砖粉与粉煤灰对碱激发矿渣复合材料力学性能的对比研究
Comparative Effect of Brick Powder and Fly Ash on the Mechanical Properties of Alkali-Activated Slag Composites
DOI: 10.12677/mos.2025.145380, PDF, HTML, XML,   
作者: 黎康明:上海理工大学环境与建筑学院,上海
关键词: 砖粉力学性能碱激发材料矿渣粉煤灰Brick Powder Mechanical Property Alkali-Activated Material Slag Fly Ash
摘要: 研究对比了砖粉(BP)与粉煤灰(FA)对碱激发矿渣复合材料(AASC)力学性能的影响,结果发现:在15%和30%掺量下,BP-AASC与FA-AASC极限应力接近,但FA-AASC随掺量增加极限应变显著提升,而BP-AASC变化较小。经不同温度养护后,BP-AASC在150℃时性能最优,FA-AASC则在100℃最佳。结合单轴拉伸试验、DIC裂缝分析和SEM微观表征,揭示了掺料类型与温度对AASC材料拉伸性能的协同作用机制。
Abstract: The effects of brick powder (BP) and fly ash (FA) on the mechanical properties of alkali-activated slag composites (AASC) were compared, and the results showed that the ultimate stress of BP-AASC and FA-AASC was close to that at 15% and 30% content, the ultimate strain of FA-AASC increased significantly with the increase of content, while the change of BP-AASC was small. After curing at different temperatures, BP-AASC had the best performance at 150˚C, and FA-AASC had the best performance at 100˚C. Combined with the uniaxial tensile test, DIC crack analysis, and SEM microscopic characterization, the synergistic mechanism of admixture type and temperature on the tensile properties of AASC materials was revealed.
文章引用:黎康明. 砖粉与粉煤灰对碱激发矿渣复合材料力学性能的对比研究[J]. 建模与仿真, 2025, 14(5): 141-153. https://doi.org/10.12677/mos.2025.145380

1. 引言

混凝土的应用在日常生活中随处可见。这是因为其原材料很容易获得,整个生产过程非常方便,而且价格比其他材料都要低。虽然混凝土有很多优点,但它也存在韧性不足的问题,导致其耐久性较差[1]。新型工程胶凝复合材料(Engineered Cementitious Composites, ECC)的出现解决了这一问题[2]-[5]。然而,由于ECC中没有使用粗骨料,因此导致水泥用量过高[6],大量使用水泥不仅增加了成本,而且不利于环保[7]。在过去的几十年里,研究人员通过努力开发出了胶凝材料来取代硅酸盐水泥,如碱激发材料(Alkali Activated Materials, AAM),其通常使用矿渣(GGBFS)、粉煤灰(FA)或偏高岭土(MK)作为原料,并由氢氧化钠、氢氧化钾或硅酸盐溶液作为激发剂配制而成[8] [9]

碱激发矿渣复合材料(Alkali Activated Slag Composites, AASC)是以矿渣等工业副产品为主要原料,通过混合一定含量的纤维来提高工作性能,其是一种通过矿渣自身潜在水硬性或火山灰活性聚合反应而具有良好特性的胶凝材料[10]-[12]。在生产过程中产生的二氧化碳和资源消耗远低于水泥,是一种绿色、经济的胶凝材料,可以替代水泥[13]-[18]。因此,AASC的发展不仅可以充分利用工业废弃物,还可以解决ECC成本高的问题。除了减少环境影响外,许多研究表明AASC还具有良好的机械性能、耐火性和耐腐蚀性[19]-[22]

