[1]
|
戴金星. 威远气田成藏期及气源[J]. 石油实验地质, 2003, 25(5): 473-480.
|
[2]
|
刘树根, 孙玮, 赵异华, 等. 四川盆地震旦系灯影组天然气的差异聚集分布及其主控因素[J]. 天然气工业, 2015, 35(1): 10-23.
|
[3]
|
陈宗清. 四川盆地震旦系灯影组天然气勘探[J]. 中国石油勘探, 2010, 15(4): 1-14, 18.
|
[4]
|
邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系-寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293.
|
[5]
|
张林, 魏国齐, 汪泽成, 等. 四川盆地高石梯-磨溪构造带震旦系灯影组的成藏模式[J]. 天然气地球科学, 2004, 15(6): 584-589.
|
[6]
|
洪海涛, 包强, 张光荣. 对四川盆地天然气资源的潜在接替层系——震旦、寒武系有利目标区块的评价[J]. 成都理工学院学报, 2000(S1): 143-146.
|
[7]
|
孙玮, 刘树根, 李泽奇, 等. 四川盆地灯影组天然气晚期调整成藏的主控因素[J]. 成都理工大学学报(自然科学版), 2021, 48(6): 641-652.
|
[8]
|
金之钧, 蔡立国. 中国海相层系油气地质理论的继承与创新[J]. 地质学报, 2007, 81(8): 1017-1024.
|
[9]
|
金之钧. 中国海相碳酸盐岩层系油气勘探特殊性问题[J]. 地学前缘, 2005, 12(3): 15-22.
|
[10]
|
李勇, 陈世加, 尹相东, 等. 储层中固体沥青研究现状、地质意义及其发展趋势[J]. 吉林大学学报(地球科学版), 2020, 50(3): 732-746.
|
[11]
|
曾庆辉, 钱玲, 刘德汉, 等. 富有机质的黑色页岩和油页岩的有机岩石学特征与生、排烃意义[J]. 沉积学报, 2006, 24(1): 113-122.
|
[12]
|
秦建中, 李志明, 刘宝泉, 等. 海相优质烃源岩形成重质油与固体沥青潜力分析[J]. 石油实验地质, 2007, 29(3): 280-285, 291.
|
[13]
|
付小东, 秦建中, 腾格尔, 等. 固体沥青--反演油气成藏及改造过程的重要标志[J]. 天然气地球科学, 2009, 20(2): 167-173.
|
[14]
|
王显东, 姜振学, 庞雄奇. 古油气水界面恢复方法综述[J]. 地球科学进展, 2003, 18(3): 412-419.
|
[15]
|
陈世加, 王廷栋, 代鸿鸣. 天然气储层沥青的生标物分布与干气运移: 以平落坝和河湾场气田为例[J]. 天然气地球科学, 1993, 4(5): 35-39.
|
[16]
|
谢武仁, 杨威, 魏国齐, 等. 桐湾运动对四川盆地震旦系灯影组岩溶储层形成的控制作用[J]. 地质科学, 2017, 52(1): 254-269.
|
[17]
|
李启桂, 李克胜, 周卓铸, 等. 四川盆地桐湾不整合面古地貌特征与岩溶分布预测[J]. 石油与天然气地质, 2013, 34(4): 516-521.
|
[18]
|
马文辛, 刘树根, 黄文明, 等. 四川盆地周缘筇竹寺组泥页岩储层特征[J]. 成都理工大学学报(自然科学版), 2012, 39(2): 182-189.
|
[19]
|
李宗银, 姜华, 汪泽成, 等. 构造运动对四川盆地震旦系油气成藏的控制作用[J]. 天然气工业, 2014, 34(3): 23-30.
|
[20]
|
张林, 魏国齐, 吴世祥, 等. 四川盆地震旦系-下古生界沥青产烃潜力及分布特征[J]. 石油实验地质, 2005, 27(3): 276-280, 298.
|
[21]
|
魏国齐, 刘德来, 张林, 等. 四川盆地天然气分布规律与有利勘探领域[J]. 天然气地球科学, 2005, 16(4): 437-442.
|
[22]
|
李国辉, 李翔, 杨西南. 四川盆地加里东古隆起震旦系气藏成藏控制因素[J]. 石油与天然气地质, 2000, 21(1): 80-83.
|
[23]
|
邓涛. 四川盆地加里东古隆起的构造机制和成藏模式[J]. 石油实验地质, 1996(4): 356-360, 401.
