[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834
|
[2]
|
Wang, Z. and Fang, J. (2014) Colorectal Cancer in Inflammatory Bowel Disease: Epidemiology, Pathogenesis and Surveillance. Gastrointestinal Tumors, 1, 146-154. https://doi.org/10.1159/000365309
|
[3]
|
Szyller, J. and Bil-Lula, I. (2015) Heat Shock Proteins in Oxidative Stress and Ischemia/Reperfusion Injury and Benefits from Physical Exercises: A Review to the Current Knowledge. Oxidative Medicine and Cellular Longevity, 6, 101-109.
|
[4]
|
Wu, Y., Zhao, J., Tian, Y. and Jin, H. (2023) Cellular Functions of Heat Shock Protein 20 (HSPB6) in Cancer: A Review. Cellular Signalling, 112, Article ID: 110928. https://doi.org/10.1016/j.cellsig.2023.110928
|
[5]
|
Bondy, S.C. (2014) Prolonged Exposure to Low Levels of Aluminum Leads to Changes Associated with Brain Aging and Neurodegeneration. Toxicology, 315, 1-7. https://doi.org/10.1016/j.tox.2013.10.008
|
[6]
|
徐煌, 韩冬, 程惠平. 热休克蛋白110的研究进展[J]. 嘉兴学院学报, 2008, 20(6): 15-17, 73.
|
[7]
|
Mayer, M.P. and Bukau, B. (2005) Hsp70 Chaperones: Cellular Functions and Molecular Mechanism. Cellular and Molecular Life Sciences, 62, 670-684. https://doi.org/10.1007/s00018-004-4464-6
|
[8]
|
Bukau, B., Weissman, J. and Horwich, A. (2006) Molecular Chaperones and Protein Quality Control. Cell, 125, 443-451. https://doi.org/10.1016/j.cell.2006.04.014
|
[9]
|
Young, J.C. (2010) Mechanisms of the Hsp70 Chaperone Systemthis Paper Is One of a Selection of Papers Published in This Special Issue Entitled “Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting—Protein Folding: Principles and Diseases” and Has Undergone the Journal’s Usual Peer Review Process. Biochemistry and Cell Biology, 88, 291-300. https://doi.org/10.1139/o09-175
|
[10]
|
杨营. 热休克蛋白Sse1的表达纯化以及生化性质研究[D]: [硕士学位论文]. 天津: 天津科技大学, 2016.
|
[11]
|
Oh, H.J., Easton, D., Murawski, M., Kaneko, Y. and Subjeck, J.R. (1999) The Chaperoning Activity of Hsp110: Identification of Functional Domains by Use of Targeted Deletions. Journal of Biological Chemistry, 274, 15712-15718. https://doi.org/10.1074/jbc.274.22.15712
|
[12]
|
Javid, H., Hashemian, P., Yazdani, S., Sharbaf Mashhad, A. and Karimi‐Shahri, M. (2022) The Role of Heat Shock Proteins in Metastatic Colorectal Cancer: A Review. Journal of Cellular Biochemistry, 123, 1704-1735. https://doi.org/10.1002/jcb.30326
|
[13]
|
Wang, X. and Subjeck, J.R. (2013) High Molecular Weight Stress Proteins: Identification, Cloning and Utilisation in Cancer Immunotherapy. International Journal of Hyperthermia, 29, 364-375. https://doi.org/10.3109/02656736.2013.803607
|
[14]
|
