基于纳米颗粒递送的dsRNA在农林植物病虫害防治中的应用
The Application of Nanoparticle-Delivered dsRNA in Agricultural and Forestry Plant Pests and Diseases Control
DOI: 10.12677/ojns.2025.133048, PDF, HTML, XML,    国家自然科学基金支持
作者: 严楚枚*, 谢贤安#:华南农业大学林学与风景园林学院,广东 广州
关键词: 农林植物病虫害防治RNA干扰dsRNA纳米颗粒Prevention and Control of Agricultural and Forestry Plant Diseases and Pests RNA Interference dsRNA Nanoparticles
摘要: 随着全球森林和农作物病虫害问题的日益严重,传统化学农药防治方法因其环境污染和生物抗性问题而受到公众的质疑。近年来,越来越多的研究者将目光转向RNA干扰(RNAi)技术,利用RNAi的特性控制农林植物病虫害,并减少对环境的负面影响。本综述聚焦于RNAi技术的原理、外源性dsRNA的应用,并分析目前面临的机遇和挑战。同时探讨纳米颗粒在dsRNA递送应用方面的研究进展,如壳聚糖纳米颗粒(CNPs)、层状氢氧化物(LDH)和星形阳离子聚合物(SPc)等,这些纳米颗粒可以有效保护dsRNA并提高其传递效率。这些研究为农林业可持续发展提供了新的解决方案,有助于保护森林植被和提高农作物的产量与质量。
Abstract: With the increasing problems of pest and disease of global forests and crops, traditional chemical pesticide control methods are being questioned due to environmental pollution and biological resistance issues. However, recently, more researchers have turned to RNA interference (RNAi) technology, using the properties of RNAi to control plant pests and diseases, reducing the negative impact on the environments. This review focuses on the principles of RNAi technology, the applications of exogenous double-stranded RNA (dsRNA), while analyzing the associated opportunities and challenges. Additionally, we explored the research progress in nanoparticle delivery systems for dsRNA, such as chitosan nanoparticles (CNPs), layered double hydroxide (LDH), and star polycation (SPc), which effectively protect dsRNA and enhance its delivery efficiency. These studies provide innovative solutions for sustainable agricultural and forestry development, contributing to the preservation of forest and the improvement of crop yields and quality.
文章引用:严楚枚, 谢贤安. 基于纳米颗粒递送的dsRNA在农林植物病虫害防治中的应用[J]. 自然科学, 2025, 13(3): 455-464. https://doi.org/10.12677/ojns.2025.133048

1. 引言

森林覆盖了全球31%的陆地面积并储存着约2960亿吨的碳,森林不仅是多数生物的栖息地,还为人类社会提供着一系列的生态效益产品[1]。但由于气候变化及人类活动等因素的影响,森林植被遭受到的病虫害胁迫比以前更为严重。另一方面,病虫害也是一直制约着农作物健康生长和产量的最大因素之一。根据联合国粮食及农业组织(FAO)的估计,害虫和病原体感染导致的作物产量损失约占世界每年潜在作物总产量的20%~40% [2] [3]。然而目前防治植物病虫害最主要的方法是喷施化学药剂,这种做法不仅容易对环境造成严重污染,而且会导致生物多样性逐步丧失,长时间喷施单一的化学药剂甚至会提高真菌和害虫等的农药抗性[4] [5]。此外,长期接触化学农药的人容易罹患癌症、心脏病、呼吸系统和神经系统疾病等慢性疾病[6]

近年来,研究者们开始寻求一些绿色的植物病虫害防控措施,如转基因植物[7]、生防菌剂[4] [8]和作物轮作[9]等。虽然这些方法在一定程度上可以减少化学农药的使用,但是均存在着一定的局限性[10]-[12]。在此背景下,RNA干扰(RNA interference, RNAi)技术,如喷施诱导基因沉默(Spray-induced gene silencing, SIGS)技术,因其环境友好性、高特异性、快速响应能力等特性,成为一种极具潜力的植物保护措施。RNAi技术通过向生物体直接施加靶向特定病原菌和昆虫的双链RNA (double-stranded RNA, dsRNA),触发目标生物体的RNAi机制,抑制靶标病虫害的目标基因表达,从而实现对靶标病虫害的特异性控制。与传统农药相比,RNAi技术既能精准作用于目标生物,减少对非目标生物的影响,又可以有效避免因长期使用化学农药导致病虫害抗性增强的问题。RNAi技术不仅在植物病虫害防治领域展现了广阔的应用前景[4] [8],而且为实现农林业的可持续发展提供了新的解决方案。

2. RNAi技术的原理及应用

RNAi技术作为一种高效的基因沉默策略,已成为农作物及林木抵御各种生物胁迫的重要手段之一[5] [10] [13]。它在促进植物生长发育以及增强植物对病毒、真菌、线虫和害虫等病原体的防御能力方面均扮演着至关重要的角色[7] [14]。RNAi是细胞内基因的表达水平在dsRNA或小干扰RNA (small interfering RNA, siRNA)的作用下发生沉默下调的一种现象[15]。它通过特定的dsRNA激活,实现对目的基因表达的精确调控[16]。首先,dsRNA被核糖核酸酶Dicer,如RNase-III家族的酶,切割成长度为18~30个核苷酸长度的小RNA (sRNA),其中包括siRNA和微RNA (microRNA, miRNA)等[15] [17]。这些siRNA/miRNA随后在细胞质内与AGO蛋白(Argonaute proteins)等因子结合,形成RNA诱导的沉默复合体(RNA-induced silencing complex, RISC);RISC-siRNA复合物/RISC-miRNA复合物通过识别并切割与guide链(siRNA/miRNA中的一条链)互补的靶标mRNA,或通过抑制蛋白质的合成来触发沉默反应[15] [18] [19]。在某些真核生物中,这一沉默反应可以通过RNA依赖的RNA聚合酶(RNA-dependent RNA polymerase, RdRP)进一步放大,将被切割的mRNA转化为次级dsRNA,从而增强并延续RNAi的效应。