|
[24]
|
徐世琦, 李天生. 四川盆地加里东古隆起震旦系古岩溶型储层的分布特征[J]. 天然气勘探与开发, 1999(1): 14-18, 43.
|
[25]
|
李伟, 胡国艺, 周进高. 四川盆地桐湾期古隆起震旦系储层沥青特征与天然气聚集机制[J]. 天然气工业, 2015, 35(6): 14-23.
|
[26]
|
刘丹, 李剑, 谢增业, 等. 川中震旦系灯影组原生-同层沥青的成因及意义[J]. 石油实验地质, 2014, 36(2): 218-223, 229.
|
[27]
|
宋泽章, 葛冰飞, 王文之, 等. 超深层古油藏的定量表征及其对气藏形成的指示意义: 以川中古隆起北斜坡灯影组为例[J]. 地球科学, 2023, 48(2): 517-532.
|
[28]
|
Ganz, H.H., Kalkrcuth, W., 康希栋. 利用红外光谱确定干酪根类型、热成熟度、生烃潜力及其岩石学特性[J]. 地质科学译丛, 1993(1): 64-70.
|
[29]
|
姚素平, 张景荣, 金奎励. 用显微荧光和显微傅立叶红外光谱研究显微组分的热演化规律[J]. 沉积学报, 1996(3): 3-12.
|
[30]
|
廖泽文. 沥青质地球化学行为研究及其在石油勘探开发中的应用前景[D]: [博士学位论文]. 广州: 中国科学院广州地球化学研究所, 2001.
|
[31]
|
王越, 丁华, 武琳琳, 等. 低温热转化过程中煤中典型壳质组的荧光和Micro-FTIR特征[J]. 燃料化学学报, 2021, 49(5): 598-608.
|
[32]
|
Love, G.D., Snape, C.E., Carr, A.D. and Houghton, R.C. (1995) Release of Covalently-Bound Alkane Biomarkers in High Yields from Kerogen via Catalytic Hydropyrolysis. Organic Geochemistry, 23, 981-986. https://doi.org/10.1016/0146-6380(95)00075-5
|
[33]
|
Love, G.D., McAulay, A., Snape, C.E. and Bishop, A.N. (1997) Effect of Process Variables in Catalytic Hydropyrolysis on the Release of Covalently Bound Aliphatic Hydrocarbons from Sedimentary Organic Matter. Energy & Fuels, 11, 522-531. https://doi.org/10.1021/ef960194x
|
[34]
|
Love, G.D., Murray, I.P. and Snape, C.E. (1999) Two-Stage Hydropyrolysis: Maximizing the Yields of Covalently-Bound Biomarkers from Sedimentary Organic Matter. 19th International Meeting on Organic Geochemistry, Istanbul, 6-10 September 1999, 135-336.
|
[35]
|
Love, G.D., Snape, C.E. and Fallick, A.E. (1998) Differences in the Mode of Incorporation and Biogenicity of the Principal Aliphatic Constituents of a Type I Oil Shale. Organic Geochemistry, 28, 797-811. https://doi.org/10.1016/s0146-6380(98)00050-3
|
[36]
|
Maroto-Valer, M.M., Love, G.D. and Snape, C.E. (1997) Close Correspondence between Carbon Skeletal Parameters of Kerogens and Their Hydropyrolysis Oils. Energy & Fuels, 11, 539-545. https://doi.org/10.1021/ef960214v
|
[37]
|
Meredith, W., Russell, C.A., Snape, C.E., et al. (2003) Potential of Bound Bio-Markers Released via Hydropyrolysis for the Characterization of Pryobitumens a Tar Mats. 21th International Meeting on Organic Geochemistry, Krakow, 8-12 September 2003, 305-306.
|
[38]
|
Murray, I.P., Love, G.D., Snape, C.E. and Bailey, N.J.L. (1998) Comparison of Covalently-Bound Aliphatic Biomarkers Released via Hydropyrolysis with Their Solvent-Extractable Counterparts for a Suite of Kimmeridge Clays. Organic Geochemistry, 29, 1487-1505. https://doi.org/10.1016/s0146-6380(98)00162-4
|
[39]
|
Rocha, J.D., Brown, S.D., Love, G.D. and Snape, C.E. (1997) Hydropyrolysis: A Versatile Technique for Solid Fuel Liquefaction, Sulphur Speciation and Biomarker Release. Journal of Analytical and Applied Pyrolysis, 40, 91-103. https://doi.org/10.1016/s0165-2370(97)00041-7
|
[40]
|
廖玉宏, 方允鑫, 吴亮亮, 等. 催化加氢热解法在我国南方高-过成熟有机质研究中的应用前景[C]//中国矿物岩石地球化学学会. 中国矿物岩石地球化学学会第13届学术年会论文集. 中国科学院广州地球化学研究所有机地球化学国家重点实验室. 2011: 377.
