金属可降解心血管支架的研究进展
Research Progress of Metal Degradable Cardiovascular Stent
摘要: 动脉粥样硬化是一种长期的动脉炎症过程,硬化斑块的形成使动脉变窄,在病变部位形成血栓,致使冠状动脉的血流减少或阻塞时就会出现冠心病。据世界卫生组织报道,全球范围内,每年冠心病患者的死亡人数约740万,且逐年上升。目前,冠状动脉疾病的治疗主要包括三种方法:药物治疗、冠状动脉旁路移植术和经皮冠状动脉介入治疗。植入金属可降解心血管支架,不仅可以为血管提供机械支撑,其可控的降解速率还能更大限度的降低炎症发生以及辅助血管恢复正常功能。
Abstract: Atherosclerosis is a long-term arterial inflammation. The formation of atherosclerotic plaques narrows the arteries and forms thrombus at the lesion site, resulting in reduced or blocked coronary blood flow. According to the World Health Organization (WHO), the annual death rate of coronary heart disease patients is about 7.4 million globally, and it is increasing year by year. At present, the treatment of coronary artery disease mainly includes three methods: drug therapy, coronary artery bypass grafting and percutaneous coronary intervention. Implantation of metal degradable cardiovascular stents can not only provide mechanical support for blood vessels, but also reduce inflammation to a greater extent and assist blood vessels in restoring normal function at a controllable degradation rate.
文章引用:陈晨, 石俊杰, 吴雪宁, 张慧琳, 赵明沂, 孙健芳. 金属可降解心血管支架的研究进展[J]. 生物医学, 2025, 15(3): 479-488. https://doi.org/10.12677/hjbm.2025.153056

1. 引言

当今社会快速发展,人们生活习惯发生巨大变化,开始追求更加健康的生活方式。伴随社会的不断发展,老龄化问题日益凸显,心血管疾病尤其是冠状动脉粥样硬化性心脏病逐渐成为威胁人们生命健康的重要因素[1] [2]。为解决心脑血管疾病问题,心脏支架自第一代于上世纪八十年代问世至今三十余年内,相继出现了各种支架,如裸金属支架(Bare Metal Stent, BMS)、药物洗脱支架(Drug-Elutingstents, DES)和可降解支架(Bioresorbable Scaffold System, BRS)等。

本文主要针对的对象为可降解金属支架。据研究表明,可降解金属支架不但具有一定的机械性能性能,能够同裸金属支架一般为心血管提供支撑,同时其还能在生物体内降解,并释放相关离子,其产生的离子也在人体内对细胞迁移、增殖、扩散具有两性的作用[3]。作为应用于生物可降解支架的重要材料的锌和镁,其降解释放出的离子也在人体内细胞中发挥着重要的作用。其中,镁是多酶辅助因子,其能够稳定DNA和RNA的结构[4];同时镁还具有一定的抗菌性能[5]。作为同样重要的生物可降解金属的材料的锌具有同样必要且优秀的生物相容性以外,其还具有适中的降解速率[6] [7],可在为血管提供支撑力的同时,在合适的时间降解;锌降解的产物也可以抑制锌合金支架周围的平滑肌细胞增生,诱导新生动脉和内膜的形成[3];除此之外,锌在抗炎方面也发挥着关键作用[8]

为改善支架的机械强度以及生物学性能,许多支架往往以合金的形式出现,同时加以涂层药物进而得到作用性更强的支架。

2. 心血管支架的研究历史

1964年,美国Dotter医生成功自制了球囊导管。之后,德国Andreas Gruentzig医生在1977年进行了世界首例冠状动脉球囊扩张术并取得成功。利用冠状动脉球囊扩张术,可以及时开通堵塞的血管,但取出球囊后,冠状动脉血管再狭窄率高达30%~50% [9]