目前,RNAi除用作基因功能分析的研究工具和医疗干预手段外,还被广泛用作植物病虫害管理的策略之一[5] [6] [9] [20],主要针对真菌、病毒、节肢动物和线虫等。例如,利用宿主诱导基因沉默技术(Host-induced gene silencing, HIGS)靶向南方根结线虫(Meloidogyne incognita) rpn7基因,可以影响其繁殖和传染性[21]。外源性dsRNA/siRNA还可以通过喷施、注射和喂食等方法进入生物体内,触发生物体内的RNAi机制,特异性地降低或沉默关键基因的表达,达到控制病虫害的目的[4] [22]-[25]。这些方法利用了真菌、线虫和昆虫等生物能够从环境中吸收dsRNA等的特性,以及dsRNA等可以在真菌和宿主植物之间进行跨界传播的能力,从而利用RNAi机制进行互相影响[26] [27]。Wang等人在番茄(Solanum lycopersicum L.)、葡萄(Vitis vinifera L.)等水果和蔬菜表面喷施靶向灰霉菌(Botrytis cinerea) DCL1DCL2基因的dsRNA,可以显著抑制B. cinerea的生长[28] [29]。Sun等人向森林害虫舞毒蛾(Lymantria dispar)幼虫注射靶向OA1 (OCULAR ALBINISM TYPE 1)基因的dsRNA后,发现幼虫死亡率比对照组高出4.80倍[30]。这些结果表明,外源dsRNA的应用可以为病虫害的防治提供一种有效的策略。

3. 外源dsRNA在农林病虫害防治中的应用

在植物上的外源性dsRNA通过摄食等途径进入害虫肠道后,能够引发RNAi机制,沉默靶标基因,提高害虫死亡率,从而起到防治虫害、保护植物的作用[31]。在温室条件下,Majumdar等人向马铃薯(Solanum tuberosum L.)施用靶向L. decemlineata肌动蛋白的dsRNA,增强了S. tuberosum对该虫的抗性[32]。同样,Wang等人向S. lycopersicum叶片施用外源性dsRNA后,发现dsRNA对防治番茄潜叶蛾(Tuta absoluta)也显示出一定的效果[33]。Hunter等人发现亚洲柑橘木虱(Diaphorina citri)、马铃薯木虱(Bactericera cockerelli)和葡萄果蝇(Homalodisca vitripennis)在取食经过dsRNA处理的植物后大量死亡,表明dsRNA处理能够有效诱导这些害虫的RNAi反应,从而导致其死亡,并有效地抑制虫害[34]

外源施用的dsRNA或sRNAs可以直接被真菌细胞吸收,或通过植物细胞转运到真菌细胞中,以沉默相关基因来抑制感染[13] [35]-[37]。例如,靶向F. graminearum细胞色素P450或麦角甾醇生物合成基因的dsRNA抑制了其在大麦(Hordeum vulgare L.)叶上的生长[38]。靶向B. cinerea或亚洲镰孢菌(Fusarium asiaticum L.) β2微管蛋白的dsRNA抑制了孢子萌发和菌丝生长,保护了黄瓜(Cucumis sativus L.)、黄豆(Glycine max)等的生长发育[39]。研究表明,McLoughlin等人通过在拟南芥(Arabidopsis thaliana)和油菜(Brassica napus L.)叶面施用dsRNA,减轻了B. cinerea和核盘菌(Sclerotinia sclerotiorum)的症状[36],这表明dsRNA能够有效地诱导植物和真菌的RNAi机制,从而增强植物对病原真菌的防御能力。

然而,裸露的dsRNA在环境中的不稳定性限制了其应用。在土壤环境中,dsRNA可能在48小时内完全降解,而在植物叶片上的半衰期通常不超过7天[8] [40];害虫肠道环境也可能影响RNAi效率[41] [42]。且dsRNA的摄取效率因真菌种类和细胞类型而异,B. cinereaS. sclerotiorum、立枯丝核菌(Rhizoctonia solani)、黑曲霉(Aspergillus niger)和大丽轮枝菌(Verticillium dahliae)等可以高效地吸收dsRNA,而炭疽病菌(Colletotrichum gloeosporioides)的dsRNA吸收效率较低[43]。有些真菌(例如F. asiaticum)自身无法维持siRNA机制的扩增,需要持续向它们供应dsRNA来维持基因沉默的效果[37]。因此,提高dsRNA的稳定性,如通过纳米颗粒递送RNA或进行RNA修饰等,以延长RNAi效应时间,是当前研究的热点之一。

4. 纳米载体介导的dsRNA递送

递送外源性dsRNA技术凭借着绿色和高效的特点已经广泛应用于多种植物病虫害的治理研究中[4]。然而它在实际应用中面临的一个主要挑战是裸露的dsRNA在自然环境中并不稳定,且对植物的保护时间较短暂[8]。为了使RNAi效应更为持久,必须确保dsRNA在生物体内外的完整性和持久性,同时确保dsRNA能够顺利进入生物体细胞,从而引发RNAi机制,抑制病虫害的发生,保护植物健康生长。纳米颗粒的引入,为dsRNA的保护和递送提供了一种创新解决方案,利用纳米颗粒递送dsRNA有助于增强RNAi技术的实用性,实现更持久的植物保护效果。纳米颗粒具有尺寸小、比表面积大、表面能高和表面原子所占比例大等特点[44],它们能够有效结合dsRNA或sRNAs,形成的纳米–小RNA复合物能够通过内吞作用进入生物体细胞。进入细胞后的复合物需要从内质网逃逸,以避免被溶酶体降解。最后,dsRNA或siRNA需从纳米颗粒上解离,以在RNAi过程中发挥作用,这可以通过响应细胞内刺激或其他途径来实现[13] [24]。此外,纳米颗粒的种类繁多且易于合成,可以根据不同的生物分子和应用需求定制纳米载体。使用纳米颗粒递送dsRNA,不仅能够抑制dsRNA的降解,还能有效地将dsRNA递送至生物体细胞,实现精准的基因沉默。

