[1]
|
粮农组织. 2024年世界森林状况: 促进林业部门创新, 迈向可持续未来[M]. 罗马: 粮农组织, 2024.
|
[2]
|
Moore, D., Robson, G.D. and Trinci, A.P.J. (2011) 21st Century Guidebook to Fungi. Cambridge University Press.
|
[3]
|
Eskola, M., Kos, G., Elliott, C.T., Hajšlová, J., Mayar, S. and Krska, R. (2019) Worldwide Contamination of Food-Crops with Mycotoxins: Validity of the Widely Cited ‘FAO Estimate’ of 25%. Critical Reviews in Food Science and Nutrition, 60, 2773-2789. https://doi.org/10.1080/10408398.2019.1658570
|
[4]
|
陈夕军, 石童, 陈宸, 唐滔. 喷施诱导的基因沉默(SIGS)技术控制植物病害研究进展[J]. 植物保护, 2022, 48(5): 15-22.
|
[5]
|
Fletcher, S.J., Reeves, P.T., Hoang, B.T. and Mitter, N. (2020) A Perspective on RNAi-Based Biopesticides. Frontiers in Plant Science, 11, Article 51. https://doi.org/10.3389/fpls.2020.00051
|
[6]
|
Spada, M., Pugliesi, C., Fambrini, M. and Pecchia, S. (2024) Challenges and Opportunities Arising from Host-Botrytis Cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. International Journal of Molecular Sciences, 25, Article 6798. https://doi.org/10.3390/ijms25126798
|
[7]
|
Khalid, A., Zhang, Q., Yasir, M. and Li, F. (2017) Small RNA Based Genetic Engineering for Plant Viral Resistance: Application in Crop Protection. Frontiers in Microbiology, 8, Article 43. https://doi.org/10.3389/fmicb.2017.00043
|
[8]
|
Mitter, N., Worrall, E.A., Robinson, K.E., Xu, Z.P. and Carroll, B.J. (2017) Induction of Virus Resistance by Exogenous Application of Double-Stranded RNA. Current Opinion in Virology, 26, 49-55. https://doi.org/10.1016/j.coviro.2017.07.009
|
[9]
|
Opdensteinen, P., Charudattan, R., Hong, J.C., Rosskopf, E.N. and Steinmetz, N.F. (2024) Biochemical and Nanotechnological Approaches to Combat Phytoparasitic Nematodes. Plant Biotechnology Journal, 22, 2444-2460. https://doi.org/10.1111/pbi.14359
|
[10]
|
Zotti, M., dos Santos, E.A., Cagliari, D., Christiaens, O., Taning, C.N.T. and Smagghe, G. (2018) RNA Interference Technology in Crop Protection against Arthropod Pests, Pathogens and Nematodes. Pest Management Science, 74, 1239-1250. https://doi.org/10.1002/ps.4813
|
[11]
|
Wong, C.K.F., Saidi, N.B., Vadamalai, G., Teh, C.Y. and Zulperi, D. (2019) Effect of Bioformulations on the Biocontrol Efficacy, Microbial Viability and Storage Stability of a Consortium of Biocontrol Agents against fusarium Wilt of Banana. Journal of Applied Microbiology, 127, 544-555. https://doi.org/10.1111/jam.14310
|
[12]
|
Wang, B., Liu, J., Liu, Q., Sun, J., Zhao, Y., Liu, J., et al. (2023) Knowledge Domain and Research Progress in the Field of Crop Rotation from 2000 to 2020: A Scientometric Review. Environmental Science and Pollution Research, 30, 86598-86617. https://doi.org/10.1007/s11356-023-28266-6
|
[13]
|
Ray, P., Sahu, D., Aminedi, R. and Chandran, D. (2022) Concepts and Considerations for Enhancing RNAi Efficiency in Phytopathogenic Fungi for RNAi-Based Crop Protection Using Nanocarrier-Mediated dsRNA Delivery Systems. Frontiers in Fungal Biology, 3, Article 977502. https://doi.org/10.3389/ffunb.2022.977502
|
[14]
|
Dietzgen, R.G. and Mitter, N. (2006) Transgenic Gene Silencing Strategies for Virus Control. Australasian Plant Pathology, 35, 605-618. https://doi.org/10.1071/ap06064
|
[15]
|
Zhao, J. and Guo, H. (2022) RNA Silencing: From Discovery and Elucidation to Application and Perspectives. Journal of Integrative Plant Biology, 64, 476-498. https://doi.org/10.1111/jipb.13213
|
[16]
|
Agrawal, N., Dasaradhi, P.V.N., Mohmmed, A., Malhotra, P., Bhatnagar, R.K. and Mukherjee, S.K. (2003) RNA Interference: Biology, Mechanism, and Applications. Microbiology and Molecular Biology Reviews, 67, 657-685. https://doi.org/10.1128/mmbr.67.4.657-685.2003
|
[17]
|
Preall, J.B. and Sontheimer, E.J. (2005) RNAi: RISC Gets Loaded. Cell, 123, 543-545. https://doi.org/10.1016/j.cell.2005.11.006
|
[18]
|
Iwakawa, H. and Tomari, Y. (2022) Life of RISC: Formation, Action, and Degradation of RNA-Induced Silencing Complex. Molecular Cell, 82, 30-43. https://doi.org/10.1016/j.molcel.2021.11.026
|
[19]
|
尚仁福, 吴立刚. RNA干扰的机制及其应用[J]. 生命科学, 2016, 28(5): 576-583.
