berthenet, K., Lagrange, A. and Garrido, C. (2011) Microsatellite Instability in Colorectal Cancer: Time to Stop Hiding! Oncotarget, 2, 826-827.
https://doi.org/10.18632/oncotarget.353
[28] Kuang, D., Wu, Y., Chen, N., Cheng, J., Zhuang, S. and Zheng, L. (2007) Tumor-Derived Hyaluronan Induces Formation of Immunosuppressive Macrophages through Transient Early Activation of Monocytes. Blood, 110, 587-595.
https://doi.org/10.1182/blood-2007-01-068031
[29] Calderwood, S.K., Khaleque, M.A., Sawyer, D.B. and Ciocca, D.R. (2006) Heat Shock Proteins in Cancer: Chaperones of Tumorigenesis. Trends in Biochemical Sciences, 31, 164-172.
https://doi.org/10.1016/j.tibs.2006.01.006
[30] Boissière-Michot, F., Lazennec, G., Frugier, H., Jarlier, M., Roca, L., Duffour, J., et al. (2014) Characterization of an Adaptive Immune Response in Microsatellite-Instable Colorectal Cancer. OncoImmunology, 3, e29256.
https://doi.org/10.4161/onci.29256
[31] Berardinelli, G.N., Scapulatempo-Neto, C., Durães, R., Antônio de Oliveira, M., Guimarães, D. and Reis, R.M. (2018) Advantage of HSP110 (T17) Marker Inclusion for Microsatellite Instability (MSI) Detection in Colorectal Cancer Patients. Oncotarget, 9, 28691-28701.
https://doi.org/10.18632/oncotarget.25611
[32] Hosaka, S., Nakatsura, T., Tsukamoto, H., Hatayama, T., Baba, H. and Nishimura, Y. (2006) Synthetic Small Interfering RNA Targeting Heat Shock Protein 105 Induces Apoptosis of Various Cancer Cells Both in Vitro and in Vivo. Cancer Science, 97, 623-632.
https://doi.org/10.1111/j.1349-7006.2006.00217.x
[33] Slaby, (2009) Significant Overexpression of Hsp110 Gene during Colorectal Cancer Progression. Oncology Reports, 21, 1235-1241.
https://doi.org/10.3892/or_00000346
[34] Collura, A., Lagrange, A., Svrcek, M., Marisa, L., Buhard, O., Guilloux, A., et al. (2014) Patients with Colorectal Tumors with Microsatellite Instability and Large Deletions in HSP110 T17 Have Improved Response to 5-Fluorouracil-Based Chemotherapy. Gastroenterology, 146, 401-411.e1.
https://doi.org/10.1053/j.gastro.2013.10.054
[35] Buhard, O., Lagrange, A., Guilloux, A., Colas, C., Chouchène, M., Wanherdrick, K., et al. (2016) HSP110T17 Simplifies and Improves the Microsatellite Instability Testing in Patients with Colorectal Cancer. Journal of Medical Genetics, 53, 377-384.
https://doi.org/10.1136/jmedgenet-2015-103518
[36] Kimura, A., Ogata, K., Altan, B., Yokobori, T., Ide, M., Mochiki, E., et al. (2016) Nuclear Heat Shock Protein 110 Expression Is Associated with Poor Prognosis and Chemotherapy Resistance in Gastric Cancer. Oncotarget, 7, 18415-18423.
https://doi.org/10.18632/oncotarget.7821
[37] Kimura, A., Ogata, K., Altan, B., Yokobori, T., Mochiki, E., Yanai, M., et al. (2017) Nuclear Heat Shock Protein 110 Expression Is Associated with Poor Prognosis and Hyperthermo-Chemotherapy Resistance in Gastric Cancer Patients with Peritoneal Metastasis. World Journal of Gastroenterology, 23, 7541-7550.