4.1. 壳聚糖纳米颗粒

壳聚糖(Chitosan, CNP)是一种天然多糖,具有良好的生物相容性和生物可降解性。它可以通过化学改性使自身的机械、化学和生物性能得到显著提升,适用于多种应用场景[45]。壳聚糖是一种理想的dsRNA、siRNA等分子的递送载体,它分子中带正电的氨基与RNA链中带负电的磷酸基团相互作用,能够形成稳定的复合物。这种CNP/dsRNA复合物还能与内吞作用途径的核心成分CHC (Clathrin heavy chain)蛋白结合,从而显著提高RNAi的效率[13] [24] [33] [46]

在虫害防治的研究领域,壳聚糖的应用已经取得了显著的进展。Zhang等人的实验表明,以CNP/AgCHS1-dsRNA复合物为食的甘比亚按蚊(Anopheles gambiae)幼虫的AgCHS1转录水平和甲壳素含量分别降低了62.8%和33.8%,这表明壳聚糖可以作为dsRNA的载体用于害虫防治[47]。而使用CNP递送靶向A. gambiae几丁质合酶2 (chitin synthase2)基因的dsRNA,基因沉默率可达40%~60%,显著提高了A. gambiae的死亡率[48]。此外,Kolge等人的研究表明,CNP可以递送靶向棉铃虫(Helicoverpa armigera)幼年激素甲基转移酶(JHAMT)和乙酰胆碱酯酶(ACHE)基因的特异性dsRNA,触发RNAi机制,诱导H. armigera死亡[49]。壳聚糖还可以与星形阳离子聚合物(SPc)形成CSC复合物,与特异性dsRNA结合后,可以减少水稻(Oryza sativa L.)上R. solani的侵染,并将dsRNA的保护时间延长至20天[50] [51]。Dhandapani等人通过将CNP与三聚磷酸钠交联制备的纳米级高分子电解质复合物,结合特异性dsRNA后,可以使埃及伊蚊(Aedes aegypti)的死亡率提高至60%以上[52]。同时,有研究表明CNP对植物和人类细胞无毒,这为壳聚糖在病虫害防治中的安全应用提供了坚实的科学基础。这些研究成果不仅展示了壳聚糖作为dsRNA载体在害虫防治中的有效性,也表明了其在植物保护中的潜力,为实现更环保、更安全的病虫害管理提供了新的思路[49]

4.2. 层状氢氧化物

层状氢氧化物(Layered double hydroxide, LDH)是一类具有良好生物相容性和生物可降解性的无机层状材料[53] [54]。LDH纳米颗粒由混合的二价/三价金属氢氧化物层组成,这些层与阴离子及水分子键合在一起,形成了独特的层状结构。LDH的层状结构和带正电荷的氢氧化物层的特性,使其成为携带负电荷的生物分子(如DNA、RNA和蛋白质等)的理想载体[55]。利用LDH制备的生物农药纳米颗粒能够为植物保护提供一种绿色、高效且安全的解决方案。

LDH纳米片与dsRNA结合形成的dsRNA-LDH复合物(BioClay) [54] [56]喷洒到植物上后,会在低pH条件、CO2和水分的作用下缓慢降解,逐步释放dsRNA至叶面,从而增强dsRNA的稳定性并延长作物的保护周期[8] [56] [57]。Mitter等人的研究表明,使用LDH纳米颗粒装载特异性dsRNA后,喷施于豇豆(Vigna unguiculata)和N. tabacum叶片后,可以提供至少20天的抗病毒保护[56]。另一方面,Duanis-Assaf等人使用BioClay喷施V. viniferaS. lycopersicum、鹰嘴豆(Cicer arietinum L.)等果实,发现可以显著抑制B. cinerea的生长,延缓真菌在果实中的定殖和果实的腐烂,这或许可以替代杀菌剂为收获后的果实提供更安全的保护[57] [58]。此外,LDH装载靶向暹罗刺盘孢菌(Colletotrichum siamense) CsSCS7的dsRNA,可以显著增强对该菌的控制效果,减少橡胶树叶片的病变面积[59]。Tang等人通过用脂肪酸修饰LDH,使其由亲水性转变为两亲性,通过直接喷洒增强褐飞虱(Nilaparvata lugens)对dsRNA的摄取,同时促进BioClay从O. sativa叶片到维管束的易位,然后以摄食的方式进入N. lugens体内,提高N. lugens的死亡率[60]

4.3. 星形阳离子聚合物

星形阳离子聚合物(Star polycation, SPc)以其成本低廉和结构简单而著称,它由疏水核心和带正电荷的外臂构成,能够与带负电荷的核酸形成稳定的复合物[61],还能通过氢键、范德华力和静电吸附等分子间作用力来装载药物分子[62] [63]。基于SPc的纳米递送系统,在提升dsRNA的稳定性和有效性、以及开发RNAi农药等方面展现出巨大的潜力。

SPc与dsRNA/siRNA分子结合时,能够显著延缓它们的降解,并促进这些分子跨细胞膜易位,实现有效的基因沉默[24] [64]。SPc/dsRNA复合物能够降低木瓜小地老虎(Agrotis ypsilon)和大豆蚜虫(Aphis glycines)中目的基因的表达,并有效抑制害虫的生长[61] [65]。Zhao等人基于SPc的递送系统,开发了一种新型自组装的靶向npframpk基因的RNAi纳米农药,该农药在抑制亚洲玉米螟(Ostrinia furnacalis)幼虫的摄食和生长发育方面显示出卓越的防治效果[63]。Wang等人使用SPc同时装载dsRNA和纤维二糖,组成一种纳米级多元生物制剂,将这种制剂喷施在S. tuberosum叶片上后,显著抑制了致病疫霉菌(Phytophthora infestans)的侵染,对S. tuberosum的保护效果高达68%,并延长了RNAi的效应时长[66]。Yin等人利用SPc制备水杨酸纳米诱抗剂,有效控制了由V. dahliae引起的棉花黄萎病[67]。Li等人则使用SPc装载hem-dsRNA及植物农药苦参碱,形成的多组分纳米农药对桃蚜(Myzus persicae)展现出高效的基因沉默和显著的死亡率[62]。综上所述,SPc作为一种多功能的纳米递送载体,在提高RNAi效率、开发新型RNAi农药以及增强作物保护等方面具有广泛的应用前景,为绿色和可持续农林业提供了新的可能性。