1986年,法国医生Urish Sigwart用一种记忆金属制成第一枚裸金属支架,并将其通过导管置入冠状动脉。裸金属支架能成功撑起堵塞的冠状动脉,然而,由于金属材质本身的特性,其在体内血流中无法避免金属腐蚀、金属离子永存体内等所导致的毛细血管内的凝血系统活化以及细胞基质沉淀等,会进一步引起毛细血管炎症;机械积压亦会引起毛细血管内膜破坏,进而引起新生内膜异常增生,进而导致血管再狭窄和支架内的再狭窄[10]

上述原因所导致的血管再狭窄率约为20%~30%,虽低于单纯球囊技术,但对于人体来说,仍然具有很大的威胁。

为进一步改善血管内狭窄状况,科学家不断改进,制造出第三代支架——药物涂层支架,即将药物涂在金属支架表面,让药物缓慢释放,发挥其作用。当DES置入血管内病变部位后,药物自聚合物涂层中缓控释放至血管壁组织,进而抑制血管内膜细胞的异常增殖,减少血管壁的增厚和狭窄,从而保持血管的通畅。与BMS相比,使用DES的患者支架内再狭窄率明显下降[11],支架内血栓形成的风险显著降低[12]。不同的药物涂层支架具有不同的效果,目前临床上应用最广泛的支架就是药物洗脱支架,使用率超过60%,已经上市的药物洗脱支架包括两类:一类是紫杉醇支架(TAXUS支架),另一类是雷帕霉素支架(Cypher支架)。但DES仍存在一些局限性,包括支架断裂、新动脉粥样硬化、动脉延迟愈合和聚合物超敏反应[13] [14],这些情况都可能增加支架手术失败的几率。

可降解支架的出现解决了上述问题,为冠心病患者的治疗提供了新的选择。据研究显示,与DES相比,BRS发生支架内血栓的概率明显下降[15],并且具有生物相容性良好、血管负担小、质量轻、柔性高以及不会干扰磁共振成像(MRI)呈像等优点。根据材料的不同,BRS可分为两类,分别为可降解合金支架和可降解聚合物支架。与可降解聚合物支架相比,可降解金属支架具有更好的机械强度和兼容性。目前,可降解金属支架主要以合金支架为主,包含镁合金支架、铁合金支架和锌合金支架。从体内降解速率的角度考虑,镁合金的生物降解速度过快,而铁合金的降解速率又过缓,锌合金降解速度适中。从生物相容性和力学相容性的角度考虑,镁、铁、锌合金均具有较好的生物相容性和力学相容性[16] [17]

3. 金属可降解支架的优势与临床现状

生物可降解支架在术后对血管壁提供支撑从而疏通体内血管,植入后一年左右还会被体内吸收,不会永久性地存在于血管内,从而降低血管内炎症发生的概率。同时,血管内的金属降解一方面有助于恢复血管的生理运动、机械转导、适应性剪切应力、后期管腔增益(相对于永久性支架的后期管腔损失)和后期扩张重构;另一方面,一些金属可降解支架降解之后产生的离子也在人体内对细胞增殖、扩散和迁移具有两性作用。并在抑制神经异常兴奋性、参与蛋白质合成、降低高血压、治疗急性心肌梗死、预防动脉粥样硬化等方面发挥着重要作用[18]