Oh, H.J., Chen, X. and Subjeck, J.R. (1997) Hsp110 Protects Heat-Denatured Proteins and Confers Cellular Thermoresistance. Journal of Biological Chemistry, 272, 31636-31640. https://doi.org/10.1074/jbc.272.50.31636
|
[15]
|
Berthenet, K., Boudesco, C., Collura, A., Svrcek, M., Richaud, S., Hammann, A., et al. (2016) Extracellular HSP110 Skews Macrophage Polarization in Colorectal Cancer. OncoImmunology, 5, e1170264. https://doi.org/10.1080/2162402x.2016.1170264
|
[16]
|
Gozzi, G.J., Gonzalez, D., Boudesco, C., Dias, A.M.M., Gotthard, G., Uyanik, B., et al. (2019) Selecting the First Chemical Molecule Inhibitor of HSP110 for Colorectal Cancer Therapy. Cell Death & Differentiation, 27, 117-129. https://doi.org/10.1038/s41418-019-0343-4
|
[17]
|
Chatterjee, S. and Burns, T. (2017) Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach. International Journal of Molecular Sciences, 18, Article 1978. https://doi.org/10.3390/ijms18091978
|
[18]
|
Berthenet, K., Bokhari, A., Lagrange, A., Marcion, G., Boudesco, C., Causse, S., et al. (2016) HSP110 Promotes Colorectal Cancer Growth through STAT3 Activation. Oncogene, 36, 2328-2336. https://doi.org/10.1038/onc.2016.403
|
[19]
|
Hjerpe, R., Bett, J.S., Keuss, M.J., Solovyova, A., McWilliams, T.G., Johnson, C., et al. (2016) UBQLN2 Mediates Autophagy-Independent Protein Aggregate Clearance by the Proteasome. Cell, 166, 935-949. https://doi.org/10.1016/j.cell.2016.07.001
|
[20]
|
Abi Zamer, B., El-Huneidi, W., Eladl, M.A. and Muhammad, J.S. (2021) Ins and Outs of Heat Shock Proteins in Colorectal Carcinoma: Its Role in Carcinogenesis and Therapeutic Perspectives. Cells, 10, Article 2862. https://doi.org/10.3390/cells10112862
|
[21]
|
Dorard, C., de Thonel, A., Collura, A., Marisa, L., Svrcek, M., Lagrange, A., et al. (2011) Expression of a Mutant HSP110 Sensitizes Colorectal Cancer Cells to Chemotherapy and Improves Disease Prognosis. Nature Medicine, 17, 1283-1289. https://doi.org/10.1038/nm.2457
|
[22]
|
Yu, N., Kakunda, M., Pham, V., Lill, J.R., Du, P., Wongchenko, M., et al. (2015) HSP105 Recruits Protein Phosphatase 2A to Dephosphorylate β-Catenin. Molecular and Cellular Biology, 35, 1390-1400. https://doi.org/10.1128/mcb.01307-14
|
[23]
|
Bharathi, Shamasundar, N.M., Sathyanarayana Rao, T.S., Dhanunjaya Naidu, M., Ravid, R. and Rao, K.S.J. (2006) A New Insight on Al-Maltolate-Treated Aged Rabbit as Alzheimer’s Animal Model. Brain Research Reviews, 52, 275-292. https://doi.org/10.1016/j.brainresrev.2006.04.003
|
[24]
|
Delamarche, C. (1993) A Molecular Mechanism of Aluminum Neurotoxicity. Journal of Neurochemistry, 60, 384-385. https://doi.org/10.1111/j.1471-4159.1993.tb05866.x
|
[25]
|
任发亮, 任巧丽, 田志强, 等. HSP110与肿瘤免疫[J]. 免疫学杂志, 2018, 34(7): 641-644.