随着世界各地对可持续发展的认识日益提高,以及美国和加拿大等发达国家燃煤电厂的迅速退役,预计未来几年FA的供应将大幅减少。因此,在AASC中找到能够部分或完全替代FA的替代材料至关重要。砖粉(Brick Powder, BP)是一种大量产生的废弃物,不包括在AASC中,其化学性质与FA相似,钙和铝含量[23]-[25]非常高,被认为是可能替代FA的潜在替代物。目前,国内外对建筑垃圾回收利用的研究已经取得了很大的进展。然而,目前对BP的研究主要集中在替代天然砂和水泥上[26]-[31],而对再生砂浆的研究较少,特别是替代FA等外加剂。Rivera等人[32]研究了使用红土砖废物(RCBW)、混凝土废物(CW)和玻璃废物(GW)生产碱活化水泥(AAC)的可行性,这些AAC可用于砌块、摊铺机、屋顶瓦和木瓦的制造。Fort等[33] [34]分析了几种以废BP作为前体制备的AASC,包括功能和环境影响。结果表明,实验设计的AASC的力学性能与水泥基材料相当。此外,由于对普通原材料的需求减少,温室气体的排放和能源消耗也相应减少。

为了开发得到更绿色的AASC,本研究选择富含硅铝元素的BP作为AASC的矿物粘结剂,比较其与FA作为AASC矿物粘结剂的力学性能,揭示不同矿物粘结剂对AASC力学性能的结合机理,为AASC的研究、开发利用提供参考建议。

2. 材料与方法

2.1. 材料

本研究中使用的原料包括:矿渣(GGBFS)、粉煤灰(FA)、砖粉(BP)、河砂(Sand)、PE纤维和水。以氢氧化钠颗粒和硅酸钠溶液制备了碱激发剂。GGBFS、FA、BP、Sand的粒径分布如图1所示,GGBFS、FA、BP的主要化学成分如表1所示。PE纤维的主要性能参数为:长度12 mm,直径24 μm,密度970~980 kg/m3,抗拉强度3000 MPa,弹性模量110 GPa,伸长率2%~3%。如表1所示,BP和FA的组成相似,且均富含氧化铝和二氧化硅。

Figure 1. Particle size analyses of GGBFS, FA, BP, and sand

1. GGBFS、FA、BP和砂的粒度分析

Table 1. Chemical composition analysis of FA, GGBFS and BP

1. FA、GGBFS、BP的化学成分分析

Material

SiO2

Al2O3

Fe2O3

CaO

SO3

MgO

Na2O

K2O

TiO2

etc.

FA

54.27

30.39

4.78

5.00

0.19

0.85

0.65

1.61

1.56

0.70

GGBFS

32.57

13.92

0.45

45.17

0.59

5.53

0.31

0.27

0.66

0.53

BP

66.30

15.41

6.90

3.34

0.08

1.94

1.47

3.07

0.94

0.55

2.2. 配合比及试件制备

在本研究中,有2种不同配比的砖粉–碱激发矿渣复合材料——Cz-15%、Cz-30%——表示用砖粉掺量占胶凝材料的百分比为15%、30%。同时,有2种不同配比的粉煤灰–碱矿渣复合材料——Cf-15%、Cf-30%——表示用粉煤灰掺量占胶凝材料的百分比为15%、30%。

试件制备流程如下:首先,按表2称重所需的胶凝材料和砂,倒入水泥搅拌机(JJ-5水泥搅拌机),缓慢搅拌2~4 min,使原料充分混合,然后缓慢加入预配制的碱激发剂溶液加入搅拌机,快速搅拌3~5 min,同时称量纤维,将纤维轻微分散,待浆体流动性达到要求水平时,缓慢加入纤维。观察混合过程中纤维的分散情况,并继续搅拌,直到纤维均匀分散,浆料不团聚或聚集。当浆料倒入相应的模具时,为了有效消除试件中的气泡,应在振动台上充分振动,使试件表面压实、变平。为防止水分流失,将模具表面包裹一层保鲜膜,放置在实验室条件下(20℃ ± 1℃和RH:70% ± 5%)24小时,然后脱模,在要求的条件下养护到相应的龄期。