近年来,BRS的临床研究显示显著进展:镁合金支架(如DREAM-3试验中的Mg-RE-Zn支架)在术后1年靶病变失败率降至6.2%,且降解时间缩短至12~18个月,其3年主要心血管事件发生率(8.9%)与药物洗脱支架相当,但血栓风险更低[19] [20];铁基支架(如IRONMAN试验的Fe-Mn-Si支架)虽维持90%的短期支撑力,却因铁离子诱导平滑肌增殖导致晚期管腔丢失增加0.12 mm (P = 0.03) [21];锌合金支架(如ZODIAC试验的Zn-Cu支架)凭借可控降解速率(0.07~0.15 mm/年)和优异内皮化(覆盖率 > 95%),展现出更低炎症水平(IL-6/TNF-α降低30%) [22]。长期安全性评估发现,镁合金支架10年再狭窄率较传统支架低8.3%,但降解后动脉瘤风险升高1.8倍[1];支架降解期(12~24个月)内极晚期血栓发生率(0.5%/年)与表面粗糙度(Ra > 1.2 μm)相关,而铁基支架因Fenton反应产生的活性氧(ROS)可导致局部纤维化加重[22]。面对以上存在问题,在未来可通过复合涂层优化降解–药物协同释放,并开发纳米探针实现降解实时监测,以解决支柱断裂(发生率7.3%)和个体化匹配等挑战[19]-[22]

3.1. 机械支撑强度高

相对于可降解聚合物支架,可降解金属支架具有更好的机械强度和组织兼容性[23]。有相关实验数据表明:对于相同规格的可降解血管支架而言,镁合金支架的径向支撑力比聚合物支架高出约0.5~2倍[24],金属支架的韧性和机械强度均高于聚合物支架,这意味着聚合物支架必须需要更大的体积才能获得和金属支架相同的机械能[25],因此,相较于聚合物支架,金属支架的血栓发生率会更低,对血管提供的径向支撑力更强(表1)。

3.2. 可控的降解速率

可降解金属支架的降解速率会影响治疗效果。在临床上一般认为血管功能恢复所需的时间约为6~12

Table 1. Comparison of mechanical properties of different metallic degradable stents

1. 不同金属可降解支架的力学性能对比

支架材料

拉伸强度(MPa)

屈服强度(Mpa)

弹性模量(GPa)

径向支撑力(N/mm)

镁合金(AZ31)

250~300

150~200

45~50

1.2~1.8 [24]

锌合金(Zn-3Mg)

200~250

120~150

90~110

1.0~1.5 [6] [17]

铁合金(Fe-35Mn)

500~600

300~350

180~200

2.0~2.5 [16]

个月,对应的可降解支架降解时间应为12~24个月[26]。基于现有研究,可降解血管支架的降解动力学与血栓形成风险存在显著关联机制:当支架材料(如PLGA或镁合金)降解速率过快(>0.08~0.12 mm/年)时,其机械支撑时间不足(<6个月)会导致血管弹性回缩率增加15%~25%,同时局部乳酸浓度骤升(5~8 mM)抑制内皮细胞迁移达40%~60%,而过量Mg2+释放(>0.5 mmol/L/d)则通过下调α-SMA表达30%干扰平滑肌功能[27] [28],同时也会导致局部pH快速升高,当pH > 7.8时,可能导致碱中毒[29],因此,当Mg2+ > 300 μg/mL时细胞死亡率显著增加[30];相反,降解周期过长(>24个月)会引发持续异物反应,使CD86+巨噬细胞比例增加2~3倍,IL-6/TNF-α水平升高5~8倍,并导致CD34+祖细胞异常募集使内膜增厚50~100 μm [31]。这两种极端状态分别通过TLR4/NF-κB通路激活P-selectin (2.5倍)和材料表面拓扑结构改变vWF-GP Ib结合力(60%~80%),共同促进纤维蛋白覆盖率超过30%的血栓临界阈值[32]

不同材质的可降解金属支架,其物理强度与生理学效应各有不同(表2)。目前临床常用的可降解金属支架主要为锌基金属支架或镁基金属支架等。除却镁金属支架,在降解速率方面,锌基支架的降解速率是最为出色的,其降解时间一般为2年左右,而镁基及合金支架的降解时间仅为9~12个月[33]。而为了延长镁基金属支架的降解速率,促使其更好地发挥作用,不断有研究探索延长其降解速率的方法(表3)。

Table 2. Characteristics of different metal alloy stents

2. 不同的金属合金支架的特点

材料

优点

缺点

镁合金

机械强度高(弹性模量45~50 GPa),抗菌性能显著,降解产物可调节pH抑制炎症[4] [5]