|
[26]
|
Facciponte, J.G., Wang, X. and Subjeck, J.R. (2007) Hsp110 and Grp170, Members of the Hsp70 Superfamily, Bind to Scavenger Receptor‐A and Scavenger Receptor Expressed by Endothelial Cells‐I. European Journal of Immunology, 37, 2268-2279. https://doi.org/10.1002/eji.200737127
|
[27]
|
Duval, A., Collura, A., Berthenet, K., Lagrange, A. and Garrido, C. (2011) Microsatellite Instability in Colorectal Cancer: Time to Stop Hiding! Oncotarget, 2, 826-827. https://doi.org/10.18632/oncotarget.353
|
[28]
|
Kuang, D., Wu, Y., Chen, N., Cheng, J., Zhuang, S. and Zheng, L. (2007) Tumor-Derived Hyaluronan Induces Formation of Immunosuppressive Macrophages through Transient Early Activation of Monocytes. Blood, 110, 587-595. https://doi.org/10.1182/blood-2007-01-068031
|
[29]
|
Calderwood, S.K., Khaleque, M.A., Sawyer, D.B. and Ciocca, D.R. (2006) Heat Shock Proteins in Cancer: Chaperones of Tumorigenesis. Trends in Biochemical Sciences, 31, 164-172. https://doi.org/10.1016/j.tibs.2006.01.006
|
[30]
|
Boissière-Michot, F., Lazennec, G., Frugier, H., Jarlier, M., Roca, L., Duffour, J., et al. (2014) Characterization of an Adaptive Immune Response in Microsatellite-Instable Colorectal Cancer. OncoImmunology, 3, e29256. https://doi.org/10.4161/onci.29256
|
[31]
|
Berardinelli, G.N., Scapulatempo-Neto, C., Durães, R., Antônio de Oliveira, M., Guimarães, D. and Reis, R.M. (2018) Advantage of HSP110 (T17) Marker Inclusion for Microsatellite Instability (MSI) Detection in Colorectal Cancer Patients. Oncotarget, 9, 28691-28701. https://doi.org/10.18632/oncotarget.25611
|
[32]
|
Hosaka, S., Nakatsura, T., Tsukamoto, H., Hatayama, T., Baba, H. and Nishimura, Y. (2006) Synthetic Small Interfering RNA Targeting Heat Shock Protein 105 Induces Apoptosis of Various Cancer Cells Both in Vitro and in Vivo. Cancer Science, 97, 623-632. https://doi.org/10.1111/j.1349-7006.2006.00217.x
|
[33]
|
Slaby, (2009) Significant Overexpression of Hsp110 Gene during Colorectal Cancer Progression. Oncology Reports, 21, 1235-1241. https://doi.org/10.3892/or_00000346
|
[34]
|
Collura, A., Lagrange, A., Svrcek, M., Marisa, L., Buhard, O., Guilloux, A., et al. (2014) Patients with Colorectal Tumors with Microsatellite Instability and Large Deletions in HSP110 T17 Have Improved Response to 5-Fluorouracil-Based Chemotherapy. Gastroenterology, 146, 401-411.e1. https://doi.org/10.1053/j.gastro.2013.10.054
|
[35]
|
Buhard, O., Lagrange, A., Guilloux, A., Colas, C., Chouchène, M., Wanherdrick, K., et al. (2016) HSP110T17 Simplifies and Improves the Microsatellite Instability Testing in Patients with Colorectal Cancer. Journal of Medical Genetics, 53, 377-384. https://doi.org/10.1136/jmedgenet-2015-103518
|
[36]
|
Kimura, A., Ogata, K., Altan, B., Yokobori, T., Ide, M., Mochiki, E., et al. (2016) Nuclear Heat Shock Protein 110 Expression Is Associated with Poor Prognosis and Chemotherapy Resistance in Gastric Cancer. Oncotarget, 7, 18415-18423. https://doi.org/10.18632/oncotarget.7821
|
[37]
|
Kimura, A., Ogata, K., Altan, B., Yokobori, T., Mochiki, E., Yanai, M., et al. (2017) Nuclear Heat Shock Protein 110 Expression Is Associated with Poor Prognosis and Hyperthermo-Chemotherapy Resistance in Gastric Cancer Patients with Peritoneal Metastasis. World Journal of Gastroenterology, 23, 7541-7550. https://doi.org/10.3748/wjg.v23.i42.7541
|
[38]
|
Garrido, C., Collura, A., Berthenet, K., Lagrange, A. and Duval, A. (2012) Mutation d’HSP110 dans les cancers colorectaux. Médecine/Sciences, 28, 9-10. https://doi.org/10.1051/medsci/2012281002
|
[39]
|
Roma, C., Rachiglio, A.M., Pasquale, R., Fenizia, F., Iannaccone, A., Tatangelo, F., et al. (2016) BRAF V600E Mutation in Metastatic Colorectal Cancer: Methods of Detection and Correlation with Clinical and Pathologic Features. Cancer Biology & Therapy, 17, 840-848. https://doi.org/10.1080/15384047.2016.1195048
|
[40]
|
How-Kit, A., Daunay, A., Buhard, O., Meiller, C., Sahbatou, M., Collura, A., et al. (2017) Major Improvement in the Detection of Microsatellite Instability in Colorectal Cancer Using HSP110 T17 E-ice-COLD-PCR. Human Mutation, 39, 441-453. https://doi.org/10.1002/humu.23379
|
[41]
|
Luo, Y., Cheng, B., Liu, S., et al. (2019) Relationship between CpG Island Methylation Phenotype, Microsatellite Instability Phenotype and Mutation of KRAS, NRAS, and BRAF Genes in Colorectal Cancer. International Journal of Clinical and Experimental Pathology, 12, 1101-1107.