|
[20]
|
Shidore, T., Zuverza-Mena, N., White, J.C. and da Silva, W. (2021) Nanoenabled Delivery of RNA Molecules for Prolonged Antiviral Protection in Crop Plants: A Review. ACS Applied Nano Materials, 4, 12891-12904. https://doi.org/10.1021/acsanm.1c03512
|
[21]
|
Niu, J., Jian, H., Xu, J., Chen, C., Guo, Q., Liu, Q., et al. (2012) RNAi Silencing of the Meloidogyne Incognita Rpn7 Gene Reduces Nematode Parasitic Success. European Journal of Plant Pathology, 134, 131-144. https://doi.org/10.1007/s10658-012-9971-y
|
[22]
|
Nerva, L., Sandrini, M., Gambino, G. and Chitarra, W. (2020) Double-Stranded RNAs (dsRNAs) as a Sustainable Tool against Gray Mold (Botrytis cinerea) in Grapevine: Effectiveness of Different Application Methods in an Open-Air Environment. Biomolecules, 10, Article 200. https://doi.org/10.3390/biom10020200
|
[23]
|
Zhang, H., Li, X., Yu, D., Guan, J., Ding, H., Wu, H., et al. (2023) A Vector-Free Gene Interference System Using Delaminated Mg-Al-Lactate Layered Double Hydroxide Nanosheets as Molecular Carriers to Intact Plant Cells. Plant Methods, 19, Article No. 44. https://doi.org/10.1186/s13007-023-01021-1
|
[24]
|
Yan, S., Ren, B. and Shen, J. (2020) Nanoparticle-Mediated Double-Stranded RNA Delivery System: A Promising Approach for Sustainable Pest Management. Insect Science, 28, 21-34. https://doi.org/10.1111/1744-7917.12822
|
[25]
|
Abdellatef, E., Kamal, N.M. and Tsujimoto, H. (2021) Tuning Beforehand: A Foresight on RNA Interference (RNAi) and in Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses. International Journal of Molecular Sciences, 22, Article 7687. https://doi.org/10.3390/ijms22147687
|
[26]
|
Andika, I.B., Wei, S., Cao, C., Salaipeth, L., Kondo, H. and Sun, L. (2017) Phytopathogenic Fungus Hosts a Plant Virus: A Naturally Occurring Cross-Kingdom Viral Infection. Proceedings of the National Academy of Sciences, 114, 12267-12272. https://doi.org/10.1073/pnas.1714916114
|
[27]
|
Cai, Q., Qiao, L., Wang, M., He, B., Lin, F., Palmquist, J., et al. (2018) Plants Send Small RNAs in Extracellular Vesicles to Fungal Pathogen to Silence Virulence Genes. Science, 360, 1126-1129. https://doi.org/10.1126/science.aar4142
|
[28]
|
Wang, M., Weiberg, A., Lin, F., Thomma, B.P.H.J., Huang, H. and Jin, H. (2016) Bidirectional Cross-Kingdom RNAi and Fungal Uptake of External RNAs Confer Plant Protection. Nature Plants, 2, Article No. 16151. https://doi.org/10.1038/nplants.2016.151
|
[29]
|
Capriotti, L., Molesini, B., Pandolfini, T., Jin, H., Baraldi, E., Cecchin, M., et al. (2024) RNA Interference-Based Strategies to Control Botrytis Cinerea Infection in Cultivated Strawberry. Plant Cell Reports, 43, Article No. 201. https://doi.org/10.1007/s00299-024-03288-7
|
[30]
|
Sun, L., Liu, P., Zhang, C., Du, H., Wang, Z., Moural, T.W., et al. (2019) Ocular Albinism Type 1 Regulates Deltamethrin Tolerance in Lymantria Dispar and Drosophila Melanogaster. Frontiers in Physiology, 10, Article 766. https://doi.org/10.3389/fphys.2019.00766
|
[31]
|
San Miguel, K. and Scott, J.G. (2015) The Next Generation of Insecticides: dsRNA Is Stable as a Foliar-Applied Insecticide. Pest Management Science, 72, 801-809. https://doi.org/10.1002/ps.4056
|
[32]
|