https://doi.org/10.3748/wjg.v23.i42.7541
[38] Garrido, C., Collura, A., Berthenet, K., Lagrange, A. and Duval, A. (2012) Mutation d’HSP110 dans les cancers colorectaux. Médecine/Sciences, 28, 9-10.
https://doi.org/10.1051/medsci/2012281002
[39] Roma, C., Rachiglio, A.M., Pasquale, R., Fenizia, F., Iannaccone, A., Tatangelo, F., et al. (2016) BRAF V600E Mutation in Metastatic Colorectal Cancer: Methods of Detection and Correlation with Clinical and Pathologic Features. Cancer Biology & Therapy, 17, 840-848.
https://doi.org/10.1080/15384047.2016.1195048
[40] How-Kit, A., Daunay, A., Buhard, O., Meiller, C., Sahbatou, M., Collura, A., et al. (2017) Major Improvement in the Detection of Microsatellite Instability in Colorectal Cancer Using HSP110 T17 E-ice-COLD-PCR. Human Mutation, 39, 441-453.
https://doi.org/10.1002/humu.23379
[41] Luo, Y., Cheng, B., Liu, S., et al. (2019) Relationship between CpG Island Methylation Phenotype, Microsatellite Instability Phenotype and Mutation of KRAS, NRAS, and BRAF Genes in Colorectal Cancer. International Journal of Clinical and Experimental Pathology, 12, 1101-1107.
[42] Zimmermann, M., Oehler, C., Mey, U., Ghadjar, P. and Zwahlen, D.R. (2016) Radiotherapy for Non-Hodgkin’s Lymphoma: Still Standard Practice and Not an Outdated Treatment Option. Radiation Oncology, 11, Article No. 110.
https://doi.org/10.1186/s13014-016-0690-y
[43] Causse, S.Z., Marcion, G., Chanteloup, G., Uyanik, B., Boudesco, C., Grigorash, B.B., et al. (2018) HSP110 Translocates to the Nucleus Upon Genotoxic Chemotherapy and Promotes DNA Repair in Colorectal Cancer Cells. Oncogene, 38, 2767-2777.
https://doi.org/10.1038/s41388-018-0616-2
[44] Kim, K., Lee, T.H., Kim, J.H., Cho, N., Kim, W.H. and Kang, G.H. (2017) Deletion in HSP110 T17: Correlation with Wild-Type HSP110 Expression and Prognostic Significance in Microsatellite-Unstable Advanced Gastric Cancers. Human Pathology, 67, 109-118.
https://doi.org/10.1016/j.humpath.2017.08.001
[45] Tachon, G., Chong-Si-Tsaon, A., Lecomte, T., Junca, A., Frouin, É., Miquelestorena-Standley, E., et al. (2022) HSP110 as a Diagnostic but Not a Prognostic Biomarker in Colorectal Cancer with Microsatellite Instability. Frontiers in Genetics, 12, Article 769281.
https://doi.org/10.3389/fgene.2021.769281
[46] Chan, A.T. (2011) Turning up the Heat on Colorectal Cancer. Nature Medicine, 17, 1186-1188.
https://doi.org/10.1038/nm.2500
[47] 中国医师协会医学技师委员会病理技术专家组. 微卫星不稳定性(MSI)检测技术专家共识[J]. 临床与实验病理学杂志, 2024, 40(3): 228-235.
[48] Rajoua, N., Daunay, A., Triki, W., Baraket, O., Bouchoucha, S., Maghrebi, H., et al. (2025) HSP110 T17 Marker Matches the Pentaplex Panel and Outperforms CAT-25 for Detecting Microsatellite Instability in Sporadic Colorectal Cancer. Cancer Genetics, 294, 21-26.
https://doi.org/10.1016/j.cancergen.2025.03.002
[49] Morikawa, T., Baba, Y., Yamauchi, M., Kuchiba, A., Nosho, K., Shima, K., et al. (2011) STAT3 Expression, Molecular Features, Inflammation Patterns, and Prognosis in a Database of 724 Colorectal Cancers. Clinical Cancer Research, 17, 1452-1462.
