[1]
|
Peng, B., Dong, Q., Li, F., Wang, T., Qiu, X. and Zhu, T. (2023) A Systematic Review of Polycyclic Aromatic Hydrocarbon Derivatives: Occurrences, Levels, Biotransformation, Exposure Biomarkers, and Toxicity. Environmental Science & Technology, 57, 15314-15335. https://doi.org/10.1021/acs.est.3c03170
|
[2]
|
Achten, C. and Andersson, J.T. (2015) Overview of Polycyclic Aromatic Compounds (PAC). Polycyclic Aromatic Compounds, 35, 177-186. https://doi.org/10.1080/10406638.2014.994071
|
[3]
|
张婉. 中国典型农村室内外多环芳烃及其衍生物的污染特征、来源及健康风险[D]: [硕士学位论文]. 济南: 山东大学, 2021.
|
[4]
|
BP (2024) Statistical Review of World Energy 2024. BP.
|
[5]
|
Li, W., Wang, C., Shen, H., Su, S., Shen, G., Huang, Y., et al. (2015) Concentrations and Origins of Nitro-Polycyclic Aromatic Hydrocarbons and Oxy-Polycyclic Aromatic Hydrocarbons in Ambient Air in Urban and Rural Areas in Northern China. Environmental Pollution, 197, 156-164. https://doi.org/10.1016/j.envpol.2014.12.019
|
[6]
|
Zhao, T., Yang, L., Huang, Q., Zhang, W., Duan, S., Gao, H., et al. (2020) PM2.5-Bound Polycyclic Aromatic Hydrocarbons (PAHs) and Nitrated-PAHs (NPAHs) Emitted by Gasoline Vehicles: Characterization and Health Risk Assessment. Science of the Total Environment, 727, Article 138631. https://doi.org/10.1016/j.scitotenv.2020.138631
|
[7]
|
Ozaki, N., Takemoto, N. and Kindaichi, T. (2009) Nitro-PAHs and PAHs in Atmospheric Particulate Matters and Sea Sediments in Hiroshima Bay Area, Japan. Water, Air, and Soil Pollution, 207, 263-271. https://doi.org/10.1007/s11270-009-0134-5
|
[8]
|
张俊美. 山东典型地区PM2.5中无机元素、多环芳烃及其衍生物污染特征和氧化潜势[D]: [博士学位论文]. 济南: 山东大学, 2019.
|
[9]
|
Zhang, Z., Chen, J., Zhao, Y., Wang, L., Teng, Y., Cai, M., et al. (2022) Determination of 123 Polycyclic Aromatic Hydrocarbons and Their Derivatives in Atmospheric Samples. Chemosphere, 296, Article 134025. https://doi.org/10.1016/j.chemosphere.2022.134025
|
[10]
|
缑亚峰. 大气中硝基多环芳烃的污染特征和环境行为研究综述[J]. 环境化学, 2023, 42(12): 4135-4150.
|
[11]
|
刘攀亮. 中国西部兰州盆地大气硝基多环芳烃污染特征及呼吸暴露风险[D]: [博士学位论文]. 兰州: 兰州大学, 2019.
|
[12]
|
刘宗鑫. 含氧燃料对柴油机碳质颗粒排放特性影响的研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2019.
|
[13]
|
郭志明, 刘頔, 林田, 等. 太原城区PM2.5中多环芳烃、硝基多环芳烃的污染特征、来源解析和健康风险评价[J]. 环境科学学报, 2018, 38(3): 1102-1108.
|
[14]
|
Zimmermann, K., Jariyasopit, N., Massey Simonich, S.L., Tao, S., Atkinson, R. and Arey, J. (2013) Formation of Nitro-PAHs from the Heterogeneous Reaction of Ambient Particle-Bound PAHs with N2O5/NO3/NO2. Environmental Science & Technology, 47, 8434-8442. https://doi.org/10.1021/es401789x
|
[15]
|
赵楠. 典型多环芳烃经大气反应生成氧化多环芳烃和硝基多环芳烃机理的理论研究[D]: [博士学位论文]. 济南: 山东大学, 2017.