4.4. 其他纳米颗粒

除了上述纳米颗粒外,还有多种纳米颗粒能够装载dsRNA/siRNA等分子,并将其递送至植物、真菌或害虫等,有效控制植物病虫害。例如,Qiao等人使用阳离子脂质合成的人工纳米囊泡(Artificial nanovesicles, AVs)包裹靶向B. cinerea VDS基因的dsRNA,然后将其施用于S. lycopersicum果实、V. vinifera叶与果实上,可以显著减少病斑大小并延长对植物的保护时长[68]。Wang等人使用功能化碳量子点(Functionalized carbon dots, CDs)作为dsRNA的载体,将dsRNA-CDs复合物喷施于植物,可以显著提升对P. infestans、大豆病疫菌(Phytophthora sojae)和辣椒疫霉(Phytophthora capsici)的防治效果[69]。阳离子脂质体也是一种有效的递送系统,Lin等人将dsRNA/siRNA等与阳离子脂质体结合,形成脂质复合物,能够抑制dsRNA的降解并提高德国小蠊(Blattella germanica)的死亡率[70]。此外,微型细胞(Microcells) [71]、金纳米团簇(Gold nanoclusters, AuNCs) [72]和细胞穿透肽(Cell-penetrating peptides, CPP) [73]等纳米载体在病虫害控制领域同样展现出巨大的应用潜力,可以根据具体需求选择不同的纳米载体进行研究、应用与优化(见表1)。

Table 1. Common nanoparticles and their key characteristics

1. 常见的纳米颗粒及其关键特征

纳米颗粒

细胞毒性

合成成本

颗粒大小

应用领域

参考文献

壳聚糖

100~200 nm

昆虫

[47]-[49]

层状氢氧化物

中低

20~80 nm

真菌、昆虫

[56]-[59]

星形阳离子聚合物

中低

100 nm

真菌、昆虫

[61]-[67]

人工纳米囊泡

200~400 nm

真菌

[68]

功能化碳量子点

未检测

2.7~3.9 nm

真菌

[13] [69]

阳离子脂质体

100~250 nm

昆虫

[24] [70]

5. 展望

RNAi作为一种新兴的技术,虽然已经在实验室条件下证明有效,且正在逐步推广至田间实验[5] [49] [50] [66] [74],但要实现其在农林业中的商业化和广泛应用,仍需克服一些关键挑战,并探索新的研究方向。

外源性dsRNA的稳定性是制约该技术应用的主要障碍之一[8]。复杂的土壤环境或害虫肠道环境处处制约着RNAi效率。未来研究的重点方向应该是利用纳米颗粒递送系统或化学修饰dsRNA,同时优化dsRNA的递送效率,增强dsRNA的稳定性和传递效率,从而提高RNAi效率和病虫害抑制效果[8] [25]

在土壤环境中,dsRNA传递技术与根际微生物之间的互作,包括与菌根真菌的互作,是另一个值得探索的领域[75]。在林木根际施用的菌根真菌等根际微生物,可以与林木形成互惠互利的共生关系,而dsRNA的应用可以保护根际微生物或树木免受害虫和真菌病原体的侵害。如何利用这一互作机制来增强植物的自然防御能力,是一个充满前景的研究方向。

虽然RNAi技术拥有着广泛的应用前景,但世界各国对dsRNA产品的应用与管理仍处于起步阶段[6] [76]。在我国,目前还未有dsRNA农药相关登记管理规定,这需要相关管理部门定义明确的风险评估方案,全面评估施用外源性dsRNA所涉及的各个方面,如dsRNA合成技术、表观遗传修饰、dsRNA在土壤和水体中的稳定性、生物累积潜力和生态毒性等,以确保该技术的可持续应用,满足生产与社会需求。

