一类新的KdV方程的周期解
A New Class of Periodic Solutions to the KdV Equation
DOI: 10.12677/aam.2025.145229, PDF, HTML, XML,    科研立项经费支持
作者: 李盼林, 包芳臣, 张静漪, 张 宁*:新疆农业大学数理学院,新疆 乌鲁木齐
关键词: KdV方程Hirota双线性形式周期解孤波解KdV Equation Hirota Bilinear Form Periodic Solutions Solitary-Wave Solutions
摘要: 本文根据三波法的思想,结合一类新的KdV方程的Hirota双线性形式,通过选择特定形式的试探函数,构造出该方程的孤波解与周期解,并对解中的参数赋值,利用计算机符号软件对部分解进行了数值模拟,观察解的三维波形图与动力学演化过程。
Abstract: In this paper, based on the idea of the three-wave method, combined with a new class of Hirota bilinear forms of the KdV equation, we constructed the solitary-wave solution and the periodic solution of the equation by choosing a specific form of the trial function and assigning values to the parameters in the solution, and numerically simulated some of the solutions by using the computer symbolic software, observing the three-dimensional waveform plots of the solutions with the dynamics evolution process.
文章引用:李盼林, 包芳臣, 张静漪, 张宁. 一类新的KdV方程的周期解[J]. 应用数学进展, 2025, 14(5): 23-28. https://doi.org/10.12677/aam.2025.145229

1. 引言

KdV方程

u xxx + u t +6u u x =0, (1)

结合了非线性项和色散项,成功解释了孤立波的稳定传播机制,其中 u=u( x,t ) 。KdV方程的各类扩展型模型在流体力学、等离子体物理和非线性光学等领域有广泛的应用,KdV方程的理论成果不仅推动了数学物理的进步,还启发了光纤通信中的孤子传输、量子场论中的瞬子解等实际应用,体现了基础科学与工程技术的紧密结合[1]-[4]

在众多KdV型模型中,有一类新提出的(2 + 1)维KdV方程[5],它可以用来描述非线性波,例如浅水波、地表波和内部波

u xxy + u t +3 u x u y =0, (2)

其中, u=u( x,y,t ) 。对KdV方程不同类型的非线性波解[6]-[8],如孤子解、多孤子解、周期解、呼吸子解的构造不仅可以丰富数学物理的理论体系,还为实际现象的解释和技术应用提供了关键工具,研究其行为有助于揭示复杂系统的动力学机制,提升预测和防范自然灾害的能力。而KdV方程的非线性波的模拟又往往难以在实验室中进行,因此构造KdV方程的非线性波解就成了热门的研究内容,对于该类KdV方程,研究者们已经得到了许多有价值的研究成果[9] [10]

2. 新的KdV方程的周期解

作一个对数变换

u=2 ( lnf ) x , (3)

可以得到方程(2)的Hirota双线性形式

( D t D x + D x 3 D y )ff=0, (4)

方程(4)等价于

f f xt f t f x +3 f xy f xx 3 f x f xxy f y f xxx +f f xxxy =0. (5)

根据三波法[11] [12]的思想,假设方程(5)具有如下形式的解

f= k 1 cosh( ξ 1 )+ k 2 cosh( ξ 2 )+ k 3 cos( ξ 3 )+ a 0 , (6)

其中

ξ 1 = a 1 x+ a 2 y+ a 3 t+ a 4 , ξ 2 = a 5 x+ a 6 y+ a 7 t+ a 8 , ξ 3 = b 1 x+ b 2 y+ b 3 t+ b 4 . (7)