Table 2. Alkali slag composite mix ratios for different dosages of BP and FA

2. 不同掺量砖粉和粉煤灰的碱矿渣复合材料配合比

配合比名称

矿粉/g

粉煤灰/g

砖粉/g

砂/g

氢氧化钠/g

硅酸钠/g

水/g

PE纤维/Vol

Cz-15%

1147.5

-

202.5

405

74

331

270

2%

Cz-30%

945

-

405

405

74

331

297

2%

Cf-15%

1147.5

202.5

-

405

74

331

270

2%

Cf-30%

945

405

-

405

74

331

297

2%

2.3. 试验方法

2.3.1. 单轴拉伸试验

在本研究中,根据JSCE推荐的方法,采用狗骨型的单轴拉伸试块,具体尺寸如图2所示。试验在济南川白仪器设备有限公司生产的WDW 300电子通用测试机上进行,最大加载力为300 kN,加载速度设置为0.5 mm/min。试块的应变位移数据由固定在两侧的位移传感器(线性可变位移传感器,LVDT)记录,取两次测量的平均值作为拉伸位移计算拉伸应变。

Figure 2. Dog bone test block size

2. 狗骨试块尺寸

2.3.2. 三维数字图像相关(DIC)技术

Figure 3. DIC test equipment and process diagram

3. DIC试验设备及过程示意图

本试验首先需对带裂缝试块进行喷漆处理,采用白漆与哑光黑漆。使用工具有数码单反照相机(Nikon D90 2008,有效像素1230万,最高分辨率4288 × 2848)和相机配套的三脚架、LED专业柔光灯箱摄影灯、节能灯泡。试验设备及过程如图3所示,将喷好漆的试块放入电子万能试验机再次加载,同时用照相机进行拍摄,由于室内光线不足会引起拍摄画面暗淡、不清晰,试验使用摄影灯进行光线补足。

2.3.3. SEM试验

为了进一步分析材料力学性能的微观结构,采用扫描电子显微镜(SEM)成像分析BP-AASC在150℃养护温度和FA-AASC在100℃养护温度试样的微观结构。

3. 结果与讨论

3.1. 单轴拉伸性能

(a) (b)

(c) (d)

Figure 4. The stress-strain curve with the BP and FA content of 15%, 30%

4. BP和FA含量为15%、30%时的应力–应变曲线

两组共4个不同配比的碱激发矿渣复合材料在28天龄期下的拉伸应力与拉伸应变关系曲线如图4所示,每个实验组做5个单轴拉伸试块,选取3条具有代表性的曲线组成了图中的曲线。拉伸性能以及裂缝信息如表3。从图4(a)中可以发现,15%掺量配比的砖粉–碱激发矿渣复合材料的应力–应变曲线较为离散,最大应力范围从2.5 MPa到4.0 MPa,随着砖粉掺量增加到30%,这种情况得到了很大的改善,最大应力稍有下降。从15%和30%两个掺量的粉煤灰和砖粉配比对照比较可知,其在相同掺量下的极限应力较为接近。然而随着粉煤灰掺量增加到30%,应变较15%掺量有大幅度的提高,30%粉煤灰掺量配比的平均应变甚至达到了0.097,几乎是同等掺量砖粉配比极限应变的两倍。

Table 3. Tensile properties and crack information of different mixed specific AASC materials

3. 不同配合比碱激发矿渣复合材料拉伸性能及裂缝信息

配比名称

初裂强度(MPa)

极限拉伸强度(MPa)

极限拉伸应变

裂缝条数

平均裂缝宽度(μm)

Cz-15%

1.8

3.30

0.064

26

197

Cz-30%

1.7

2.94

0.054

24

181

Cf-15%

2.5

3.49

0.045

27

134

Cf-30%

1.8

2.81

0.097

35

222

(a) (b)

(c) (d)