基金项目

国家自然科学基金面上项目(32370108, 32170116);养分资源高效利用全国重点实验室开放基金项目(KF2024-4)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] 粮农组织. 2024年世界森林状况: 促进林业部门创新, 迈向可持续未来[M]. 罗马: 粮农组织, 2024.
[2] Moore, D., Robson, G.D. and Trinci, A.P.J. (2011) 21st Century Guidebook to Fungi. Cambridge University Press.
[3] Eskola, M., Kos, G., Elliott, C.T., Hajšlová, J., Mayar, S. and Krska, R. (2019) Worldwide Contamination of Food-Crops with Mycotoxins: Validity of the Widely Cited ‘FAO Estimate’ of 25%. Critical Reviews in Food Science and Nutrition, 60, 2773-2789.
https://doi.org/10.1080/10408398.2019.1658570
[4] 陈夕军, 石童, 陈宸, 唐滔. 喷施诱导的基因沉默(SIGS)技术控制植物病害研究进展[J]. 植物保护, 2022, 48(5): 15-22.
[5] Fletcher, S.J., Reeves, P.T., Hoang, B.T. and Mitter, N. (2020) A Perspective on RNAi-Based Biopesticides. Frontiers in Plant Science, 11, Article 51.
https://doi.org/10.3389/fpls.2020.00051
[6] Spada, M., Pugliesi, C., Fambrini, M. and Pecchia, S. (2024) Challenges and Opportunities Arising from Host-Botrytis Cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. International Journal of Molecular Sciences, 25, Article 6798.
https://doi.org/10.3390/ijms25126798
[7] Khalid, A., Zhang, Q., Yasir, M. and Li, F. (2017) Small RNA Based Genetic Engineering for Plant Viral Resistance: Application in Crop Protection. Frontiers in Microbiology, 8, Article 43.
https://doi.org/10.3389/fmicb.2017.00043
[8] Mitter, N., Worrall, E.A., Robinson, K.E., Xu, Z.P. and Carroll, B.J. (2017) Induction of Virus Resistance by Exogenous Application of Double-Stranded RNA. Current Opinion in Virology, 26, 49-55.
https://doi.org/10.1016/j.coviro.2017.07.009
[9] Opdensteinen, P., Charudattan, R., Hong, J.C., Rosskopf, E.N. and Steinmetz, N.F. (2024) Biochemical and Nanotechnological Approaches to Combat Phytoparasitic Nematodes. Plant Biotechnology Journal, 22, 2444-2460.
https://doi.org/10.1111/pbi.14359
[10] Zotti, M., dos Santos, E.A., Cagliari, D., Christiaens, O., Taning, C.N.T. and Smagghe, G. (2018) RNA Interference Technology in Crop Protection against Arthropod Pests, Pathogens and Nematodes. Pest Management Science, 74, 1239-1250.
https://doi.org/10.1002/ps.4813
[11] Wong, C.K.F., Saidi, N.B., Vadamalai, G., Teh, C.Y. and Zulperi, D. (2019) Effect of Bioformulations on the Biocontrol Efficacy, Microbial Viability and Storage Stability of a Consortium of Biocontrol Agents against fusarium Wilt of Banana. Journal of Applied Microbiology, 127, 544-555.
https://doi.org/10.1111/jam.14310
[12] Wang, B., Liu, J., Liu, Q., Sun, J., Zhao, Y., Liu, J., et al. (2023) Knowledge Domain and Research Progress in the Field of Crop Rotation from 2000 to 2020: A Scientometric Review. Environmental Science and Pollution Research, 30, 86598-86617.
https://doi.org/10.1007/s11356-023-28266-6
[13] Ray, P., Sahu, D., Aminedi, R. and Chandran, D. (2022) Concepts and Considerations for Enhancing RNAi Efficiency in Phytopathogenic Fungi for RNAi-Based Crop Protection Using Nanocarrier-Mediated dsRNA Delivery Systems. Frontiers in Fungal Biology, 3, Article 977502.
https://doi.org/10.3389/ffunb.2022.977502
[14] Dietzgen, R.G. and Mitter, N. (2006) Transgenic Gene Silencing Strategies for Virus Control. Australasian Plant Pathology, 35, 605-618.
https://doi.org/10.1071/ap06064
[15] Zhao, J. and Guo, H. (2022) RNA Silencing: From Discovery and Elucidation to Application and Perspectives. Journal of Integrative Plant Biology, 64, 476-498.
https://doi.org/10.1111/jipb.13213
[16] Agrawal, N., Dasaradhi, P.V.N., Mohmmed, A., Malhotra, P., Bhatnagar, R.K. and Mukherjee, S.K. (2003) RNA Interference: Biology, Mechanism, and Applications. Microbiology and Molecular Biology Reviews, 67, 657-685.
https://doi.org/10.1128/mmbr.67.4.657-685.2003
[17] Preall, J.B. and Sontheimer, E.J. (2005) RNAi: RISC Gets Loaded. Cell, 123, 543-545.
https://doi.org/10.1016/j.cell.2005.11.006
[18] Iwakawa, H. and Tomari, Y. (2022) Life of RISC: Formation, Action, and Degradation of RNA-Induced Silencing Complex. Molecular Cell, 82, 30-43.
https://doi.org/10.1016/j.molcel.2021.11.026
[19] 尚仁福, 吴立刚. RNA干扰的机制及其应用[J]. 生命科学, 2016, 28(5): 576-583.
[20] Shidore, T., Zuverza-Mena, N., White, J.C. and da Silva, W. (2021) Nanoenabled Delivery of RNA Molecules for Prolonged Antiviral Protection in Crop Plants: A Review. ACS Applied Nano Materials, 4, 12891-12904.
https://doi.org/10.1021/acsanm.1c03512
[21] Niu, J., Jian, H., Xu, J., Chen, C., Guo, Q., Liu, Q., et al. (2012) RNAi Silencing of the Meloidogyne Incognita Rpn7 Gene Reduces Nematode Parasitic Success. European Journal of Plant Pathology, 134, 131-144.
https://doi.org/10.1007/s10658-012-9971-y
[22] Nerva, L., Sandrini, M., Gambino, G. and Chitarra, W. (2020) Double-Stranded RNAs (dsRNAs) as a Sustainable Tool against Gray Mold (Botrytis cinerea) in Grapevine: Effectiveness of Different Application Methods in an Open-Air Environment. Biomolecules, 10, Article 200.