|
[41]
|
方允鑫, 耿安松, 廖玉宏, 等. 催化加氢热解法在南丹大厂古油藏固体沥青油源研究中的应用[J]. 地球化学, 2012, 41(2): 122-130.
|
[42]
|
蔡长娥, 邱楠生, 徐少华. Re-Os同位素测年法在油气成藏年代学的研究进展[J]. 地球科学展, 2014, 29(12): 1362-1371.
|
[43]
|
李超, 屈文俊, 王登红, 等. 富有机质地质样品Re-Os同位素体系研究进展[J]. 岩石矿物学杂志, 2010, 29(4): 421-430.
|
[44]
|
沈传波, David Selby, 梅廉夫, 等. 油气成藏定年的Re-Os同位素方法应用研究[J]. 矿物岩石, 2011, 31(4): 87-93.
|
[45]
|
陈玲. 华南麻江海相古油藏沥青Re-Os同位素特征及其对油藏形成和破坏时代的约束[D]: [博士学位论文]. 武汉: 中国地质大学(武汉), 2010.
|
[46]
|
王杰, 腾格尔, 刘文汇, 等. 川西矿山梁下寒武统沥青脉油气生成时间的厘定——来自于固体沥青Re-Os同位素等时线年龄的证据[J]. 天然气地球科学, 2016, 27(7): 1290-1298.
|
[47]
|
沈传波, 葛翔, 白秀娟. 四川盆地震旦-寒武系油气成藏的Re-Os年代学约束[J]. 地球科学, 2019, 44(3): 713-726.
|
[48]
|
孙闻, 钟宁宁, 罗情勇, 等. 上扬子地区储层固体沥青Re-Os同位素组成特征及其地球化学意义[J]. 天然气地球科学, 2025, 36(4): 689-700.
|
[49]
|
刘燕, 沈菊男. 基于AFM的沥青微观结构及微观力学性能研究综述[J]. 石油沥青, 2017, 31(5): 68-72.
|
[50]
|
杨军, 龚明辉, Pauli Troy, 等. 基于原子力显微镜的沥青微观结构研究[J]. 石油学报(石油加工), 2015, 31(4): 959-965.
|
[51]
|
Jacob, H. (1989) Classification, Structure, Genesis and Practical Importance of Natural Solid Oil Bitumen (“Migrabitumen”). International Journal of Coal Geology, 11, 65-79. https://doi.org/10.1016/0166-5162(89)90113-4
|
[52]
|
Mastalerz, M., Drobniak, A. and Stankiewicz, A.B. (2018) Origin, Properties, and Implications of Solid Bitumen in Source-Rock Reservoirs: A Review. International Journal of Coal Geology, 195, 14-36. https://doi.org/10.1016/j.coal.2018.05.013
|
[53]
|
林峰, 王廷栋, 代鸿鸣, 等. 四川盆地碳酸盐岩储层中固体运移沥青的性质和成因[J]. 矿物岩石地球化学通报, 1998(3): 36-40.
|
[54]
|
田兴旺, 胡国艺, 李伟, 等. 四川盆地乐山-龙女寺古隆起地区震旦系储层沥青地球化学特征及意义[J]. 天然气地球科学, 2013, 24(5): 982-990.
|
[55]
|
朱扬明, 李颖, 郝芳, 等. 四川盆地东北部海、陆相储层沥青组成特征及来源[J]. 岩石学报, 2012, 28(3): 870-878.
|
[56]
|
黄伟. 乐山-龙女寺深层沥青、源岩地球化学研究[D]: [硕士学位论文]. 东营: 中国石油大学(华东), 2017.
|
[57]
|
曹剑, 吴明, 王绪龙, 等. 油源对比微量元素地球化学研究进展[J]. 地球科学进展, 2012, 27(9): 925-936.
|
[58]
|
施春华. 四川盆地震旦系——下寒武统大气藏高演化烃源对比无机地球化学研究[D]: [博士学位论文]. 南京: 南京大学, 2017.
|
[59]
|
崔会英, 张莉, 魏国齐, 等. 四川盆地威远-资阳地区震旦系储层沥青特征及意义[J]. 石油实验地质, 2008, 30(5): 489-493, 498.