Figure 5. Stress-strain curves of BP-AASC at four curing temperatures

5. 四种养护温度的砖粉–碱激发矿渣复合材料应力–应变曲线图

4个不同养护温度下掺量为30%的砖粉–碱激发矿渣复合材料在28天龄期下的拉伸应力与拉伸应变关系曲线如图5所示,每个实验组做5个单轴拉伸试块,选取3条具有代表性的曲线组成了图中的曲线。拉伸性能以及裂缝信息如表4所示。由图5可知,养护温度为50℃和200℃的应力–应变曲线较离散,图5(a)中三条应力–应变曲线会出现2 MPa左右的应力下降,这已经超出试验设定的80%最大应力的条件,然而应力很快恢复到原来的水平,这使得极限应力选取出现困难。图6(d)中三条应力–应变曲线的最大应力较为接近,大致在1.5~2.0 MPa。然而极限应变范围为0.02~0.07。这说明养护温度太高或太低都会造成砖粉–碱激发矿渣复合材料性能不稳定。由表4可知,T2和T3的初裂强度、极限拉伸强度和极限应变十分接近,然而从应力–应变曲线上看,T3应力曲线较为平稳一些,可以认为150℃是砖粉–碱激发矿渣复合材料的最优养护温度。

Table 4. Tensile properties of BP-AASC at four curing temperatures

4. 四种养护温度的砖粉–碱激发矿渣复合材料拉伸性能

试验编号

初裂强度(MPa)

极限拉伸强度(MPa)

极限拉伸应变

T1

3.6

4.68

0.023

T2

2.0

3.10

0.034

T3

2.2

3.00

0.035

T4

1.4

1.86

0.051

(a) (b)

(c) (d)

Figure 6. Stress-strain curves of FA-AASC at four curing temperatures

6. 四种养护温度的粉煤灰–碱激发矿渣复合材料应力–应变曲线图

30%掺量的粉煤灰–碱激发矿渣复合材料在四种不同养护温度下养护28天的拉伸应力与拉伸应变的关系曲线如图6所示,其拉伸性能以及裂缝信息如表5所示。由图6可知,养护温度200℃的应力–应变曲线较离散,图6(d)中三条应力–应变曲线的最大应力较为接近,大致在3.0 MPa左右。然而极限应变范围为0.04~0.09。这说明养护温度太高会造成粉煤灰–碱激发矿渣复合材料性能不稳定。其他三张图的应力–应变曲线集中而且平稳,说明50℃、100℃、150℃养护温度下粉煤灰–碱激发矿渣复合材料表现出很强的稳定性。由表5可知,粉煤灰作为掺合量制备碱激发矿渣复合材料的力学性能与养护温度有着直接关系。T1、T2、T3和T4的初裂强度、极限拉伸强度大致呈现随养护温度上升而下降的趋势。极限拉伸应变没有明显的规律,但应变均大于0.06,说明粉煤灰–碱激发矿渣复合材料在四种养护温度下均表现出高延性的特点。综合三项拉伸性能的数据和应力–应变曲线的表现,可以认为100℃是粉煤灰–碱激发矿渣复合材料的最优养护温度。

Table 5. Tensile properties of FA-AASC at four curing temperatures

5. 四种养护温度的粉煤灰–碱矿渣复合材料拉伸性能

试验编号

初裂强度(MPa)

极限拉伸强度(MPa)

极限拉伸应变

T1

2.4

4.99

0.061

T2

2.5

4.56

0.077

T3

1.9

3.50

0.073

T4

1.8

3.11

0.081

3.2. DIC分析

(a) 50℃ (b) 100℃

(c) 150℃ (d) 200℃

Figure 7. Strain cloud map of BP-AASC

7. 砖粉–碱激发矿渣复合材料应变云图

(a) 50℃ (b) 100℃

(c) 150℃ (d) 200℃

Figure 8. Strain cloud diagram of FA-AASC

8. 粉煤灰–碱激发矿渣复合材料应变云图

由于DIC处理的试件需要喷漆,而且后期软件处理极为费时。所以每组配比5个试件中抽取两个外观平整、缺陷较少的试件喷漆进行DIC分析。从图7图8可知,对于同一材料在不同养护条件下裂缝的形态有着差异。添加砖粉–碱激发矿渣复合材料在100℃以下的养护温度中,发现裂缝的形态均为横向直裂缝,当温度超过100℃时,会出现网状的裂缝。添加粉煤灰–碱激发矿渣复合材料却在50℃产生横向直裂缝,当温度高于50℃时,就会出现网状的裂缝。

