[1]
|
徐蕾, 张春芳, 韩国柱, 等. 骨质疏松发病机制的研究进展[J]. 大连医科大学学报, 2022, 44(5): 433-439.
|
[2]
|
于龙, 王亮. 老年骨质疏松症现状及进展[J]. 中国临床保健杂志, 2022, 25(1): 6-11.
|
[3]
|
周敬凯, 梁威, 傅榕冰, 等. 2020年版《中华人民共和国药典》(一部)收载的根及根茎类中药功能及应用分析[J]. 亚太传统医药, 2024, 20(8): 191-195.
|
[4]
|
高宏伟, 李玉萍, 李守超. 杜仲的化学成分及药理作用研究进展[J]. 中医药信息, 2021, 38(6): 73-81.
|
[5]
|
杜丽坤, 李佳睿. 骨质疏松症的中医认识及防治[J]. 中国骨质疏松杂志, 2022, 28(2): 296-299.
|
[6]
|
郑刘振. 杜仲提取物缓解笼养蛋鸡骨质疏松症的效应研究[D]: [硕士学位论文]. 南昌: 江西农业大学, 2021.
|
[7]
|
袁真, 闵珺, 王恺, 等. 杜仲黄酮类3种药物成分治疗大鼠骨质疏松的比较研究[J]. 中国骨质疏松杂志, 2018, 24(2): 244-248.
|
[8]
|
邢蕴蕴. 杜仲皮、叶、雄花对CIA关节炎模型大鼠的骨保护作用研究[D]: [硕士学位论文]. 上海: 上海中医药大学, 2020.
|
[9]
|
曲永嘉, 孙晓伟, 周国兴, 等. 基于网络药理学和分子对接探究杜仲防治骨质疏松作用机制[J]. 特产研究, 2023, 45(1): 39-49.
|
[10]
|
胡倩影, 尹瑞林, 王一飞, 等. 杜仲中松脂素二葡萄糖苷和松脂素对成骨细胞中OPG和RANKL表达的影响[J]. 中国实验方剂学杂志, 2018, 24(10): 181-186.
|
[11]
|
熊伟, 赵亮. 盐炙杜仲对维甲酸诱导骨质疏松大鼠生化指标及骨密度的影响[J]. 时珍国医国药, 2020, 31(8): 1866-1867.
|
[12]
|
张敏, 梁凤妮, 孙延文, 等. 杜仲化学成分、药理作用和临床应用研究进展[J]. 中草药, 2023, 54(14): 4740-4761.
|
[13]
|
林紫微, 杨菲, 黄天一, 等. 芍药苷干预成骨细胞凋亡抗骨质疏松作用研究[J]. 南京中医药大学学报, 2019, 35(4): 426-431.
|
[14]
|
方宁, 陈林攀, 邓鸣涛, 等. 杜仲叶对SD大鼠成骨细胞增殖及骨钙素表达水平的影响[J]. 时珍国医国药, 2014, 25(11): 2574-2576.
|
[15]
|
邢晓旭, 冯学慧. 杜仲皮水提液对大鼠成骨细胞BMP2基因表达的影响[J]. 饲料博览, 2022(2): 40-43.
|
[16]
|
翁泽斌, 颜翠萍, 高倩倩, 等. 不同炮制品的杜仲含药血清及其环烯醚萜类成分对绝经后妇女成骨细胞增殖与分化的影响[J]. 时珍国医国药, 2015, 26(11): 2636-2638.
|
[17]
|
陈辉文. 新补骨脂异黄酮抑制破骨细胞分化、减轻小鼠去卵巢后骨质丢失的作用及机制研究[D]: [博士学位论文]. 重庆: 中国人民解放军海军军医大学, 2021.
|
[18]
|
Zhao, X., Wang, Y., Nie, Z., Han, L., Zhong, X., Yan, X., et al. (2020) Eucommia ulmoides Leaf Extract Alters Gut Microbiota Composition, Enhances Short‐Chain Fatty Acids Production, and Ameliorates Osteoporosis in the Senescence‐Accelerated Mouse P6 (SAMP6) Model. Food Science & Nutrition, 8, 4897-4906. https://doi.org/10.1002/fsn3.1779
|
[19]
|
王洋, 李善昌. 灌服杜仲对牙移动中破骨细胞的作用[J]. 黑龙江医药科学, 2017, 40(1): 20-22.
|
[20]
|
Han, J., Li, L., Zhang, C., Huang, Q., Wang, S., Li, W., et al. (2022) Eucommia, Cuscuta, and Drynaria Extracts Ameliorate Glucocorticoid-Induced Osteoporosis by Inhibiting Osteoclastogenesis through PI3K/Akt Pathway. Frontiers in Pharmacology, 12, Article 772944. https://doi.org/10.3389/fphar.2021.772944
|
[21]
|
国家卫生健康委员会公告2023年第9号[J]. 中华人民共和国国家卫生健康委员会公报, 2023(11): 16-17.
