[1]
|
Chen, D., Chua, M.H., He, Q., Zhu, Q., Wang, X., Meng, H., et al. (2025) Multifunctional Electrochromic Materials and Devices Recent Advances and Future Potential. Chemical Engineering Journal, 503, Article ID: 157820. https://doi.org/10.1016/j.cej.2024.157820
|
[2]
|
Gu, C., Jia, A., Zhang, Y. and Zhang, S.X. (2022) Emerging Electrochromic Materials and Devices for Future Displays. Chemical Reviews, 122, 14679-14721. https://doi.org/10.1021/acs.chemrev.1c01055
|
[3]
|
Deb, S.K. (1973) Optical and Photoelectric Properties and Colour Centres in Thin Films of Tungsten Oxide. Philosophical Magazine, 27, 801-822. https://doi.org/10.1080/14786437308227562
|
[4]
|
Chen, M., Zhang, X., Sun, W., Xiao, Y., Zhang, H., Deng, J., et al. (2024) A Dual-Responsive Smart Window Based on Inorganic All-Solid-State Electro-and Photochromic Device. Nano Energy, 123, Article ID: 109352. https://doi.org/10.1016/j.nanoen.2024.109352
|
[5]
|
Lei, P., Wang, J., Gao, Y., Hu, C., Zhang, S., Tong, X., et al. (2023) An Electrochromic Nickel Phosphate Film for Large-Area Smart Window with Ultra-Large Optical Modulation. Nano-Micro Letters, 15, Article No. 34. https://doi.org/10.1007/s40820-022-01002-4
|
[6]
|
Qiu, M., Zhou, F., Sun, P., Chen, X., Zhao, C. and Mai, W. (2020) Unveiling the Electrochromic Mechanism of Prussian Blue by Electronic Transition Analysis. Nano Energy, 78, Article ID: 105148. https://doi.org/10.1016/j.nanoen.2020.105148
|
[7]
|
Gillaspie, D.T., Tenent, R.C. and Dillon, A.C. (2010) Metal-Oxide Films for Electrochromic Applications: Present Technology and Future Directions. Journal of Materials Chemistry, 20, 9585-9592. https://doi.org/10.1039/c0jm00604a
|
[8]
|
Granqvist, C.G., Azens, A., Hjelm, A., Kullman, L., Niklasson, G.A., Rönnow, D., et al. (1998) Recent Advances in Electrochromics for Smart Windows Applications. Solar Energy, 63, 199-216. https://doi.org/10.1016/s0038-092x(98)00074-7
|
[9]
|
Dong, D., Djaoued, H., Vienneau, G., Robichaud, J., Brown, D., Brüning, R., et al. (2020) Electrochromic and Colorimetric Properties of Anodic NiO Thin Films: Uncovering Electrochromic Mechanism of NiO. Electrochimica Acta, 335, 135648. https://doi.org/10.1016/j.electacta.2020.135648
|
[10]
|
Zhao, H., Meng, Y., Yu, H., Li, Z. and Liu, Z. (2022) 1D/2D Co3O4/NiO Composite Film for High Electrochromic Performance. Ceramics International, 48, 32205-32212. https://doi.org/10.1016/j.ceramint.2022.07.162
|
[11]
|
Zhao, Q., Fang, Y., Qiao, K., Wei, W., Yao, Y. and Gao, Y. (2019) Printing of WO3/ITO Nanocomposite Electrochromic Smart Windows. Solar Energy Materials and Solar Cells, 194, 95-102. https://doi.org/10.1016/j.solmat.2019.02.002
|
[12]
|
Wang, X., Liu, B., Tang, J., Dai, G., Dong, B., Cao, L., et al. (2019) Preparation of Ni(OH)2/TiO2 Porous Film with Novel Structure and Electrochromic Property. Solar Energy Materials and Solar Cells, 191, 108-116. https://doi.org/10.1016/j.solmat.2018.11.005
|
[13]
|
Eren, E., Karaca, G.Y., Alver, C. and Oksuz, A.U. (2016) Fast Electrochromic Response for RF-Magnetron Sputtered Electrospun V2O5 Mat. European Polymer Journal, 84, 345-354. https://doi.org/10.1016/j.eurpolymj.2016.09.027
|
[14]
|
Kline, W.M., Lorenzini, R.G. and Sotzing, G.A. (2014) A Review of Organic Electrochromic Fabric Devices. Coloration Technology, 130, 73-80. https://doi.org/10.1111/cote.12079
|
[15]
|