Majumdar, R., Rajasekaran, K. and Cary, J.W. (2017) RNA Interference (RNAi) as a Potential Tool for Control of Mycotoxin Contamination in Crop Plants: Concepts and Considerations. Frontiers in Plant Science, 8, Article 200. https://doi.org/10.3389/fpls.2017.00200
|
[33]
|
Wang, X., Ji, S., Bi, S., Tang, Y., Zhang, G., Yan, S., et al. (2023) A Promising Approach to an Environmentally Friendly Pest Management Solution: Nanocarrier-Delivered dsRNA towards Controlling the Destructive Invasive Pest Tuta absoluta. Environmental Science: Nano, 10, 1003-1015. https://doi.org/10.1039/d2en01076c
|
[34]
|
Hunter, W.B., Glick, E., Paldi, N. and Bextine, B.R. (2012) Advances in RNA Interference: dsRNA Treatment in Trees and Grapevines for Insect Pest Suppression. Southwestern Entomologist, 37, 85-87. https://doi.org/10.3958/059.037.0110
|
[35]
|
Wang, M. and Jin, H. (2017) Spray-Induced Gene Silencing: A Powerful Innovative Strategy for Crop Protection. Trends in Microbiology, 25, 4-6. https://doi.org/10.1016/j.tim.2016.11.011
|
[36]
|
McLoughlin, A.G., Wytinck, N., Walker, P.L., Girard, I.J., Rashid, K.Y., de Kievit, T., et al. (2018) Identification and Application of Exogenous dsRNA Confers Plant Protection against Sclerotinia sclerotiorum and Botrytis cinerea. Scientific Reports, 8, Article No. 7320. https://doi.org/10.1038/s41598-018-25434-4
|
[37]
|
Song, X., Gu, K., Duan, X., Xiao, X., Hou, Y., Duan, Y., et al. (2018) Secondary Amplification of siRNA Machinery Limits the Application of Spray-Induced Gene Silencing. Molecular Plant Pathology, 19, 2543-2560. https://doi.org/10.1111/mpp.12728
|
[38]
|
Koch, A., Biedenkopf, D., Furch, A., Weber, L., Rossbach, O., Abdellatef, E., et al. (2016) An RNAi-Based Control of Fusarium Graminearum Infections through Spraying of Long dsRNAs Involves a Plant Passage and Is Controlled by the Fungal Silencing Machinery. PLOS Pathogens, 12, e1005901. https://doi.org/10.1371/journal.ppat.1005901
|
[39]
|
Gu, K., Song, X., Xiao, X., Duan, X., Wang, J., Duan, Y., et al. (2019) A Β-Tubulin dsRNA Derived from Fusarium asiaticum Confers Plant Resistance to Multiple Phytopathogens and Reduces Fungicide Resistance. Pesticide Biochemistry and Physiology, 153, 36-46. https://doi.org/10.1016/j.pestbp.2018.10.005
|
[40]
|
Dubelman, S., Fischer, J., Zapata, F., Huizinga, K., Jiang, C., Uffman, J., et al. (2014) Environmental Fate of Double-Stranded RNA in Agricultural Soils. PLOS ONE, 9, e93155. https://doi.org/10.1371/journal.pone.0093155
|
[41]
|
Prentice, K., Smagghe, G., Gheysen, G. and Christiaens, O. (2019) Nuclease Activity Decreases the RNAi Response in the Sweetpotato Weevil Cylas puncticollis. Insect Biochemistry and Molecular Biology, 110, 80-89. https://doi.org/10.1016/j.ibmb.2019.04.001
|
[42]
|
Song, H., Fan, Y., Zhang, J., Cooper, A.M., Silver, K., Li, D., et al. (2019) Contributions of dsRNases to Differential RNAi Efficiencies between the Injection and Oral Delivery of dsRNA in Locusta migratoria. Pest Management Science, 75, 1707-1717. https://doi.org/10.1002/ps.5291
|
[43]
|
Qiao, L., Lan, C., Capriotti, L., Ah-Fong, A., Nino Sanchez, J., Hamby, R., et al. (2021) Spray-Induced Gene Silencing for Disease Control Is Dependent on the Efficiency of Pathogen RNA Uptake. Plant Biotechnology Journal, 19, 1756-1768. https://doi.org/10.1111/pbi.13589
|
[44]
|
付淑笙, 江奕舟, 蒋沁宏, 沈杰, 闫硕. 基于纳米递送系统的RNA农药及转基因植物研究进展[J]. 植物保护学报, 2021, 48(2): 267-274.