|
[60]
|
孙玮, 刘树根, 马永生, 等. 四川盆地威远-资阳地区震旦系油裂解气判定及成藏过程定量模拟[J]. 地质学报, 2007, 81(8): 1153-1159.
|
[61]
|
徐国盛, 袁海锋, 马永生, 等. 川中-川东南地区震旦系-下古生界沥青来源及成烃演化[J]. 地质学报, 2007, 81(8): 1143-1152.
|
[62]
|
曹剑, 施春华, 谭秀成, 等. 高演化烃源对比稀土元素地球化学研究: 以四川盆地灯影组为例[C]//中国矿物岩石地球化学学会. 中国矿物岩石地球化学学会第14届学术年会论文摘要专辑. 南京大学地球科学与工程学院内生金属矿床成矿机制研究国家重点实验室; 西南石油大学资源与环境学院油气藏地质及开发工程国家重点实验室; 中石油西南油气田公司勘探开发研究院. 2013: 556-557.
|
[63]
|
Wilde, P., Quinby-Hunt, M.S. and Erdtmann, B. (1996) The Whole-Rock Cerium Anomaly: A Potential Indicator of Eustatic Sea-Level Changes in Shales of the Anoxic Facies. Sedimentary Geology, 101, 43-53. https://doi.org/10.1016/0037-0738(95)00020-8
|
[64]
|
陈玲, 马昌前, 凌文黎, 等. 中国南方存在印支期的油气藏——Re-Os同位素体系的制约[J]. 地质科技情报, 2010, 29(2): 95-99.
|
[65]
|
Michard, A., Albarède, F., Michard, G., Minster, J.F. and Charlou, J.L. (1983) Rare-Earth Elements and Uranium in High-Temperature Solutions from East Pacific Rise Hydrothermal Vent Field (13 °N). Nature, 303, 795-797. https://doi.org/10.1038/303795a0
|
[66]
|
Jiang, S., Zhao, H., Chen, Y., Yang, T., Yang, J. and Ling, H. (2007) Trace and Rare Earth Element Geochemistry of Phosphate Nodules from the Lower Cambrian Black Shale Sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. Chemical Geology, 244, 584-604. https://doi.org/10.1016/j.chemgeo.2007.07.010
|
[67]
|
施春华. 四川盆地震旦系-下寒武统大气藏高演化烃源对比无机地球化学研究[D]: [博士学位论文]. 南京: 南京大学, 2017.
|
[68]
|
陶小晚, 李明, 张欣欣等. 微生物氧化作用对有机烷烃气碳同位素的影响[J]. 中国石油勘探, 2014, 19(3): 41-49.
|
[69]
|
刘树根, 李泽奇, 邓宾, 等. 四川盆地震旦系灯影组深层碳酸盐岩储层沥青赋存形态及其油气藏示踪作用[J]. 天然气工业, 2021, 41(8): 102-112.
|
[70]
|
Bobko, C. and Ulm, F. (2008) The Nano-Mechanical Morphology of Shale. Mechanics of Materials, 40, 318-337. https://doi.org/10.1016/j.mechmat.2007.09.006
|
[71]
|
Emmanuel, S. and Day-Stirrat, R.J. (2012) A Framework for Quantifying Size Dependent Deformation of Nano-Scale Pores in Mudrocks. Journal of Applied Geophysics, 86, 29-35. https://doi.org/10.1016/j.jappgeo.2012.07.011
|
[72]
|
Emmanuel, S., Eliyahu, M., Day-Stirrat, R.J., Hofmann, R. and Macaulay, C.I. (2016) Softening of Organic Matter in Shales at Reservoir Temperatures. Petroleum Geoscience, 23, 262-269. https://doi.org/10.1144/petgeo2016-035
|
[73]
|
Eliyahu, M., Emmanuel, S., Day-Stirrat, R.J. and Macaulay, C.I. (2015) Mechanical Properties of Organic Matter in Shales Mapped at the Nanometer Scale. Marine and Petroleum Geology, 59, 294-304. https://doi.org/10.1016/j.marpetgeo.2014.09.007
|
[74]
|
Zargari, S., Prasad, M., Mba, K.C. and Mattson, E.D. (2013) Organic Maturity, Elastic Properties, and Textural Characteristics of Self Resourcing Reservoirs. Geophysics, 78, D223-D235. https://doi.org/10.1190/geo2012-0431.1
|
[75]
|
Hu, C. and Li, Z. (2015) A Review on the Mechanical Properties of Cement-Based Materials Measured by Nanoindentation. Construction and Building Materials, 90, 80-90. https://doi.org/10.1016/j.conbuildmat.2015.05.008
|
[76]
|
Oliver, W.C. and Pharr, G.M. (2004) Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology. Journal of Materials Research, 19, 3-20. https://doi.org/10.1557/jmr.2004.0002
|
[77]
|