Mortimer, R.J., Dyer, A.L. and Reynolds, J.R. (2006) Electrochromic Organic and Polymeric Materials for Display Applications. Displays, 27, 2-18. https://doi.org/10.1016/j.displa.2005.03.003
|
[16]
|
Xiong, S., Lan, J., Yin, S., Wang, Y., Kong, Z., Gong, M., et al. (2018) Enhancing the Electrochromic Properties of Polyaniline via Coordinate Bond Tethering the Polyaniline with Gold Colloids. Solar Energy Materials and Solar Cells, 177, 134-141. https://doi.org/10.1016/j.solmat.2017.01.003
|
[17]
|
Zhang, Y., Lu, B., Dong, L., Sun, H., Hu, D., Xing, H., et al. (2016) Solvent Effects on the Synthesis, Characterization and Electrochromic Properties of Acetic Acid Modified Polyterthiophene. Electrochimica Acta, 220, 122-129. https://doi.org/10.1016/j.electacta.2016.10.100
|
[18]
|
Bezgin Carbas, B., Ergin, N.M., Yildiz, H.B., Kivrak, A. and Demet, A.E. (2023) Electrochromic Properties of a Polydithienylpyrrole Derivative with N-Phenyl Pyrrole Subunit. Materials Chemistry and Physics, 293, Article ID: 126916. https://doi.org/10.1016/j.matchemphys.2022.126916
|
[19]
|
Yao, W., Liu, P., Zhou, W., Duan, X., Xu, J., Yang, J., et al. (2020) Flexible Electrochromic Poly(thiophene-Furan) Film via Electrodeposition with High Stability. Chinese Journal of Polymer Science, 39, 344-354. https://doi.org/10.1007/s10118-021-2501-7
|
[20]
|
蒋庆龙, 傅相锴, 陈祝君. 烯烃取代的紫罗精合成及全固态电致变色器件[J]. 应用化学, 2007, 24(9): 1032-1035.
|
[21]
|
Wang, T., Zhang, W., Li, T., Xia, Q., Yang, S., Weng, J., et al. (2024) Electrochromic Smart Window Based on Transition-Metal Phthalocyanine Derivatives. Inorganic Chemistry, 63, 3181-3190. https://doi.org/10.1021/acs.inorgchem.3c04307
|
[22]
|
Maiorov, V.A. (2019) Electrochromic Glasses with Separate Regulation of Transmission of Visible Light and Near-Infrared Radiation (Review). Optics and Spectroscopy, 126, 412-430. https://doi.org/10.1134/s0030400x19040143
|
[23]
|
Ma, B., Tang, L., Zhang, Y., Li, Z., Zhang, J. and Zhang, S. (2024) Ionic Gel Electrolytes for Electrochromic Devices. ACS Applied Materials & Interfaces, 16, 48927-48936. https://doi.org/10.1021/acsami.4c11641
|
[24]
|
Chen, X., Dou, S., Li, W., Liu, D., Zhang, Y., Zhao, Y., et al. (2020) All Solid State Electrochromic Devices Based on the Lif Electrolyte. Chemical Communications, 56, 5018-5021. https://doi.org/10.1039/d0cc00697a
|
[25]
|
Ding, Y., Wang, M., Mei, Z. and Diao, X. (2022) Different Ion-Based Electrolytes for Electrochromic Devices: A Review. Solar Energy Materials and Solar Cells, 248, Article ID: 112037. https://doi.org/10.1016/j.solmat.2022.112037
|
[26]
|
Wang, J., Sheng, S., He, Z., Wang, R., Pan, Z., Zhao, H., et al. (2021) Self-Powered Flexible Electrochromic Smart Window. Nano Letters, 21, 9976-9982. https://doi.org/10.1021/acs.nanolett.1c03438
|
[27]
|
Jiang, Y., Ma, Q. and Dong, S. (2024) Well-Matched Materials: Color Palettes-Like Multicolor Electrochromic Displays. Applied Materials Today, 37, Article ID: 102119. https://doi.org/10.1016/j.apmt.2024.102119
|
[28]
|
Liu, Q., Dong, G., Xiao, Y., Gao, F., Wang, M., Wang, Q., et al. (2015) An All-Thin-Film Inorganic Electrochromic Device Monolithically Fabricated on Flexible PET/ITO Substrate by Magnetron Sputtering. Materials Letters, 142, 232-234. https://doi.org/10.1016/j.matlet.2014.11.151
|
[29]
|
Faughnan, B.W., Crandall, R.S. and Heyman, P.M. (1975) Electrochromism in WO3 Amorphous Films. RCA Review, 36, 177.