上式中, a i ( i=0,1,,8 ), b i ( i=1,2,3,4 ), k i ( i=1,2,3 ) 是待定常数。将(6)与(7)式代入方程(5),再令 sinh( ξ 1 ),cosh( ξ 1 ),sinh( ξ 2 ),cosh( ξ 2 ),sin( ξ 3 ),cos( ξ 3 ) 的各次幂系数为零,可以得到由 a i ( i=0,1,,8 ), b i ( i=1,2,3,4 ), k i ( i=1,2,3 ) 组成的大规模代数方程组,利用符号计算软件Maple进行求解,可以得到使代数方程组成立的9组约束关系。

第1组

a 0 =0, a 1 = a 1 , a 2 = 1 4 a 3 a 1 2 , a 3 = a 3 , a 4 = a 4 , a 5 = a 1 , a 6 = 1 4 a 7 a 1 2 ,

a 7 = a 7 , a 8 = a 8 , b 1 = b 1 , b 2 = b 2 , b 3 = b 3 , b 4 = b 4 , k 1 = k 1 , k 2 = k 2 , k 3 =0. (8)

第2组

a 0 =0, a 1 = a 1 , a 2 = 1 4 a 3 a 1 2 , a 3 = a 3 , a 4 = a 4 , a 5 = a 1 , a 6 = 1 4 a 7 a 1 2 ,

a 7 = a 7 , a 8 = a 8 , b 1 = b 1 , b 2 = b 2 , b 3 = b 3 , b 4 = b 4 , k 1 = k 1 , k 2 = k 2 , k 3 =0. (9)

第3组

a 0 = a 0 , a 1 = a 1 , a 2 =0, a 3 =0, a 4 = a 4 , a 5 =0, a 6 = a 7 a 1 2 , a 7 = a 7 ,

a 8 = a 8 , b 1 = b 1 , b 2 = b 2 , b 3 = b 3 , b 4 = b 4 , k 1 = k 1 , k 2 = k 2 , k 3 =0. (10)

第4组

a 0 = a 0 , a 1 = a 1 , a 2 =0, a 3 =0, a 4 = a 4 , a 5 =0, a 6 = a 7 a 1 2 , a 7 = a 7 ,

a 8 = a 8 , b 1 = b 1 , b 2 = b 2 , b 3 = b 3 , b 4 = b 4 , k 1 = k 1 , k 2 = k 2 , k 3 =0. (11)

第5组

a 0 = a 0 , a 1 = a 1 , a 2 = a 2 , a 3 = a 3 , a 4 = a 4 , a 5 = a 5 , a 6 =0, a 7 =0,

a 8 = a 8 , b 1 =0, b 2 = b 3 a 5 2 , b 3 = b 3 , b 4 = b 4 , k 1 =0, k 2 = k 2 , k 3 = k 3 . (12)

第6组

a 0 = a 0 , a 1 = a 1 , a 2 = a 2 , a 3 = a 3 , a 4 = a 4 , a 5 = a 5 , a 6 =0, a 7 =0,

a 8 = a 8 , b 1 =0, b 2 = b 3 a 5 2 , b 3 = b 3 , b 4 = b 4 , k 1 =0, k 2 = k 2 , k 3 = k 3 . (13)

第7组

a 0 = a 0 , a 1 = a 1 , a 2 =0, a 3 =0, a 4 = a 4 , a 5 =0, a 6 = a 7 a 1 2 , a 7 = a 7 ,

a 8 = a 8 , b 1 =0, b 2 = b 3 a 1 2 , b 3 = b 3 , b 4 = b 4 , k 1 = k 1 , k 2 = k 2 , k 3 = k 3 . (14)

第8组

a 0 = a 0 , a 1 = a 1 , a 2 =0, a 3 =0, a 4 = a 4 , a 5 = a 1 , a 6 =0, a 7 =0,

a 8 = a 8 , b 1 =0, b 2 = b 3 a 1 2 , b 3 = b 3 , b 4 = b 4 , k 1 = k 1 , k 2 = k 2 , k 3 = k 3 . (15)