|
[22]
|
Huang, L., Lyu, Q., Zheng, W., Yang, Q. and Cao, G. (2021) Traditional Application and Modern Pharmacological Research of Eucommia ulmoides Oliv. Chinese Medicine, 16, Article No. 73. https://doi.org/10.1186/s13020-021-00482-7
|
[23]
|
Deepika, and Maurya, P.K. (2022) Health Benefits of Quercetin in Age-Related Diseases. Molecules, 27, Article 2498. https://doi.org/10.3390/molecules27082498
|
[24]
|
Hosseini, A., Razavi, B.M., Banach, M. and Hosseinzadeh, H. (2021) Quercetin and Metabolic Syndrome: A Review. Phytotherapy Research, 35, 5352-5364. https://doi.org/10.1002/ptr.7144
|
[25]
|
Wang, N., Wang, L., Yang, J., Wang, Z. and Cheng, L. (2021) Quercetin Promotes Osteogenic Differentiation and Antioxidant Responses of Mouse Bone Mesenchymal Stem Cells through Activation of the AMPK/SIRT1 Signaling Pathway. Phytotherapy Research, 35, 2639-2650. https://doi.org/10.1002/ptr.7010
|
[26]
|
Xiao, J., Zhang, G., Chen, B., He, Q., Mai, J., Chen, W., et al. (2023) Quercetin Protects against Iron Overload-Induced Osteoporosis through Activating the Nrf2/HO-1 Pathway. Life Sciences, 322, Article ID: 121326. https://doi.org/10.1016/j.lfs.2022.121326
|
[27]
|
Xiong, Y., Huang, C., Shi, C., Peng, L., Cheng, Y., Hong, W., et al. (2023) Quercetin Suppresses Ovariectomy-Induced Osteoporosis in Rat Mandibles by Regulating Autophagy and the NLRP3 Pathway. Experimental Biology and Medicine, 248, 2363-2380. https://doi.org/10.1177/15353702231211977
|
[28]
|
Xing, L., Ni, H. and Wang, Y. (2017) Quercitrin Attenuates Osteoporosis in Ovariectomized Rats by Regulating Mitogen-Activated Protein Kinase (MAPK) Signaling Pathways. Biomedicine & Pharmacotherapy, 89, 1136-1141. https://doi.org/10.1016/j.biopha.2017.02.073
|
[29]
|
Li, D., Li, X., Zhang, X., Chen, J., Wang, Z., Yu, Z., et al. (2024) Geniposide for Treating Atherosclerotic Cardiovascular Disease: A Systematic Review on Its Biological Characteristics, Pharmacology, Pharmacokinetics, and Toxicology. Chinese Medicine, 19, Article No. 111. https://doi.org/10.1186/s13020-024-00981-3
|
[30]
|
Xiao, Y., Zhang, S., Ye, Y., Chen, J. and Xu, Y. (2023) Geniposide Suppressed OX-LDL-Induced Osteoblast Apoptosis by Regulating the NRF2/NF-κB Signaling Pathway. Journal of Orthopaedic Surgery and Research, 18, Article No. 641. https://doi.org/10.1186/s13018-023-04125-5
|
[31]
|
Xiao, Y., Ren, Q., Zheng, Y., Zhang, S., Ouyang, J., Jiao, L., et al. (2022) Geniposide Ameliorated Dexamethasone-Induced Endoplasmic Reticulum Stress and Mitochondrial Apoptosis in Osteoblasts. Journal of Ethnopharmacology, 291, Article ID: 115154. https://doi.org/10.1016/j.jep.2022.115154
|
[32]
|
Zheng, Y., Xiao, Y., Zhang, D., Zhang, S., Ouyang, J., Li, L., et al. (2021) Geniposide Ameliorated Dexamethasone-Induced Cholesterol Accumulation in Osteoblasts by Mediating the GLP-1R/ABCA1 Axis. Cells, 10, Article 3424. https://doi.org/10.3390/cells10123424
|
[33]
|
Luca, S.V., Macovei, I., Bujor, A., Miron, A., Skalicka-Woźniak, K., Aprotosoaie, A.C., et al. (2019) Bioactivity of Dietary Polyphenols: The Role of Metabolites. Critical Reviews in Food Science and Nutrition, 60, 626-659. https://doi.org/10.1080/10408398.2018.1546669
|
[34]
|
Shekhar, A., Maddheshiya, N., Rastogi, V. and Ramalingam, K. (2024) Anti-inflammatory Role of Trypsin, Rutoside, and Bromelain Combination in Temporomandibular Joint Osteoarthritis: A Systematic Review. Cureus, 16, e51749. https://doi.org/10.7759/cureus.51749
|
[35]
|
Xiao, Y., Wei, R., Yuan, Z., et al. (2019) Rutin Suppresses FNDC1 Expression in Bone Marrow Mesenchymal Stem Cells to Inhibit Postmenopausal Osteoporosis. American Journal of Translational Research, 11, 6680-6690.
|
[36]
|
Wang, Q.L., Huo, X.C., Wang, J.H., et al. (2017) Rutin Prevents the Ovariectomy-Induced Osteoporosis in Rats. European Review for Medical and Pharmacological Sciences, 21, 1911-1917.
|
[37]
|
Kartini, K., Irawan, M.A., Setiawan, F. and Jayani, N.I.E. (2023) Characteristics, Isolation Methods, and Biological Properties of Aucubin. Molecules, 28, Article 4154. https://doi.org/10.3390/molecules28104154
|
[38]
|
Zheng, Y., Sun, R., Yang, H., Gu, T., Han, M., Yu, C., et al. (2025) Aucubin Promotes BMSCs Proliferation and Differentiation of Postmenopausal Osteoporosis Patients by Regulating Ferroptosis and bmp2 Signalling. Journal of Cellular and Molecular Medicine, 29, e70288. https://doi.org/10.1111/jcmm.70288
|
[39]
|
Zhang, Y., Liu, X., Li, Y., Song, M., Li, Y., Yang, A., et al. (2021) Aucubin Slows the Development of Osteoporosis by Inhibiting Osteoclast Differentiation via the Nuclear Factor Erythroid 2-Related Factor 2-Mediated Antioxidation Pathway. Pharmaceutical Biology, 59, 1554-1563. https://doi.org/10.1080/13880209.2021.1996614
|