|
[30]
|
Gupta, J. and Gupta, V.K. (2025) Versatility of Various Tungsten Oxide Nanostructures Towards Fostering Electrochromic State of the Art: A Review. Transition Metal Chemistry. https://doi.org/10.1007/s11243-024-00628-0
|
[31]
|
郭俱全, 曹盛. 氧化钨基电致变色智能窗性能提升策略研究进展[J]. 工程科学学报, 2023, 45(5): 840-852.
|
[32]
|
Migas, D.B., Shaposhnikov, V.L., Rodin, V.N. and Borisenko, V.E. (2010) Tungsten Oxides. I. Effects of Oxygen Vacancies and Doping on Electronic and Optical Properties of Different Phases of WO3. Journal of Applied Physics, 108, Article ID: 093713. https://doi.org/10.1063/1.3505688
|
[33]
|
Zhang, M., Sun, H., Guo, Y., Wang, D., Sun, D., Su, Q., et al. (2021) Synthesis of Oxygen Vacancies Implanted Ultrathin WO3-X Nanorods/Reduced Graphene Oxide Anode with Outstanding Li-Ion Storage. Journal of Materials Science, 56, 7573-7586. https://doi.org/10.1007/s10853-020-05747-4
|
[34]
|
Mathuri, S., Margoni, M.M., Ramamurthi, K., Babu, R.R. and Ganesh, V. (2018) Hydrothermal Assisted Growth of Vertically Aligned Platelet Like Structures of WO3 Films on Transparent Conducting FTO Substrate for Electrochromic Performance. Applied Surface Science, 449, 77-91. https://doi.org/10.1016/j.apsusc.2018.01.033
|
[35]
|
Tang, K., Zhang, Y., Shi, Y., Cui, J., Shu, X., Wang, Y., et al. (2019) Crystalline WO3 Nanowires Array Sheathed with Sputtered Amorphous Shells for Enhanced Electrochromic Performance. Applied Surface Science, 498, Article ID: 143796. https://doi.org/10.1016/j.apsusc.2019.143796
|
[36]
|
Jo, M., Kim, K. and Ahn, H. (2022) P-doped Carbon Quantum Dot Graft-Functionalized Amorphous WO3 for Stable and Flexible Electrochromic Energy-Storage Devices. Chemical Engineering Journal, 445, Article ID: 136826. https://doi.org/10.1016/j.cej.2022.136826
|
[37]
|
Shi, Y., Sun, M., Zhang, Y., Cui, J., Wang, Y., Shu, X., et al. (2020) Structure Modulated Amorphous/Crystalline WO3 Nanoporous Arrays with Superior Electrochromic Energy Storage Performance. Solar Energy Materials and Solar Cells, 212, Article ID: 110579. https://doi.org/10.1016/j.solmat.2020.110579
|
[38]
|
Deb, S.K. (2008) Opportunities and Challenges in Science and Technology of WO3 for Electrochromic and Related Applications. Solar Energy Materials and Solar Cells, 92, 245-258. https://doi.org/10.1016/j.solmat.2007.01.026
|
[39]
|
Li, Z., Liu, Z., Li, J. and Yan, W. (2022) The Electrochromic Properties of the Film Enhanced by Introducing Oxygen Vacancies to Crystalline Tungsten Oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 641, Article ID: 128615. https://doi.org/10.1016/j.colsurfa.2022.128615
|
[40]
|
Peng, M., Zhang, Y., Song, L., Wu, L., Zhang, Y. and Hu, X. (2017) Electrochemical Stability Properties of Titanium-Doped WO3 Electrochromic Thin Films. Surface Engineering, 33, 305-309. https://doi.org/10.1080/02670844.2016.1255405
|
[41]
|