通过对实验数据的采集能够发现,DIC处理出来的裂缝数量和试件的应变相关联。随着应变的增加,裂缝的条数和宽度都在增加。砖粉–碱激发矿渣复合材料在100℃以上,粉煤灰–碱激发矿渣复合材料在50℃以上均表现出饱和多缝开裂的现象。

Table 6. The DIC crack analysis data

6. DIC裂缝分析数据

砖粉–碱激发矿渣复合材料

粉煤灰–碱激发矿渣复合材料

拉伸应变

裂缝数量

裂缝宽度(μm)

拉伸应变

裂缝数量

裂缝宽度(μm)

50℃

0.023

19

97

0.061

24

203

100℃

0.034

30

91

0.077

41

150

150℃

0.035

49

57

0.073

60

97

200℃

0.051

44

93

0.081

53

122

对8个实验组的裂缝信息统计如表6所示,相同养护温度下,砖粉–碱激发矿渣复合材料比粉煤灰–碱激发矿渣复合材料极限拉伸应变普遍小很多,但裂缝数量并没有那么大的差距,这说明砖粉–碱激发矿渣复合材料比粉煤灰–碱激发矿渣复合材料平均裂缝宽度要小。可以明显发现,在150℃时,两种配比的裂缝数量最大,同时拉伸应变也十分优秀。

3.3. SEM分析

Figure 9. SEM image of AASC ((a)~(c) are FA-AASC, (d)~(f) are BP-AASC)

9. 碱激发矿渣复合材料的SEM图((a)~(c)为掺加粉煤灰,(d)~(f)为掺加砖粉)

为了进一步从微观结构上理解上述材料的力学性能发展,本实验分别对150℃养护下的砖粉–碱激发矿渣复合材料、100℃养护下的粉煤灰–碱激发矿渣复合材料进行了SEM扫描分析,结果如图9所示。其中图9(a)~(c)呈现的是掺加粉煤灰的复合材料,可以明显看出样品表面存在许多小的球形颗粒(即粉煤灰颗粒)。这说明尽管加入碱激发剂,而且在相对较优的养护温度下,仍然存在有部分粉煤灰未参加反应,一定程度上反映了该粉煤灰复合材料具有自愈合的潜能。不过可以清楚看出样品中还是生成了许多无定型的凝胶产物,如图9(a)所示,这证明了该材料较佳的强度性能。从图9(b)可以看出,试样表面存在着些许微裂缝,这显然和加热养护具有密切的关系,进一步证明了3.1.小节中所描述的原因,一定程度上说明了该材料在此温度下的高应变性能。不仅如此,还可以看出样品的表面存在有孔洞,结合周围表面光滑、末端较钝的纤维形态可以推测这些孔洞应该是纤维拔出后残留的。在纤维增强复合材料中,纤维拔出往往意味着较好的拉伸延性,所以这也再次印证了该材料的优秀延性性能。据此对比分析图9(d)~(f),也就是掺加砖粉的复合材料,可以看出两者在形态变化上基本一致。该试样表面也出现有细微裂缝、胶凝产物;纤维表面同样几乎没有胶凝相依附,相对光滑,这也一定程度上证明了砖粉复合材料较好的力学性能。

4. 结论

本文研究了砖粉(BP)和粉煤灰(FA)掺量及养护温度对碱激发矿渣复合材料(AASC)拉伸性能的影响,并用DIC技术和SEM技术对微观结构进行表征。得出以下结论:

1) 掺入BP与FA后,AASC材料极限应力相近,但FA掺量增至30%时极限应变显著提升,BP则变化较小。

2) 50℃~200℃养护时,两种AASC材料性能均随温度升高呈现先增后降趋势,BP-AASC最优温度为150℃,FA-AASC为100℃。

3) DIC表征的裂缝分布规律和SEM表征的微观结构与应力–应变曲线结果吻合。

参考文献

[1] Men, P., Wang, X., Liu, D., Zhang, Z., Zhang, Q. and Lu, Y. (2024) On Use of Polyvinylpyrrolidone to Modify Polyethylene Fibers for Improving Tensile Properties of High Strength ECC. Construction and Building Materials, 417, Article 135354.
https://doi.org/10.1016/j.conbuildmat.2024.135354
[2] Liu, D., Yu, J., Qin, F., Zhang, K. and Zhang, Z. (2023) Mechanical Performance of High-Strength Engineering Cementitious Composites (ECC) with Hybriding PE and Steel Fibers. Case Studies in Construction Materials, 18, e01961.
https://doi.org/10.1016/j.cscm.2023.e01961
[3] Li, V.C., Wu, C., Wang, S., Ogawa, A. and Saito, T. (2022) Interface Tailoring for Strain-Hardening Polyvinyl Alcohol-Engineered Cementitious Composite (PVA-ECC). ACI Materials Journal, 99, 463-472.
[4] Hao, Z., Lu, C. and Li, Z. (2023) Highly Accurate and Automatic Semantic Segmentation of Multiple Cracks in Engineered Cementitious Composites (ECC) under Dual Pre-Modification Deep-Learning Strategy. Cement and Concrete Research, 165, Article 107066.
https://doi.org/10.1016/j.cemconres.2022.107066
[5] Zhang, Z., Li, Z., He, J. and Shi, X. (2023) High-Strength Engineered Cementitious Composites with Nanosilica Incorporated: Mechanical Performance and Autogenous Self-Healing Behavior. Cement and Concrete Composites, 135, Article 104837.
https://doi.org/10.1016/j.cemconcomp.2022.104837
[6] Wang, S. and Li, V.C. (2007) Engineered Cementitious Composites with High-Volume Fly Ash. ACI Materials Journal, 104, 233-241.
[7] Ling, Y., Wang, K., Li, W., Shi, G. and Lu, P. (2019) Effect of Slag on the Mechanical Properties and Bond Strength of Fly Ash-Based Engineered Geopolymer Composites. Composites Part B: Engineering, 164, 747-757.
https://doi.org/10.1016/j.compositesb.2019.01.092
[8] Giannopoulou, I., Robert, P.M., Petrou, M.F. and Nicolaides, D. (2024) Mechanical Behavior of Construction and Demolition Waste-Based Alkali Activated Materials Exposed to Fire Conditions. Construction and Building Materials, 415, Article 134994.
https://doi.org/10.1016/j.conbuildmat.2024.134994
[9] Yoo, D., Banthia, N., You, I. and Lee, S. (2024) Recent Advances in Cementless Ultra-High-Performance Concrete Using Alkali-Activated Materials and Industrial Byproducts: A Review. Cement and Concrete Composites, 148, Article 105470.
https://doi.org/10.1016/j.cemconcomp.2024.105470
[10] Lin, J., Liu, R., Liu, L., Zhuo, K., Chen, Z. and Guo, Y. (2024) High-Strength and High-Toughness Alkali-Activated Composite Materials: Optimizing Mechanical Properties through Synergistic Utilization of Steel Slag, Ground Granulated Blast Furnace Slag, and Fly Ash. Construction and Building Materials, 422, Article 135811.
https://doi.org/10.1016/j.conbuildmat.2024.135811
[11] Zhang, Y., Sang, G., Du, X., Cui, X., Zhang, L., Zhu, Y., et al. (2021) Development of a Novel Alkali-Activated Slag-Based Composite Containing Paraffin/Ceramsite Shape Stabilized Phase Change Material for Thermal Energy Storage. Construction and Building Materials, 304, Article 124594.
https://doi.org/10.1016/j.conbuildmat.2021.124594