https://doi.org/10.3390/biom10020200
[23] Zhang, H., Li, X., Yu, D., Guan, J., Ding, H., Wu, H., et al. (2023) A Vector-Free Gene Interference System Using Delaminated Mg-Al-Lactate Layered Double Hydroxide Nanosheets as Molecular Carriers to Intact Plant Cells. Plant Methods, 19, Article No. 44.
https://doi.org/10.1186/s13007-023-01021-1
[24] Yan, S., Ren, B. and Shen, J. (2020) Nanoparticle-Mediated Double-Stranded RNA Delivery System: A Promising Approach for Sustainable Pest Management. Insect Science, 28, 21-34.
https://doi.org/10.1111/1744-7917.12822
[25] Abdellatef, E., Kamal, N.M. and Tsujimoto, H. (2021) Tuning Beforehand: A Foresight on RNA Interference (RNAi) and in Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses. International Journal of Molecular Sciences, 22, Article 7687.
https://doi.org/10.3390/ijms22147687
[26] Andika, I.B., Wei, S., Cao, C., Salaipeth, L., Kondo, H. and Sun, L. (2017) Phytopathogenic Fungus Hosts a Plant Virus: A Naturally Occurring Cross-Kingdom Viral Infection. Proceedings of the National Academy of Sciences, 114, 12267-12272.
https://doi.org/10.1073/pnas.1714916114
[27] Cai, Q., Qiao, L., Wang, M., He, B., Lin, F., Palmquist, J., et al. (2018) Plants Send Small RNAs in Extracellular Vesicles to Fungal Pathogen to Silence Virulence Genes. Science, 360, 1126-1129.
https://doi.org/10.1126/science.aar4142
[28] Wang, M., Weiberg, A., Lin, F., Thomma, B.P.H.J., Huang, H. and Jin, H. (2016) Bidirectional Cross-Kingdom RNAi and Fungal Uptake of External RNAs Confer Plant Protection. Nature Plants, 2, Article No. 16151.
https://doi.org/10.1038/nplants.2016.151
[29] Capriotti, L., Molesini, B., Pandolfini, T., Jin, H., Baraldi, E., Cecchin, M., et al. (2024) RNA Interference-Based Strategies to Control Botrytis Cinerea Infection in Cultivated Strawberry. Plant Cell Reports, 43, Article No. 201.
https://doi.org/10.1007/s00299-024-03288-7
[30] Sun, L., Liu, P., Zhang, C., Du, H., Wang, Z., Moural, T.W., et al. (2019) Ocular Albinism Type 1 Regulates Deltamethrin Tolerance in Lymantria Dispar and Drosophila Melanogaster. Frontiers in Physiology, 10, Article 766.
https://doi.org/10.3389/fphys.2019.00766
[31] San Miguel, K. and Scott, J.G. (2015) The Next Generation of Insecticides: dsRNA Is Stable as a Foliar-Applied Insecticide. Pest Management Science, 72, 801-809.
https://doi.org/10.1002/ps.4056
[32] Majumdar, R., Rajasekaran, K. and Cary, J.W. (2017) RNA Interference (RNAi) as a Potential Tool for Control of Mycotoxin Contamination in Crop Plants: Concepts and Considerations. Frontiers in Plant Science, 8, Article 200.
https://doi.org/10.3389/fpls.2017.00200
[33] Wang, X., Ji, S., Bi, S., Tang, Y., Zhang, G., Yan, S., et al. (2023) A Promising Approach to an Environmentally Friendly Pest Management Solution: Nanocarrier-Delivered dsRNA towards Controlling the Destructive Invasive Pest Tuta absoluta. Environmental Science: Nano, 10, 1003-1015.
https://doi.org/10.1039/d2en01076c
[34] Hunter, W.B., Glick, E., Paldi, N. and Bextine, B.R. (2012) Advances in RNA Interference: dsRNA Treatment in Trees and Grapevines for Insect Pest Suppression. Southwestern Entomologist, 37, 85-87.
https://doi.org/10.3958/059.037.0110
[35] Wang, M. and Jin, H. (2017) Spray-Induced Gene Silencing: A Powerful Innovative Strategy for Crop Protection. Trends in Microbiology, 25, 4-6.
https://doi.org/10.1016/j.tim.2016.11.011
[36] McLoughlin, A.G., Wytinck, N., Walker, P.L., Girard, I.J., Rashid, K.Y., de Kievit, T., et al. (2018) Identification and Application of Exogenous dsRNA Confers Plant Protection against Sclerotinia sclerotiorum and Botrytis cinerea. Scientific Reports, 8, Article No. 7320.
https://doi.org/10.1038/s41598-018-25434-4
[37] Song, X., Gu, K., Duan, X., Xiao, X., Hou, Y., Duan, Y., et al. (2018) Secondary Amplification of siRNA Machinery Limits the Application of Spray-Induced Gene Silencing. Molecular Plant Pathology, 19, 2543-2560.
https://doi.org/10.1111/mpp.12728
[38] Koch, A., Biedenkopf, D., Furch, A., Weber, L., Rossbach, O., Abdellatef, E., et al. (2016) An RNAi-Based Control of Fusarium Graminearum Infections through Spraying of Long dsRNAs Involves a Plant Passage and Is Controlled by the Fungal Silencing Machinery. PLOS Pathogens, 12, e1005901.
https://doi.org/10.1371/journal.ppat.1005901
[39] Gu, K., Song, X., Xiao, X., Duan, X., Wang, J., Duan, Y., et al. (2019) A Β-Tubulin dsRNA Derived from Fusarium asiaticum Confers Plant Resistance to Multiple Phytopathogens and Reduces Fungicide Resistance. Pesticide Biochemistry and Physiology, 153, 36-46.
https://doi.org/10.1016/j.pestbp.2018.10.005
[40] Dubelman, S., Fischer, J., Zapata, F., Huizinga, K., Jiang, C., Uffman, J., et al. (2014) Environmental Fate of Double-Stranded RNA in Agricultural Soils. PLOS ONE, 9, e93155.