|
[45]
|
Negm, N.A., Hefni, H.H.H., Abd-Elaal, A.A.A., Badr, E.A. and Abou Kana, M.T.H. (2020) Advancement on Modification of Chitosan Biopolymer and Its Potential Applications. International Journal of Biological Macromolecules, 152, 681-702. https://doi.org/10.1016/j.ijbiomac.2020.02.196
|
[46]
|
Zhou, H., Wan, F., Jian, Y., Guo, F., Zhang, M., Shi, S., et al. (2023) Chitosan/dsRNA Polyplex Nanoparticles Advance Environmental RNA Interference Efficiency through Activating Clathrin-Dependent Endocytosis. International Journal of Biological Macromolecules, 253, Article 127021. https://doi.org/10.1016/j.ijbiomac.2023.127021
|
[47]
|
Zhang, X., Zhang, J. and Zhu, K.Y. (2010) Chitosan/Double-Stranded RNA Nanoparticle-Mediated RNA Interference to Silence Chitin Synthase Genes through Larval Feeding in the African Malaria Mosquito (Anopheles gambiae). Insect Molecular Biology, 19, 683-693. https://doi.org/10.1111/j.1365-2583.2010.01029.x
|
[48]
|
Zhang, X., Mysore, K., Flannery, E., Michel, K., Severson, D.W., Zhu, K.Y., et al. (2015) Chitosan/Interfering RNA Nanoparticle Mediated Gene Silencing in Disease Vector Mosquito Larvae. Journal of Visualized Experiments, 96, 181-191. https://doi.org/10.3791/52523
|
[49]
|
Kolge, H., Kadam, K., Galande, S., Lanjekar, V. and Ghormade, V. (2021) New Frontiers in Pest Control: Chitosan Nanoparticles-Shielded dsRNA as an Effective Topical RNAi Spray for Gram Podborer Biocontrol. ACS Applied Bio Materials, 4, 5145-5157. https://doi.org/10.1021/acsabm.1c00349
|
[50]
|
Wang, X., Zheng, K., Cheng, W., Li, J., Liang, X., Shen, J., et al. (2021) Field Application of Star Polymer-Delivered Chitosan to Amplify Plant Defense against Potato Late Blight. Chemical Engineering Journal, 417, Article 129327. https://doi.org/10.1016/j.cej.2021.129327
|
[51]
|
Wang, Y., Yan, Q., Lan, C., Tang, T., Wang, K., Shen, J., et al. (2023) Nanoparticle Carriers Enhance RNA Stability and Uptake Efficiency and Prolong the Protection against Rhizoctonia Solani. Phytopathology Research, 5, Article No. 2. https://doi.org/10.1186/s42483-023-00157-1
|
[52]
|
Dhandapani, R.K., Gurusamy, D., Howell, J.L. and Palli, S.R. (2019) Development of CS-TPP-dsRNA Nanoparticles to Enhance RNAi Efficiency in the Yellow Fever Mosquito, Aedes Aegypti. Scientific Reports, 9, Article No, 8775. https://doi.org/10.1038/s41598-019-45019-z
|
[53]
|
Dong, H., Chen, M., Rahman, S., Parekh, H.S., Cooper, H.M. and Xu, Z.P. (2014) Engineering Small MgAl-Layered Double Hydroxide Nanoparticles for Enhanced Gene Delivery. Applied Clay Science, 100, 66-75. https://doi.org/10.1016/j.clay.2014.04.028
|
[54]
|
Xu, Z.P., Stevenson, G.S., Lu, C., Lu, G.Q., Bartlett, P.F. and Gray, P.P. (2005) Stable Suspension of Layered Double Hydroxide Nanoparticles in Aqueous Solution. Journal of the American Chemical Society, 128, 36-37. https://doi.org/10.1021/ja056652a
|
[55]
|