[12] Rovnaník, P., Kusák, I. and Bayer, P. (2022) Effect of Water Saturation on the Electrical Properties of Cement and Alkali-Activated Slag Composites with Graphite Conductive Admixture. Construction and Building Materials, 361, Article 129699.
https://doi.org/10.1016/j.conbuildmat.2022.129699
[13] Wu, M., Zhang, Y., Liu, Z., Liu, C., She, W. and Wu, Z. (2024) Experimental Study on Eco-Friendly One-Part Alkali-Activated Slag-Fly Ash-Lime Composites under CO2 Environment: Reaction Mechanism and Carbon Capture Capacity. Construction and Building Materials, 421, Article 135779.
https://doi.org/10.1016/j.conbuildmat.2024.135779
[14] Zhang, S., Keulen, A., Arbi, K. and Ye, G. (2017) Waste Glass as Partial Mineral Precursor in Alkali-Activated Slag/Fly Ash System. Cement and Concrete Research, 102, 29-40.
https://doi.org/10.1016/j.cemconres.2017.08.012
[15] Zhang, S., Li, Z., Ghiassi, B., Yin, S. and Ye, G. (2021) Fracture Properties and Microstructure Formation of Hardened Alkali-Activated Slag/Fly Ash Pastes. Cement and Concrete Research, 144, Article 106447.
https://doi.org/10.1016/j.cemconres.2021.106447
[16] Oderji, S.Y., Chen, B., Shakya, C., Ahmad, M.R. and Shah, S.F.A. (2019) Influence of Superplasticizers and Retarders on the Workability and Strength of One-Part Alkali-Activated Fly Ash/Slag Binders Cured at Room Temperature. Construction and Building Materials, 229, Article 116891.
https://doi.org/10.1016/j.conbuildmat.2019.116891
[17] Shah, S.F.A., Chen, B., Oderji, S.Y., Aminul Haque, M. and Ahmad, M.R. (2020) Comparative Study on the Effect of Fiber Type and Content on the Performance of One-Part Alkali-Activated Mortar. Construction and Building Materials, 243, Article 118221.
https://doi.org/10.1016/j.conbuildmat.2020.118221
[18] Shah, S.F.A., Chen, B., Oderji, S.Y., Haque, M.A. and Ahmad, M.R. (2020) Improvement of Early Strength of Fly Ash-Slag Based One-Part Alkali Activated Mortar. Construction and Building Materials, 246, Article 118533.
https://doi.org/10.1016/j.conbuildmat.2020.118533
[19] Yaswanth, K.K., Revathy, J. and Gajalakshmi, P. (2022) Strength, Durability and Micro-Structural Assessment of Slag-Agro Blended Based Alkali Activated Engineered Geopolymer Composites. Case Studies in Construction Materials, 16, e00920.
https://doi.org/10.1016/j.cscm.2022.e00920
[20] Aydın, S. and Baradan, B. (2013) The Effect of Fiber Properties on High Performance Alkali-Activated Slag/Silica Fume Mortars. Composites Part B: Engineering, 45, 63-69.
https://doi.org/10.1016/j.compositesb.2012.09.080
[21] Abdollahnejad, Z., Mastali, M., Woof, B. and Illikainen, M. (2020) High Strength Fiber Reinforced One-Part Alkali Activated Slag/Fly Ash Binders with Ceramic Aggregates: Microscopic Analysis, Mechanical Properties, Drying Shrinkage, and Freeze-Thaw Resistance. Construction and Building Materials, 241, Article 118129.
https://doi.org/10.1016/j.conbuildmat.2020.118129
[22] Choi, J., Nguyễn, H.H., Park, S., Ranade, R. and Lee, B.Y. (2021) Effects of Fiber Hybridization on Mechanical Properties and Autogenous Healing of Alkali-Activated Slag-Based Composites. Construction and Building Materials, 310, Article 125280.
https://doi.org/10.1016/j.conbuildmat.2021.125280