|
[16]
|
Cao, X., Hao, X., Shen, X., Jiang, X., Wu, B. and Yao, Z. (2017) Emission Characteristics of Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons from Diesel Trucks Based on On-Road Measurements. Atmospheric Environment, 148, 190-196. https://doi.org/10.1016/j.atmosenv.2016.10.040
|
[17]
|
Bakeas, E.B. and Karavalakis, G. (2013) Regulated, Carbonyl and Polycyclic Aromatic Hydrocarbon Emissions from a Light-Duty Vehicle Fueled with Diesel and Biodiesel Blends. Environmental Science: Processes & Impacts Journal, 15, 412-422. https://doi.org/10.1039/c2em30575e
|
[18]
|
赵彤. 机动车排放PM2.5中多环芳烃(PAHs)及其衍生物(NPAHs, OPAHs)污染特征研究[D]: [博士学位论文]. 济南: 山东大学, 2020.
|
[19]
|
Idowu, O., Semple, K.T., Ramadass, K., O’Connor, W., Hansbro, P. and Thavamani, P. (2019) Beyond the Obvious: Environmental Health Implications of Polar Polycyclic Aromatic Hydrocarbons. Environment International, 123, 543-557. https://doi.org/10.1016/j.envint.2018.12.051
|
[20]
|
Gramblicka, T., Parizek, O., Stupak, M. and Pulkrabova, J. (2023) Assessment of Atmospheric Pollution by Oxygenated and Nitrated Derivatives of Polycyclic Aromatic Hydrocarbons in Two Regions of the Czech Republic. Atmospheric Environment, 310, Article 119981. https://doi.org/10.1016/j.atmosenv.2023.119981
|
[21]
|
Fang, B., Zhang, L., Zeng, H., Liu, J., Yang, Z., Wang, H., et al. (2020) PM2.5-Bound Polycyclic Aromatic Hydrocarbons: Sources and Health Risk during Non-Heating and Heating Periods (Tangshan, China). International Journal of Environmental Research and Public Health, 17, Article 483. https://doi.org/10.3390/ijerph17020483
|
[22]
|
徐晓白. 硝基多环芳烃——环境中最近发现的直接致突变物和潜在致癌物[J]. 环境化学, 1984(1): 1-16.
|
[23]
|
Wu, H., Lu, L., Chen, J., Zhang, C., Liu, W. and Zhuang, S. (2020) Inhibited Nitric Oxide Production of Human Endothelial Nitric Oxide Synthase by Nitrated and Oxygenated Polycyclic Aromatic Hydrocarbons. Environmental Science & Technology, 54, 2922-2930. https://doi.org/10.1021/acs.est.9b07163
|
[24]
|
Hao, X., Zhang, X., Cao, X., Shen, X., Shi, J. and Yao, Z. (2018) Characterization and Carcinogenic Risk Assessment of Polycyclic Aromatic and Nitro-Polycyclic Aromatic Hydrocarbons in Exhaust Emission from Gasoline Passenger Cars Using On-Road Measurements in Beijing, China. Science of the Total Environment, 645, 347-355. https://doi.org/10.1016/j.scitotenv.2018.07.113
|
[25]
|
Fu, J., Fang, T., Gao, Y., Wang, T., Jia, Z., Guo, D., et al. (2024) Emission Characteristic, Spatial Distribution, and Health Risk of Polycyclic Aromatic Compounds (PAHs, NPAHs, and OPAHs) from Light-Duty Gasoline and Diesel Vehicles Based on On-Road Measurements. Science of the Total Environment, 941, Article 173390. https://doi.org/10.1016/j.scitotenv.2024.173390
|
[26]
|
刘妍. 我国轻型汽油车蒸发排放特征与趋势预测[D]: [博士学位论文]. 天津: 南开大学, 2022.
|
[27]
|
陈林. 基于国六重型车排放标准的整车与柴油机台架试验方法及排放规律研究[D]: [博士学位论文]. 镇江: 江苏大学, 2018.
|
[28]
|
刘殷佐, 赵静波, 王婷, 等. 机动车来源多环芳烃及其衍生物的排放特征研究进展[J]. 工程科学学报, 2021, 43(1): 10-21.