Zhang, L., Hu, J., Jia, Y., Liu, R., Cai, T. and Xu, Z.P. (2021) Two-Dimensional Layered Double Hydroxide Nanoadjuvant: Recent Progress and Future Direction. Nanoscale, 13, 7533-7549. https://doi.org/10.1039/d1nr00881a
|
[56]
|
Mitter, N., Worrall, E.A., Robinson, K.E., Li, P., Jain, R.G., Taochy, C., et al. (2017) Clay Nanosheets for Topical Delivery of RNAi for Sustained Protection against Plant Viruses. Nature Plants, 3, Article No. 16207. https://doi.org/10.1038/nplants.2016.207
|
[57]
|
Duanis-Assaf, D., Shlar, I., Galsurker, O., Davydov, O., Maurer, D., Feygenberg, O., et al. (2022) Nano-Clay, Layered-Double Hydroxide (LDH), Improves the Efficacy of Double-Stranded RNA in Controlling Postharvest Decay. Postharvest Biology and Technology, 193, Article 112051. https://doi.org/10.1016/j.postharvbio.2022.112051
|
[58]
|
Niño-Sánchez, J., Sambasivam, P.T., Sawyer, A., Hamby, R., Chen, A., Czislowski, E., et al. (2022) Bioclay Prolongs RNA Interference-Mediated Crop Protection against Botrytis cinerea. Journal of Integrative Plant Biology, 64, 2187-2198. https://doi.org/10.1111/jipb.13353
|
[59]
|
Xi, Y., Long, X., Song, M., Liu, Y., Yan, J., Lv, Y., et al. (2024) The Fatty Acid 2-Hydroxylase Csscs7 Is a Key Hyphal Growth Factor and Potential Control Target in Colletotrichum siamense. mBio, 15, e02015-23. https://doi.org/10.1128/mbio.02015-23
|
[60]
|
Tang, X., Jiang, X., Chen, Q. and Lin, X. (2024) Amphiphilic Layered Double Hydroxides Enhance Plant-Mediated Delivery of dsRNAs to Phloem‑feeding Planthoppers. Chemical Engineering Journal, 491, Article 151953. https://doi.org/10.1016/j.cej.2024.151953
|
[61]
|
Li, J., Qian, J., Xu, Y., Yan, S., Shen, J. and Yin, M. (2019) A Facile-Synthesized Star Polycation Constructed as a Highly Efficient Gene Vector in Pest Management. ACS Sustainable Chemistry & Engineering, 7, 6316-6322. https://doi.org/10.1021/acssuschemeng.9b00004
|
[62]
|
Li, M., Ma, Z., Peng, M., Li, L., Yin, M., Yan, S., et al. (2022) A Gene and Drug Co-Delivery Application Helps to Solve the Short Life Disadvantage of RNA Drug. Nano Today, 43, Article 101452. https://doi.org/10.1016/j.nantod.2022.101452
|
[63]
|
Zhao, J., Yan, S., Li, M., Sun, L., Dong, M., Yin, M., et al. (2023) NPFR Regulates the Synthesis and Metabolism of Lipids and Glycogen via AMPK: Novel Targets for Efficient Corn Borer Management. International Journal of Biological Macromolecules, 247, Article 125816. https://doi.org/10.1016/j.ijbiomac.2023.125816
|
[64]
|
Yan, S., Ren, B., Zeng, B. and Shen, J. (2020) Improving RNAi Efficiency for Pest Control in Crop Species. BioTechniques, 68, 283-290. https://doi.org/10.2144/btn-2019-0171
|
[65]
|
Yan, S., Qian, J., Cai, C., Ma, Z., Li, J., Yin, M., et al. (2019) Spray Method Application of Transdermal dsRNA Delivery System for Efficient Gene Silencing and Pest Control on Soybean Aphid Aphis Glycines. Journal of Pest Science, 93, 449-459. https://doi.org/10.1007/s10340-019-01157-x