第9组

a 0 = a 0 , a 1 = a 1 , a 2 =0, a 3 =0, a 4 = a 4 , a 5 = a 1 , a 6 =0, a 7 =0,

a 8 = a 8 , b 1 =0, b 2 = b 3 a 1 2 , b 3 = b 3 , b 4 = b 4 , k 1 = k 1 , k 2 = k 2 , k 3 = k 3 . (16)

接下来,以上面9组中的部分代数解为例,给出方程(2)周期解的具体形式,并进行数值模拟。将(8)式代入(6)与(7)式,结合变换(3)可得

u 1 = 2( k 1 a 1 sinh( a 1 x 1 4 a 3 y a 1 2 + a 3 t+ a 4 ) k 2 a 1 sinh( a 1 x 1 4 a 7 y a 1 2 + a 7 t+ a 8 ) ) k 1 cosh( a 1 x 1 4 a 3 y a 1 2 + a 3 t+ a 4 )+ k 2 cosh( a 1 x 1 4 a 7 y a 1 2 + a 7 t+ a 8 ) , (17)

将(12)式代入(6)与(7)式,结合变换(3)可得

u 2 = 2 k 2 a 5 sinh( a 5 x+ a 8 ) k 2 cosh( a 5 x+ a 8 )+ k 3 cos( b 3 y a 5 2 + b 3 t+ b 4 )+ a 0 , (18)

将(14)式代入(6)与(7)式,结合变换(3)可得

u 3 = 2 k 1 a 1 sinh( a 1 x+ a 4 ) k 1 cosh( a 1 x+ a 4 )+ k 2 cosh( a 7 y a 1 2 + a 7 t+ a 8 )+ k 3 cos( b 3 y a 1 2 + b 3 t+ b 4 )+ a 0 . (19)

在解 u 1 中取参数为 a 1 =1, a 3 =1, a 4 =1, a 7 =1, a 8 =1, k 1 =1, k 2 =1 t=20,t=0,t=20 ,可以得到方程(2)的纽结孤立波解,如图1(a)所示,在不同时刻,孤立波解的形状、传播速度均不会随时间发生改变,具有很好的稳定性,图1(b)图1(c)还给出了孤立波解的等高线图和二维图。

Figure 1. Three-dimensional, contour and two-dimensional maps of u 1

1. u 1 的三维图、等高线图与二维图

在解 u 2 中取参数为 a 0 =0.2, a 5 =1, a 8 =3, b 3 =1, b 4 =1, k 2 =1, k 3 =2 ,分别在 t=20,t=10,t=20 三个时刻对解 u 2 进行数值模拟,动力学演化过程如图2(a)~(c)所示,展示了孤波与周期波之间的相互作用过程,可以发现孤波与周期波在相互作用时孤波的结构保持不变,周期波随着时间的推移沿着y轴的正半轴传播。

在解 u 3 中取参数为 a 0 =1, a 1 =2, a 4 =1, a 7 =0.3, a 8 =1, b 3 =1, b 4 =1, k 1 =1, k 2 =1, k 3 =1 ,分别在 t=20, t=0, t=20 三个时刻对解 u 3 进行数值模拟,动力学演化过程如图3(a)~(c)所示,展示了两个孤波与周期波之间有趣的相互作用现象。在相互作用过程中,两个孤波始终保持原有形状与速度不受影响,周期波在相互作用的过程中沿着x轴的正半轴进行传播。

Figure 2. Three-dimensional maps of the kinetic evolution of u 2

2. u 2 动力学演化的三维图

Figure 3. Three-dimensional maps of the kinetic evolution of u 3

3. u 3 动力学演化的三维图

3. 结论

本文利用一类新的KdV方程的Hirota双线性形式,根据三波法的思想,选择特定形式的试探函数,构造了新的KdV方程的周期解,并给出了部分解的具体形式。对解中的参数赋值并进行数值模拟,观察孤波解与周期解的物理结构与动力学行为,可以发现,无论是单个孤波还是双孤波,在与周期波相互作用的过程中始终能够保持原有结构,具有很好的稳定性,展示了非线性波的复杂叠加效应,为研究波与波之间的相互作用、能量传递提供了理论依据和切实方法。