Arvizu, M.A., Triana, C.A., Stefanov, B.I., Granqvist, C.G. and Niklasson, G.A. (2014) Electrochromism in Sputter-Deposited W-Ti Oxide Films: Durability Enhancement Due to Ti. Solar Energy Materials and Solar Cells, 125, 184-189. https://doi.org/10.1016/j.solmat.2014.02.037
|
[42]
|
Porqueras, I. and Bertran, E. (2000) Efficiency of Li Doping on Electrochromic WO3 Thin Films. Thin Solid Films, 377, 129-133. https://doi.org/10.1016/s0040-6090(00)01424-3
|
[43]
|
Li, W., Zhang, J., Zheng, Y. and Cui, Y. (2022) High Performance Electrochromic Energy Storage Devices Based on Mo-Doped Crystalline/Amorphous WO3 Core-Shell Structures. Solar Energy Materials and Solar Cells, 235, Article ID: 111488. https://doi.org/10.1016/j.solmat.2021.111488
|
[44]
|
Nie, S., Ruan, M., Lian, Y., Zhao, L., Shi, J. and Liu, Z. (2024) Enhanced Electrochromic Properties and Amphoteric Coloration of V-Doped WO3 Supported by Electronic Structure Optimization and Oxygen Vacancy-Mediated Li+ Capture Structures. Journal of Materials Chemistry C, 12, 13572-13584. https://doi.org/10.1039/d4tc01819b
|
[45]
|
Karuppasamy, A. (2015) Electrochromism and Photocatalysis in Dendrite Structured Ti: WO3 Thin Films Grown by Sputtering. Applied Surface Science, 359, 841-846. https://doi.org/10.1016/j.apsusc.2015.10.020
|
[46]
|
Karaca, G.Y., Eren, E., Cogal, G.C., Uygun, E., Oksuz, L. and Uygun Oksuz, A. (2019) Enhanced Electrochromic Characteristics Induced by Au/PEDOT/Pt Microtubes in WO3 Based Electrochromic Devices. Optical Materials, 88, 472-478. https://doi.org/10.1016/j.optmat.2018.11.052
|
[47]
|
Yin, Y., Zhu, Y., Liao, P., Yuan, X., Jia, J., Lan, C., et al. (2024) Co-sputtering Construction of Gd-Doped WO3 Nano-Stalagmites Film for Bi-Funcional Electrochromic and Energy Storage Applications. Chemical Engineering Journal, 487, Article ID: 150615. https://doi.org/10.1016/j.cej.2024.150615
|
[48]
|
Wang, Y., Shen, G., Tang, T., Zeng, J., Sagar, R.U.R., Qi, X., et al. (2022) Construction of Doped-Rare Earth (Ce, Eu, Sm, Gd) WO3 Porous Nanofilm for Superior Electrochromic and Energy Storage Windows. Electrochimica Acta, 412, Article ID: 140099. https://doi.org/10.1016/j.electacta.2022.140099
|
[49]
|
Zhang, S., Rao, A., Lin, K., Yao, Q., Niu, C., Wang, L., et al. (2024) Dynamic Multicolor Electrochromic Skin in High-Brightness Flexible WO3/Au Asymmetric Fabry-Perot Nanocavity Fabricated on Nylon 66 Porous Substrate. Ceramics International, 50, 41557-41568. https://doi.org/10.1016/j.ceramint.2024.08.006
|
[50]
|
Yin, Y., Lan, C., Guo, H. and Li, C. (2016) Reactive Sputter Deposition of WO3/Ag/WO3 Film for Indium Tin Oxide (ITO)-Free Electrochromic Devices. ACS Applied Materials & Interfaces, 8, 3861-3867. https://doi.org/10.1021/acsami.5b10665
|
[51]
|
Yin, Y., Gao, T., Xu, Q., Cao, G., Chen, Q., Zhu, H., et al. (2020) Electrochromic and Energy Storage Bifunctional Gd-Doped WO3/Ag/WO3 Films. Journal of Materials Chemistry A, 8, 10973-10982. https://doi.org/10.1039/d0ta02079f
|