|
[66]
|
Wang, Y., Li, M., Ying, J., Shen, J., Dou, D., Yin, M., et al. (2023) High-Efficiency Green Management of Potato Late Blight by a Self-Assembled Multicomponent Nano-Bioprotectant. Nature Communications, 14, Article No. 5622. https://doi.org/10.1038/s41467-023-41447-8
|
[67]
|
Yin, J., Zhao, J., Wang, Z., Xue, F., Wang, Q., Guo, H., et al. (2024) Preparation of Salicylic Acid Nano-Protectant with Dual Synergistic Mechanism: High Direct Fungicidal Activity and Plant Defence toward Cotton Verticillium Wilt. Chemical Engineering Journal, 496, Article 154036. https://doi.org/10.1016/j.cej.2024.154036
|
[68]
|
Qiao, L., Niño-Sánchez, J., Hamby, R., Capriotti, L., Chen, A., Mezzetti, B., et al. (2023) Artificial Nanovesicles for dsRNA Delivery in Spray-Induced Gene Silencing for Crop Protection. Plant Biotechnology Journal, 21, 854-865. https://doi.org/10.1111/pbi.14001
|
[69]
|
Wang, Z., Li, Y., Zhang, B., Gao, X., Shi, M., Zhang, S., et al. (2023) Functionalized Carbon Dot-Delivered RNA Nano Fungicides as Superior Tools to Control Phytophthora Pathogens through Plant RdRP1 Mediated Spray-Induced Gene Silencing. Advanced Functional Materials, 33, Article 2213143. https://doi.org/10.1002/adfm.202213143
|
[70]
|
Lin, Y., Huang, J., Liu, Y., Belles, X. and Lee, H. (2016) Oral Delivery of dsRNA Lipoplexes to German Cockroach Protects dsRNA from Degradation and Induces RNAi Response. Pest Management Science, 73, 960-966. https://doi.org/10.1002/ps.4407
|
[71]
|
Islam, M.T., Davis, Z., Chen, L., Englaender, J., Zomorodi, S., Frank, J., et al. (2021) Minicell-Based Fungal RNAi Delivery for Sustainable Crop Protection. Microbial Biotechnology, 14, 1847-1856. https://doi.org/10.1111/1751-7915.13699
|
[72]
|
Zhang, H., Cao, Y., Xu, D., Goh, N.S., Demirer, G.S., Cestellos-Blanco, S., et al. (2021) Gold-Nanocluster-Mediated Delivery of siRNA to Intact Plant Cells for Efficient Gene Knockdown. Nano Letters, 21, 5859-5866. https://doi.org/10.1021/acs.nanolett.1c01792
|
[73]
|
Thagun, C., Motoda, Y., Kigawa, T., Kodama, Y. and Numata, K. (2020) Simultaneous Introduction of Multiple Biomacromolecules into Plant Cells Using a Cell-Penetrating Peptide Nanocarrier. Nanoscale, 12, 18844-18856. https://doi.org/10.1039/d0nr04718j
|
[74]
|
王晓迪, 冀顺霞, 申晓娜, 刘万学, 万方浩, 张桂芬, 吕志创. 纳米载导RNAi技术在害虫防治中的研究和应用[J]. 中国生物防治学报, 2021, 37(6): 1298-1312.
|
[75]
|
Singewar, K. and Fladung, M. (2023) Double-Stranded RNA (dsRNA) Technology to Control Forest Insect Pests and Fungal Pathogens: Challenges and Opportunities. Functional & Integrative Genomics, 23, Article No. 185. https://doi.org/10.1007/s10142-023-01107-y
|
[76]
|
Mendelsohn, M.L., Gathmann, A., Kardassi, D., Sachana, M., Hopwood, E.M., Dietz-Pfeilstetter, A., et al. (2020) Summary of Discussions from the 2019 OECD Conference on RNAi Based Pesticides. Frontiers in Plant Science, 11, Article 740. https://doi.org/10.3389/fpls.2020.00740
|