https://doi.org/10.1371/journal.pone.0093155
[41] Prentice, K., Smagghe, G., Gheysen, G. and Christiaens, O. (2019) Nuclease Activity Decreases the RNAi Response in the Sweetpotato Weevil Cylas puncticollis. Insect Biochemistry and Molecular Biology, 110, 80-89.
https://doi.org/10.1016/j.ibmb.2019.04.001
[42] Song, H., Fan, Y., Zhang, J., Cooper, A.M., Silver, K., Li, D., et al. (2019) Contributions of dsRNases to Differential RNAi Efficiencies between the Injection and Oral Delivery of dsRNA in Locusta migratoria. Pest Management Science, 75, 1707-1717.
https://doi.org/10.1002/ps.5291
[43] Qiao, L., Lan, C., Capriotti, L., Ah-Fong, A., Nino Sanchez, J., Hamby, R., et al. (2021) Spray-Induced Gene Silencing for Disease Control Is Dependent on the Efficiency of Pathogen RNA Uptake. Plant Biotechnology Journal, 19, 1756-1768.
https://doi.org/10.1111/pbi.13589
[44] 付淑笙, 江奕舟, 蒋沁宏, 沈杰, 闫硕. 基于纳米递送系统的RNA农药及转基因植物研究进展[J]. 植物保护学报, 2021, 48(2): 267-274.
[45] Negm, N.A., Hefni, H.H.H., Abd-Elaal, A.A.A., Badr, E.A. and Abou Kana, M.T.H. (2020) Advancement on Modification of Chitosan Biopolymer and Its Potential Applications. International Journal of Biological Macromolecules, 152, 681-702.
https://doi.org/10.1016/j.ijbiomac.2020.02.196
[46] Zhou, H., Wan, F., Jian, Y., Guo, F., Zhang, M., Shi, S., et al. (2023) Chitosan/dsRNA Polyplex Nanoparticles Advance Environmental RNA Interference Efficiency through Activating Clathrin-Dependent Endocytosis. International Journal of Biological Macromolecules, 253, Article 127021.
https://doi.org/10.1016/j.ijbiomac.2023.127021
[47] Zhang, X., Zhang, J. and Zhu, K.Y. (2010) Chitosan/Double-Stranded RNA Nanoparticle-Mediated RNA Interference to Silence Chitin Synthase Genes through Larval Feeding in the African Malaria Mosquito (Anopheles gambiae). Insect Molecular Biology, 19, 683-693.
https://doi.org/10.1111/j.1365-2583.2010.01029.x
[48] Zhang, X., Mysore, K., Flannery, E., Michel, K., Severson, D.W., Zhu, K.Y., et al. (2015) Chitosan/Interfering RNA Nanoparticle Mediated Gene Silencing in Disease Vector Mosquito Larvae. Journal of Visualized Experiments, 96, 181-191.
https://doi.org/10.3791/52523
[49] Kolge, H., Kadam, K., Galande, S., Lanjekar, V. and Ghormade, V. (2021) New Frontiers in Pest Control: Chitosan Nanoparticles-Shielded dsRNA as an Effective Topical RNAi Spray for Gram Podborer Biocontrol. ACS Applied Bio Materials, 4, 5145-5157.
https://doi.org/10.1021/acsabm.1c00349
[50] Wang, X., Zheng, K., Cheng, W., Li, J., Liang, X., Shen, J., et al. (2021) Field Application of Star Polymer-Delivered Chitosan to Amplify Plant Defense against Potato Late Blight. Chemical Engineering Journal, 417, Article 129327.
https://doi.org/10.1016/j.cej.2021.129327
[51] Wang, Y., Yan, Q., Lan, C., Tang, T., Wang, K., Shen, J., et al. (2023) Nanoparticle Carriers Enhance RNA Stability and Uptake Efficiency and Prolong the Protection against Rhizoctonia Solani. Phytopathology Research, 5, Article No. 2.
https://doi.org/10.1186/s42483-023-00157-1
[52] Dhandapani, R.K., Gurusamy, D., Howell, J.L. and Palli, S.R. (2019) Development of CS-TPP-dsRNA Nanoparticles to Enhance RNAi Efficiency in the Yellow Fever Mosquito, Aedes Aegypti. Scientific Reports, 9, Article No, 8775.
https://doi.org/10.1038/s41598-019-45019-z
[53] Dong, H., Chen, M., Rahman, S., Parekh, H.S., Cooper, H.M. and Xu, Z.P. (2014) Engineering Small MgAl-Layered Double Hydroxide Nanoparticles for Enhanced Gene Delivery. Applied Clay Science, 100, 66-75.
https://doi.org/10.1016/j.clay.2014.04.028
[54] Xu, Z.P., Stevenson, G.S., Lu, C., Lu, G.Q., Bartlett, P.F. and Gray, P.P. (2005) Stable Suspension of Layered Double Hydroxide Nanoparticles in Aqueous Solution. Journal of the American Chemical Society, 128, 36-37.
https://doi.org/10.1021/ja056652a
[55] Zhang, L., Hu, J., Jia, Y., Liu, R., Cai, T. and Xu, Z.P. (2021) Two-Dimensional Layered Double Hydroxide Nanoadjuvant: Recent Progress and Future Direction. Nanoscale, 13, 7533-7549.
https://doi.org/10.1039/d1nr00881a
[56] Mitter, N., Worrall, E.A., Robinson, K.E., Li, P., Jain, R.G., Taochy, C., et al. (2017) Clay Nanosheets for Topical Delivery of RNAi for Sustained Protection against Plant Viruses. Nature Plants, 3, Article No. 16207.
https://doi.org/10.1038/nplants.2016.207
[57] Duanis-Assaf, D., Shlar, I., Galsurker, O., Davydov, O., Maurer, D., Feygenberg, O., et al. (2022) Nano-Clay, Layered-Double Hydroxide (LDH), Improves the Efficacy of Double-Stranded RNA in Controlling Postharvest Decay. Postharvest Biology and Technology, 193, Article 112051.
https://doi.org/10.1016/j.postharvbio.2022.112051
[58] Niño-Sánchez, J., Sambasivam, P.T., Sawyer, A., Hamby, R., Chen, A., Czislowski, E., et al. (2022) Bioclay Prolongs RNA Interference-Mediated Crop Protection against Botrytis cinerea. Journal of Integrative Plant Biology, 64, 2187-2198.