基金项目

2024年新疆农业大学大学生创新项目(dxscx2024600)。

NOTES

*通讯作者。

参考文献

[1] Lü, X., Tian, B. and Qi, F.H. (2012) Bell-Polynomial Construction of Bäcklund Transformations with Auxiliary Independent Variable for Some Soliton Equations with One Tau-Function. Nonlinear Analysis: Real World Applications, 13, 1130-1138.
https://doi.org/10.1016/j.nonrwa.2011.09.006
[2] Triki, H. and Biswas, A. (2011) Soliton Solutions for a Generalized Fifth-Order KdV Equation with t-Dependent Coefficients. Waves in Random and Complex Media, 21, 151-160.
https://doi.org/10.1080/17455030.2010.539632
[3] Johnpillai, A.G., Khalique, C.M. and Biswas, A. (2011) Exact Solutions of the mKdV Equation with Time-Dependent Coefficients. Mathematical Communications, 16, 509-518.
[4] Triki, H., Milovic, D. and Biswas, A. (2013) Solitary Waves and Shock Waves of the KdV6 Equation. Ocean Engineering, 73, 119-125.
https://doi.org/10.1016/j.oceaneng.2013.09.001
[5] Shen, S. (2007) Lie Symmetry Analysis and Painlevé Analysis of the New (2 + 1)-Dimensional KdV Equation. Applied MathematicsA Journal of Chinese Universities, 22, 207-212.
https://doi.org/10.1007/s11766-007-0209-2
[6] Wang, C.J., Dai, Z.D., Mu, G. and Lin, S.Q. (2009) New Exact Periodic Solitary-Wave Solutions for New (2 + 1)-Dimensional KdV Equation. Communications in Theoretical Physics, 52, 862-864.
https://doi.org/10.1088/0253-6102/52/5/21
[7] Li, Y. and Liu, J. (2017) New Periodic Solitary Wave Solutions for the New (2 + 1)-Dimensional Korteweg—de Vries Equation. Nonlinear Dynamics, 91, 497-504.
https://doi.org/10.1007/s11071-017-3884-4
[8] Hao, X., Liu, Y., Li, Z. and Ma, W. (2019) Painlevé Analysis, Soliton Solutions and Lump-Type Solutions of the (3 + 1)-Dimensional Generalized KP Equation. Computers & Mathematics with Applications, 77, 724-730.
https://doi.org/10.1016/j.camwa.2018.10.007
[9] Lü, X. and Chen, S. (2021) New General Interaction Solutions to the KPI Equation via an Optional Decoupling Condition Approach. Communications in Nonlinear Science and Numerical Simulation, 103, Article ID: 105939.
https://doi.org/10.1016/j.cnsns.2021.105939
[10] Yang, J., Tian, S., Peng, W., Li, Z. and Zhang, T. (2019) The Lump, Lumpoff and Rouge Wave Solutions of a (3 + 1)-Dimensional Generalized Shallow Water Wave Equation. Modern Physics Letters B, 33, Article ID: 1950190.
https://doi.org/10.1142/s0217984919501902
[11] Dai, Z., Lin, S., Fu, H. and Zeng, X. (2010) Exact Three-Wave Solutions for the KP Equation. Applied Mathematics and Computation, 216, 1599-1604.
https://doi.org/10.1016/j.amc.2010.03.013
[12] Liu, J., Tian, Y. and Zeng, Z. (2017) New Exact Periodic Solitary-Wave Solutions for the New (3 + 1)-Dimensional Generalized Kadomtsev-Petviashvili Equation in Multi-Temperature Electron Plasmas. AIP Advances, 7, Article ID: 105013.
https://doi.org/10.1063/1.4999913