https://doi.org/10.1158/1078-0432.ccr-10-2694
[50] Huang, W., Dong, Z., Chen, Y., Wang, F., Wang, C.J., Peng, H., et al. (2016) Erratum: Small-Molecule Inhibitors Targeting the DNA-Binding Domain of STAT3 Suppress Tumor Growth, Metastasis and STAT3 Target Gene Expression in Vivo. Oncogene, 35, 802-802.
https://doi.org/10.1038/onc.2015.419
[51] Huet, S., Gorre, H., Perrocheau, A., Picot, J. and Cinier, M. (2015) Use of the Nanofitin Alternative Scaffold as a GFP-Ready Fusion Tag. PLOS ONE, 10, e0142304.
https://doi.org/10.1371/journal.pone.0142304
[52] Goux, M., Becker, G., Gorré, H., Dammicco, S., Desselle, A., Egrise, D., et al. (2017) Nanofitin as a New Molecular-Imaging Agent for the Diagnosis of Epidermal Growth Factor Receptor Over-Expressing Tumors. Bioconjugate Chemistry, 28, 2361-2371.
https://doi.org/10.1021/acs.bioconjchem.7b00374
[53] Marcion, G., Hermetet, F., Neiers, F., Uyanik, B., Dondaine, L., Dias, A.M.M., et al. (2021) Nanofitins Targeting Heat Shock Protein 110: An Innovative Immunotherapeutic Modality in Cancer. International Journal of Cancer, 148, 3019-3031.
https://doi.org/10.1002/ijc.33485
[54] Kelly, M., McNeel, D., Fisch, P. and Malkovsky, M. (2018) Immunological Considerations Underlying Heat Shock Protein-Mediated Cancer Vaccine Strategies. Immunology Letters, 193, 1-10.
https://doi.org/10.1016/j.imlet.2017.11.001
[55] Ciocca, D.R., Cayado-Gutierrez, N., Maccioni, M. and Cuello-Carrion, F.D. (2012) Heat Shock Proteins (HSPs) Based Anti-Cancer Vaccines. Current Molecular Medicine, 12, 1183-1197.
https://doi.org/10.2174/156652412803306684
[56] Do, K., Speranza, G., Chang, L., Polley, E.C., Bishop, R., Zhu, W., et al. (2015) Phase I Study of the Heat Shock Protein 90 (HSP90) Inhibitor Onalespib (AT13387) Administered on a Daily for 2 Consecutive Days per Week Dosing Schedule in Patients with Advanced Solid Tumors. Investigational New Drugs, 33, 921-930.
https://doi.org/10.1007/s10637-015-0255-1
[57] Randazzo, M., Terness, P., Opelz, G. and Kleist, C. (2012) Active‐specific Immunotherapy of Human Cancers with the Heat Shock Protein Gp96-Revisited. International Journal of Cancer, 130, 2219-2231.
https://doi.org/10.1002/ijc.27332
[58] Wang, X., Kazim, L., Repasky, E.A. and Subjeck, J.R. (2001) Characterization of Heat Shock Protein 110 and Glucose-Regulated Protein 170 as Cancer Vaccines and the Effect of Fever-Range Hyperthermia on Vaccine Activity. The Journal of Immunology, 166, 490-497.
https://doi.org/10.4049/jimmunol.166.1.490
[59] 贺越, 王秀梅. 非同源末端连接中DNA连接酶IV抑制剂研究进展[J].陕西医学杂志, 2023, 52(3): 358-361.
[60] Kopa, P., Macieja, A., Pastwa, E., Majsterek, I. and Poplawski, T. (2021) DNA Double-Strand Breaks Repair Inhibitors Potentiates the Combined Effect of VP-16 and CDDP in Human Colorectal Adenocarcinoma (LoVo) Cells. Molecular Biology Reports, 48, 709-720.
https://doi.org/10.1007/s11033-020-06124-9