https://doi.org/10.1111/jipb.13353
[59] Xi, Y., Long, X., Song, M., Liu, Y., Yan, J., Lv, Y., et al. (2024) The Fatty Acid 2-Hydroxylase Csscs7 Is a Key Hyphal Growth Factor and Potential Control Target in Colletotrichum siamense. mBio, 15, e02015-23.
https://doi.org/10.1128/mbio.02015-23
[60] Tang, X., Jiang, X., Chen, Q. and Lin, X. (2024) Amphiphilic Layered Double Hydroxides Enhance Plant-Mediated Delivery of dsRNAs to Phloem‑feeding Planthoppers. Chemical Engineering Journal, 491, Article 151953.
https://doi.org/10.1016/j.cej.2024.151953
[61] Li, J., Qian, J., Xu, Y., Yan, S., Shen, J. and Yin, M. (2019) A Facile-Synthesized Star Polycation Constructed as a Highly Efficient Gene Vector in Pest Management. ACS Sustainable Chemistry & Engineering, 7, 6316-6322.
https://doi.org/10.1021/acssuschemeng.9b00004
[62] Li, M., Ma, Z., Peng, M., Li, L., Yin, M., Yan, S., et al. (2022) A Gene and Drug Co-Delivery Application Helps to Solve the Short Life Disadvantage of RNA Drug. Nano Today, 43, Article 101452.
https://doi.org/10.1016/j.nantod.2022.101452
[63] Zhao, J., Yan, S., Li, M., Sun, L., Dong, M., Yin, M., et al. (2023) NPFR Regulates the Synthesis and Metabolism of Lipids and Glycogen via AMPK: Novel Targets for Efficient Corn Borer Management. International Journal of Biological Macromolecules, 247, Article 125816.
https://doi.org/10.1016/j.ijbiomac.2023.125816
[64] Yan, S., Ren, B., Zeng, B. and Shen, J. (2020) Improving RNAi Efficiency for Pest Control in Crop Species. BioTechniques, 68, 283-290.
https://doi.org/10.2144/btn-2019-0171
[65] Yan, S., Qian, J., Cai, C., Ma, Z., Li, J., Yin, M., et al. (2019) Spray Method Application of Transdermal dsRNA Delivery System for Efficient Gene Silencing and Pest Control on Soybean Aphid Aphis Glycines. Journal of Pest Science, 93, 449-459.
https://doi.org/10.1007/s10340-019-01157-x
[66] Wang, Y., Li, M., Ying, J., Shen, J., Dou, D., Yin, M., et al. (2023) High-Efficiency Green Management of Potato Late Blight by a Self-Assembled Multicomponent Nano-Bioprotectant. Nature Communications, 14, Article No. 5622.
https://doi.org/10.1038/s41467-023-41447-8
[67] Yin, J., Zhao, J., Wang, Z., Xue, F., Wang, Q., Guo, H., et al. (2024) Preparation of Salicylic Acid Nano-Protectant with Dual Synergistic Mechanism: High Direct Fungicidal Activity and Plant Defence toward Cotton Verticillium Wilt. Chemical Engineering Journal, 496, Article 154036.
https://doi.org/10.1016/j.cej.2024.154036
[68] Qiao, L., Niño-Sánchez, J., Hamby, R., Capriotti, L., Chen, A., Mezzetti, B., et al. (2023) Artificial Nanovesicles for dsRNA Delivery in Spray-Induced Gene Silencing for Crop Protection. Plant Biotechnology Journal, 21, 854-865.
https://doi.org/10.1111/pbi.14001
[69] Wang, Z., Li, Y., Zhang, B., Gao, X., Shi, M., Zhang, S., et al. (2023) Functionalized Carbon Dot-Delivered RNA Nano Fungicides as Superior Tools to Control Phytophthora Pathogens through Plant RdRP1 Mediated Spray-Induced Gene Silencing. Advanced Functional Materials, 33, Article 2213143.
https://doi.org/10.1002/adfm.202213143
[70] Lin, Y., Huang, J., Liu, Y., Belles, X. and Lee, H. (2016) Oral Delivery of dsRNA Lipoplexes to German Cockroach Protects dsRNA from Degradation and Induces RNAi Response. Pest Management Science, 73, 960-966.
https://doi.org/10.1002/ps.4407
[71] Islam, M.T., Davis, Z., Chen, L., Englaender, J., Zomorodi, S., Frank, J., et al. (2021) Minicell-Based Fungal RNAi Delivery for Sustainable Crop Protection. Microbial Biotechnology, 14, 1847-1856.
https://doi.org/10.1111/1751-7915.13699
[72] Zhang, H., Cao, Y., Xu, D., Goh, N.S., Demirer, G.S., Cestellos-Blanco, S., et al. (2021) Gold-Nanocluster-Mediated Delivery of siRNA to Intact Plant Cells for Efficient Gene Knockdown. Nano Letters, 21, 5859-5866.
https://doi.org/10.1021/acs.nanolett.1c01792
[73] Thagun, C., Motoda, Y., Kigawa, T., Kodama, Y. and Numata, K. (2020) Simultaneous Introduction of Multiple Biomacromolecules into Plant Cells Using a Cell-Penetrating Peptide Nanocarrier. Nanoscale, 12, 18844-18856.
https://doi.org/10.1039/d0nr04718j
[74] 王晓迪, 冀顺霞, 申晓娜, 刘万学, 万方浩, 张桂芬, 吕志创. 纳米载导RNAi技术在害虫防治中的研究和应用[J]. 中国生物防治学报, 2021, 37(6): 1298-1312.
[75] Singewar, K. and Fladung, M. (2023) Double-Stranded RNA (dsRNA) Technology to Control Forest Insect Pests and Fungal Pathogens: Challenges and Opportunities. Functional & Integrative Genomics, 23, Article No. 185.
https://doi.org/10.1007/s10142-023-01107-y
[76] Mendelsohn, M.L., Gathmann, A., Kardassi, D., Sachana, M., Hopwood, E.M., Dietz-Pfeilstetter, A., et al. (2020) Summary of Discussions from the 2019 OECD Conference on RNAi Based Pesticides. Frontiers in Plant Science, 11, Article 740.
https://doi.org/10.3389/fpls.2020.00740