|
[29]
|
Zhao, T., Yang, L., Huang, Q., Zhang, Y., Bie, S., Li, J., et al. (2020) PM2.5-Bound Polycyclic Aromatic Hydrocarbons (PAHs) and Their Derivatives (Nitrated-PAHs and Oxygenated-PAHs) in a Road Tunnel Located in Qingdao, China: Characteristics, Sources and Emission Factors. Science of the Total Environment, 720, Article 137521. https://doi.org/10.1016/j.scitotenv.2020.137521
|
[30]
|
Keyte, I.J., Albinet, A. and Harrison, R.M. (2016) On-Road Traffic Emissions of Polycyclic Aromatic Hydrocarbons and Their Oxy and Nitro-Derivative Compounds Measured in Road Tunnel Environments. Science of the Total Environment, 566, 1131-1142. https://doi.org/10.1016/j.scitotenv.2016.05.152
|
[31]
|
Tong, H., Kourtchev, I., Pant, P., Keyte, I.J., O'Connor, I.P., Wenger, J.C., et al. (2016) Molecular Composition of Organic Aerosols at Urban Background and Road Tunnel Sites Using Ultra-High Resolution Mass Spectrometry. Faraday Discussions, 189, 51-68. https://doi.org/10.1039/c5fd00206k
|
[32]
|
Huang, L., Bohac, S.V., Chernyak, S.M. and Batterman, S.A. (2015) Effects of Fuels, Engine Load and Exhaust After-Treatment on Diesel Engine SVOC Emissions and Development of SVOC Profiles for Receptor Modeling. Atmospheric Environment, 102, 228-238. https://doi.org/10.1016/j.atmosenv.2014.11.046
|
[33]
|
Fu, J., Wang, T. and Mao, H. (2023) Research Progress on the Influencing Factors of Polycyclic Aromatic Hydrocarbons and Derivatives from Vehicle Exhaust and Non-Exhaust Emissions. Chinese Journal of Engineering, 45, 863-873.
|
[34]
|
Sahu, T.K., Shukla, P.C., Mondal, A., Gupta, S., Belgiorno, G. and Di Blasio, G. (2024) Assessment of Particulate PAHs Toxicity from Alcohol-Diesel Blends Fuelled High Compression Ratio CI Engine. Cleaner Engineering and Technology, 18, Article 100725. https://doi.org/10.1016/j.clet.2024.100725
|
[35]
|
Muñoz, M., Heeb, N.V., Haag, R., Honegger, P., Zeyer, K., Mohn, J., et al. (2016) Bioethanol Blending Reduces Nanoparticle, PAH, and Alkyl and Nitro-PAH Emissions and the Genotoxic Potential of Exhaust from a Gasoline Direct Injection Flex-Fuel Vehicle. Environmental Science & Technology, 50, 11853-11861. https://doi.org/10.1021/acs.est.6b02606
|
[36]
|
Ahmed, T.M., Bergvall, C. and Westerholm, R. (2018) Emissions of Particulate Associated Oxygenated and Native Polycyclic Aromatic Hydrocarbons from Vehicles Powered by Ethanol/Gasoline Fuel Blends. Fuel, 214, 381-385. https://doi.org/10.1016/j.fuel.2017.11.059
|
[37]
|
Kostenidou, E., Martinez-Valiente, A., R’Mili, B., Marques, B., Temime-Roussel, B., Durand, A., et al. (2021) Technical Note: Emission Factors, Chemical Composition, and Morphology of Particles Emitted from Euro 5 Diesel and Gasoline Light-Duty Vehicles during Transient Cycles. Atmospheric Chemistry and Physics, 21, 4779-4796. https://doi.org/10.5194/acp-21-4779-2021
|
[38]
|
Yang, J., Roth, P., Durbin, T.D., Johnson, K.C., Cocker, D.R., Asa-Awuku, A., et al. (2018) Gasoline Particulate Filters as an Effective Tool to Reduce Particulate and Polycyclic Aromatic Hydrocarbon Emissions from Gasoline Direct Injection (GDI) Vehicles: A Case Study with Two GDI Vehicles. Environmental Science & Technology, 52, 3275-3284. https://doi.org/10.1021/acs.est.7b05641
|