|
[42]
|
Zimmermann, M., Oehler, C., Mey, U., Ghadjar, P. and Zwahlen, D.R. (2016) Radiotherapy for Non-Hodgkin’s Lymphoma: Still Standard Practice and Not an Outdated Treatment Option. Radiation Oncology, 11, Article No. 110. https://doi.org/10.1186/s13014-016-0690-y
|
[43]
|
Causse, S.Z., Marcion, G., Chanteloup, G., Uyanik, B., Boudesco, C., Grigorash, B.B., et al. (2018) HSP110 Translocates to the Nucleus Upon Genotoxic Chemotherapy and Promotes DNA Repair in Colorectal Cancer Cells. Oncogene, 38, 2767-2777. https://doi.org/10.1038/s41388-018-0616-2
|
[44]
|
Kim, K., Lee, T.H., Kim, J.H., Cho, N., Kim, W.H. and Kang, G.H. (2017) Deletion in HSP110 T17: Correlation with Wild-Type HSP110 Expression and Prognostic Significance in Microsatellite-Unstable Advanced Gastric Cancers. Human Pathology, 67, 109-118. https://doi.org/10.1016/j.humpath.2017.08.001
|
[45]
|
Tachon, G., Chong-Si-Tsaon, A., Lecomte, T., Junca, A., Frouin, É., Miquelestorena-Standley, E., et al. (2022) HSP110 as a Diagnostic but Not a Prognostic Biomarker in Colorectal Cancer with Microsatellite Instability. Frontiers in Genetics, 12, Article 769281. https://doi.org/10.3389/fgene.2021.769281
|
[46]
|
Chan, A.T. (2011) Turning up the Heat on Colorectal Cancer. Nature Medicine, 17, 1186-1188. https://doi.org/10.1038/nm.2500
|
[47]
|
中国医师协会医学技师委员会病理技术专家组. 微卫星不稳定性(MSI)检测技术专家共识[J]. 临床与实验病理学杂志, 2024, 40(3): 228-235.