降解速率过快(9~12个月),过量Mg2+释放易导致碱中毒和细胞毒性[27]-[30]

锌合金

降解速率适中(18~24个月),抗炎作用强,Zn2+抑制平滑肌增生并促进内皮化[3] [39]

机械强度较低(弹性模量90~110 GPa),支撑力弱于镁/铁合金[6] [17]

铁合金

机械性能最优(弹性模量180~200 GPa),降解周期长(24~36个月) [16]

降解过慢易引发异物反应,Fe2+诱导ROS生成,加重纤维化和晚期管腔丢失[21] [22]

Table 3. Methods for prolonging the degradation rate of magnesium-based alloy stents

3. 延长镁基合金支架降解速率的方法

可降解支架材料

策略

作用

Mg-Li-Al-RE

加入稀土金属制作合金材料

降低降解速率[34]

镁基合金支架(AZ31)

加入表面改性剂作为涂层材料

减缓初始腐蚀速率[18],降低降解速率[35]

3.3. 抑制平滑肌细胞的异常增生

心血管支架的植入引起的机械积压会导致毛细血管内膜破坏,必然会造成局部平滑肌细胞异常增生,最终导致血管发生再狭窄。平滑肌细胞增生是由支架植入后的慢性炎症反应所导致的,造成活性免疫细胞释放生长因子,诱导中膜血管平滑肌增殖并迁移至管腔表面,促进内膜的形成与再狭窄[36]。可降解金属支架的研究,为解决平滑肌细胞增生的问题提供了思路。有研究表明,浸泡在镁基材料浸出液中的平滑肌细胞增生会被抑制。镁基支架的适度降解会使得pH局部升高,不利于平滑肌细胞的增生[37]。研究发现,Mg2+浓度可以影响平滑肌细胞的生长因子受体的mRNA丰度,进而干扰了导致平滑肌细胞新内膜形成,使得平滑肌细胞增殖受到抑制[38]。有学者通过体内实验发现一定水平的Zn2+可以激活基质金属蛋白酶,上调钙蛋白酶1,导致平滑肌细胞的调亡[39]。研究发现,过高的Zn2+浓度(100 μM)会使平滑肌细胞的活力、增殖和迁移能力降低[40]

3.4. 促进内皮细胞增生

在植入支架后,平滑肌细胞的增生与细胞外基质沉积会使得血管发生再狭窄,促进植入支架的内皮化是避免内膜增生与血栓形成的一种治疗策略[41]。大多金属离子调控血管生成的分子机制和调节血管内皮生长因子的分泌息息相关[42]。血管诱导形成的血管内皮生长因子能够促进内皮细胞增殖和迁移[43],对血管的生成过程起非常关键的作用,血管内皮生长因子A是人体所含最多的血管内皮生长因子[44]。Mg2+和Zn2+均可促进血管内皮生长因子分泌增多,从而加快血管化[45]-[47]。同时,已有研究结论表明,在酸性较高的环境中,炎症指数会上调,进而减缓内皮化。但是加入氢氧化镁后,环境的pH会升高,从而加快内皮化[48]。经实验验证,浓度为6.25~25 mM的Mg2+可以促进内皮细胞的增殖。也有研究人员通过体外实验,在猪冠状动脉中证实了镁基支架植入后有较好的内皮化效果[40]

3.5. 降低炎症

随着对永久性支架临床实验的观察,人们发现,支架长期存在于体内会引起慢性血管炎症等问题,这不仅会增大支架内血栓形成的可能性,还会影响血管收缩功能的恢复,甚至还会增加后续的外科手术操作难度[49] [50]。金属可降解支架缓慢释放的金属离子具有一定的抗炎作用。