[23] Migunthanna, J., Rajeev, P. and Sanjayan, J. (2021) Investigation of Waste Clay Brick as Partial Replacement of Geopolymer Binders for Rigid Pavement Application. Construction and Building Materials, 305, Article 124787.
https://doi.org/10.1016/j.conbuildmat.2021.124787
[24] Navrátilová, E. and Rovnaníková, P. (2016) Pozzolanic Properties of Brick Powders and Their Effect on the Properties of Modified Lime Mortars. Construction and Building Materials, 120, 530-539.
https://doi.org/10.1016/j.conbuildmat.2016.05.062
[25] Reig, L., Soriano, L., Borrachero, M.V., Monzó, J. and Payá, J. (2016) Influence of Calcium Aluminate Cement (CAC) on Alkaline Activation of Red Clay Brick Waste (RCBW). Cement and Concrete Composites, 65, 177-185.
https://doi.org/10.1016/j.cemconcomp.2015.10.021
[26] Li, H., Dong, L., Jiang, Z., Yang, X. and Yang, Z. (2016) Study on Utilization of Red Brick Waste Powder in the Production of Cement-Based Red Decorative Plaster for Walls. Journal of Cleaner Production, 133, 1017-1026.
https://doi.org/10.1016/j.jclepro.2016.05.149
[27] Tang, Y., Xiao, J., Zhang, H., Duan, Z. and Xia, B. (2022) Mechanical Properties and Uniaxial Compressive Stress-Strain Behavior of Fully Recycled Aggregate Concrete. Construction and Building Materials, 323, Article 126546.
https://doi.org/10.1016/j.conbuildmat.2022.126546
[28] Liu, Q., Tong, T., Liu, S., Yang, D. and Yu, Q. (2014) Investigation of Using Hybrid Recycled Powder from Demolished Concrete Solids and Clay Bricks as a Pozzolanic Supplement for Cement. Construction and Building Materials, 73, 754-763.
https://doi.org/10.1016/j.conbuildmat.2014.09.066
[29] Zong, L., Fei, Z. and Zhang, S. (2014) Permeability of Recycled Aggregate Concrete Containing Fly Ash and Clay Brick Waste. Journal of Cleaner Production, 70, 175-182.
https://doi.org/10.1016/j.jclepro.2014.02.040
[30] Dang, J. and Zhao, J. (2019) Influence of Waste Clay Bricks as Fine Aggregate on the Mechanical and Microstructural Properties of Concrete. Construction and Building Materials, 228, Article 116757.
https://doi.org/10.1016/j.conbuildmat.2019.116757
[31] Duan, Z., Hou, S., Xiao, J. and Singh, A. (2020) Rheological Properties of Mortar Containing Recycled Powders from Construction and Demolition Wastes. Construction and Building Materials, 237, Article 117622.
https://doi.org/10.1016/j.conbuildmat.2019.117622
[32] Robayo-Salazar, R.A., Rivera, J.F. and Mejía de Gutiérrez, R. (2017) Alkali-Activated Building Materials Made with Recycled Construction and Demolition Wastes. Construction and Building Materials, 149, 130-138.
https://doi.org/10.1016/j.conbuildmat.2017.05.122
[33] Fořt, J., Vejmelková, E., Koňáková, D., Alblová, N., Čáchová, M., Keppert, M., et al. (2018) Application of Waste Brick Powder in Alkali Activated Aluminosilicates: Functional and Environmental Aspects. Journal of Cleaner Production, 194, 714-725.
https://doi.org/10.1016/j.jclepro.2018.05.181
[34] Fořt, J., Novotný, R., Vejmelková, E., Trník, A., Rovnaníková, P., Keppert, M., et al. (2019) Characterization of Geopolymers Prepared Using Powdered Brick. Journal of Materials Research and Technology, 8, 6253-6261.
https://doi.org/10.1016/j.jmrt.2019.10.019