|
[48]
|
Rajoua, N., Daunay, A., Triki, W., Baraket, O., Bouchoucha, S., Maghrebi, H., et al. (2025) HSP110 T17 Marker Matches the Pentaplex Panel and Outperforms CAT-25 for Detecting Microsatellite Instability in Sporadic Colorectal Cancer. Cancer Genetics, 294, 21-26. https://doi.org/10.1016/j.cancergen.2025.03.002
|
[49]
|
Morikawa, T., Baba, Y., Yamauchi, M., Kuchiba, A., Nosho, K., Shima, K., et al. (2011) STAT3 Expression, Molecular Features, Inflammation Patterns, and Prognosis in a Database of 724 Colorectal Cancers. Clinical Cancer Research, 17, 1452-1462. https://doi.org/10.1158/1078-0432.ccr-10-2694
|
[50]
|
Huang, W., Dong, Z., Chen, Y., Wang, F., Wang, C.J., Peng, H., et al. (2016) Erratum: Small-Molecule Inhibitors Targeting the DNA-Binding Domain of STAT3 Suppress Tumor Growth, Metastasis and STAT3 Target Gene Expression in Vivo. Oncogene, 35, 802-802. https://doi.org/10.1038/onc.2015.419
|
[51]
|
Huet, S., Gorre, H., Perrocheau, A., Picot, J. and Cinier, M. (2015) Use of the Nanofitin Alternative Scaffold as a GFP-Ready Fusion Tag. PLOS ONE, 10, e0142304. https://doi.org/10.1371/journal.pone.0142304
|
[52]
|
Goux, M., Becker, G., Gorré, H., Dammicco, S., Desselle, A., Egrise, D., et al. (2017) Nanofitin as a New Molecular-Imaging Agent for the Diagnosis of Epidermal Growth Factor Receptor Over-Expressing Tumors. Bioconjugate Chemistry, 28, 2361-2371. https://doi.org/10.1021/acs.bioconjchem.7b00374
|
[53]
|
Marcion, G., Hermetet, F., Neiers, F., Uyanik, B., Dondaine, L., Dias, A.M.M., et al. (2021) Nanofitins Targeting Heat Shock Protein 110: An Innovative Immunotherapeutic Modality in Cancer. International Journal of Cancer, 148, 3019-3031. https://doi.org/10.1002/ijc.33485
|
[54]
|
Kelly, M., McNeel, D., Fisch, P. and Malkovsky, M. (2018) Immunological Considerations Underlying Heat Shock Protein-Mediated Cancer Vaccine Strategies. Immunology Letters, 193, 1-10. https://doi.org/10.1016/j.imlet.2017.11.001
|
[55]
|
Ciocca, D.R., Cayado-Gutierrez, N., Maccioni, M. and Cuello-Carrion, F.D. (2012) Heat Shock Proteins (HSPs) Based Anti-Cancer Vaccines. Current Molecular Medicine, 12, 1183-1197. https://doi.org/10.2174/156652412803306684
|
[56]
|
Do, K., Speranza, G., Chang, L., Polley, E.C., Bishop, R., Zhu, W., et al. (2015) Phase I Study of the Heat Shock Protein 90 (HSP90) Inhibitor Onalespib (AT13387) Administered on a Daily for 2 Consecutive Days per Week Dosing Schedule in Patients with Advanced Solid Tumors. Investigational New Drugs, 33, 921-930. https://doi.org/10.1007/s10637-015-0255-1
|
[57]
|
Randazzo, M., Terness, P., Opelz, G. and Kleist, C. (2012) Active‐specific Immunotherapy of Human Cancers with the Heat Shock Protein Gp96-Revisited. International Journal of Cancer, 130, 2219-2231. https://doi.org/10.1002/ijc.27332
|
[58]
|
Wang, X., Kazim, L., Repasky, E.A. and Subjeck, J.R. (2001) Characterization of Heat Shock Protein 110 and Glucose-Regulated Protein 170 as Cancer Vaccines and the Effect of Fever-Range Hyperthermia on Vaccine Activity. The Journal of Immunology, 166, 490-497. https://doi.org/10.4049/jimmunol.166.1.490
|
[59]
|
贺越, 王秀梅. 非同源末端连接中DNA连接酶IV抑制剂研究进展[J].陕西医学杂志, 2023, 52(3): 358-361.
|
[60]
|
Kopa, P., Macieja, A., Pastwa, E., Majsterek, I. and Poplawski, T. (2021) DNA Double-Strand Breaks Repair Inhibitors Potentiates the Combined Effect of VP-16 and CDDP in Human Colorectal Adenocarcinoma (LoVo) Cells. Molecular Biology Reports, 48, 709-720. https://doi.org/10.1007/s11033-020-06124-9
|