Ulm, F., Vandamme, M., Jennings, H.M., Vanzo, J., Bentivegna, M., Krakowiak, K.J., et al. (2010) Does Microstructure Matter for Statistical Nanoindentation Techniques? Cement and Concrete Composites, 32, 92-99. https://doi.org/10.1016/j.cemconcomp.2009.08.007
|
[78]
|
Zhu, W., Hughes, J.J., Bicanic, N. and Pearce, C.J. (2007) Nanoindentation Mapping of Mechanical Properties of Cement Paste and Natural Rocks. Materials Characterization, 58, 1189-1198. https://doi.org/10.1016/j.matchar.2007.05.018
|
[79]
|
Veytskin, Y.B., Tammina, V.K., Bobko, C.P., Hartley, P.G., Clennell, M.B., Dewhurst, D.N., et al. (2017) Micromechanical Characterization of Shales through Nanoindentation and Energy Dispersive X-Ray Spectrometry. Geomechanics for Energy and the Environment, 9, 21-35. https://doi.org/10.1016/j.gete.2016.10.004
|
[80]
|
Zargari, S., Canter, K.L. and Prasad, M. (2015) Porosity Evolution in Oil-Prone Source Rocks. Fuel, 153, 110-117. https://doi.org/10.1016/j.fuel.2015.02.072
|
[81]
|
Abedi, S., Slim, M., Hofmann, R., Bryndzia, T. and Ulm, F. (2016) Nanochemo-Mechanical Signature of Organic-Rich Shales: A Coupled Indentation-EDX Analysis. Acta Geotechnica, 11, 559-572. https://doi.org/10.1007/s11440-015-0426-4
|
[82]
|
Bennett, K.C., Berla, L.A., Nix, W.D. and Borja, R.I. (2015) Instrumented Nanoindentation and 3D Mechanistic Modeling of a Shale at Multiple Scales. Acta Geotechnica, 10, 1-14. https://doi.org/10.1007/s11440-014-0363-7
|
[83]
|
Kumar, V., Curtis, M.E., Gupta, N., Sondergeld, C.H. and Rai, C.S. (2012) Estimation of Elastic Properties of Organic Matter and Woodford Shale through Nano-Indentation Measurements. SPE Canadian Unconventional Resources Conference, Calgary, 30 October-1 November 2012, SPE-162778-MS. https://doi.org/10.2118/162778-ms
|
[84]
|
Sharma, P., Prakash, R. and Abedi, S. (2019) Effect of Temperature on Nano-and Microscale Creep Properties of Organic-Rich Shales. Journal of Petroleum Science and Engineering, 175, 375-388. https://doi.org/10.1016/j.petrol.2018.12.039
|
[85]
|
柳宇柯. 高演化阶段页岩有机质纳米孔隙、化学结构与力学性能研究[D]: [博士学位论文]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2019.
|
[86]
|
Li, C., Ostadhassan, M., Gentzis, T., Kong, L., Carvajal-Ortiz, H. and Bubach, B. (2018) Nanomechanical Characterization of Organic Matter in the Bakken Formation by Microscopy-Based Method. Marine and Petroleum Geology, 96, 128-138. https://doi.org/10.1016/j.marpetgeo.2018.05.019
|
[87]
|
Juliao, T., Suárez-Ruiz, I., Marquez, R. and Ruiz, B. (2015) The Role of Solid Bitumen in the Development of Porosity in Shale Oil Reservoir Rocks of the Upper Cretaceous in Colombia. International Journal of Coal Geology, 147, 126-144. https://doi.org/10.1016/j.coal.2015.07.001
|
[88]
|
Mastalerz, M., Drobniak, A., Strąpoć, D., Solano Acosta, W. and Rupp, J. (2008) Variations in Pore Characteristics in High Volatile Bituminous Coals: Implications for Coal Bed Gas Content. International Journal of Coal Geology, 76, 205-216. https://doi.org/10.1016/j.coal.2008.07.006
|
[89]
|
Shukla, P., Kumar, V., Curtis, M., Sondergeld, C.H. and Rai, C.S. (2013) Nanoindentation Studies on Shales. 47th US Rock Mechanics/Geomechanics Symposium, San Francisco, 23-26 June 2013.
|