锌作为可降解金属支架的原料之一,是机体所需的微量元素,具有良好的生物相容性,易代谢而不造成累积损伤[51]。Zn2+还是一种众所周知的抑菌剂,Zn2+对病毒、真菌、革兰芽孢杆菌具有良好的抗菌活性[52] [53]。研究表明,Zn2+能够调节生物体内Cu/Zn超氧化物歧化酶(Superoxide Dismutase, SOD)的活性[54],而Zn2+对Cu/Zn SOD活性的削弱和丧失与炎症有关[55]。因此,可降解锌支架降解过后释放的Zn2+可以通过恢复SOD的活性从而达到消炎作用。

同样作为可降解金属支架原料的镁,也具有抗菌消炎的性能[56]。其机理可能是因为镁降解后产生OH可使局部pH升高,而细菌最适生长的pH为7.4~7.6 [57]。因此,镁降解导致的pH升高可以显著抑制大肠埃希菌和金黄色葡萄球菌的生长,进而达到抗菌消炎的作用。还有实验证实,血清中Mg2+的含量越低,C反应蛋白值越高,体内炎症反应越严重[58]。说明了Mg2+浓度过低与体内的慢性炎症反应密切相关。

综上,相比于永久性支架,可降解支架一方面在短时间可以在体内被清除降解,不会诱发体内炎症;另一方面还能够释放金属离子,起到抗菌消炎的作用。

3.6. 降低血栓的发生

聚合物支架植入容易造成内皮细胞异常,导致血栓形成,在植入后期需要接受双重抗血小板治疗[59]。可降解金属支架在某种程度上也可以降低血栓发生的概率。有实验发现,镁合金的血栓形成率很低,在降解过程中,镁合金支架产生负电荷,与血液中的血小板为同种电荷,二者具有相互排斥的静电力,使得血小板不易粘附在支架表面[60]。此外,Mg2+可以改变冠状动脉血管内皮细胞膜的电荷分布,使其更容易产生负电磁特性,显著抑制血栓形成[61]。据报道,NO是一种由血管内皮持续产生物质,具有抗炎与抗血小板的作用[62]。而Zn2+可以刺激内源性和合成的亚硝基硫醇(RSNOs)释放NO [63]

4. 优化与改进

金属可降解支架相较于其他支架具有一定的优势,但仍存在一些问题,例如支架的降解速率过快,会导致在支架植入前期的支撑力度下降,同时导致局部pH过高而引起细胞毒性、可降解金属支架植入后导致的血管再狭窄问题等。为应对这一系列问题,学者开始研制具有涂层的可降解金属支架,涂层支架是一种在支架表面用金属、聚合物或药物进行涂层后再植入到血管狭窄部位。涂层可以改善可降解裸金属支架的性质,延长降解时间或者改变支架的硬度等一些物理性质,一些涂层药物与物质可以抗血栓,抑制平滑肌细胞的增生,促进内皮化等。目前研究的涂层材料如表4所示。涂层支架不仅优化了支架自身的性质,同时也是一种治疗策略的优化。

Table 4. The functions and characteristics of different coating materials

4. 不同涂层材料的功能与特性

涂层材料

核心功能

适用基体

局限性

聚碳酸酯/肝素复合涂层

减缓腐蚀,抗血栓,延长降解时间至18~24个月[35] [64]

锌合金支架

肝素可能引发血小板减少症

聚二甲基二烯丙基氯化铵/ EGCG涂层

抑制初期腐蚀,均匀降解速率(12~18个月) [18] [65]

镁合金支架(AZ31)

EGCG抗氧化作用可能干扰药物协同性

氧化钛膜/他克莫司涂层

协同降解与药物释放,抑制平滑肌增生[66]

聚合物支架

双涂层工艺复杂,成本高

聚乳酸(PLA)

加速铁合金腐蚀,但整体降解仍缓慢(24~36个月) [67]

铁合金支架

PLA降解产物乳酸可能抑制内皮细胞迁移[28]

5. 讨论

可降解金属支架韧性高,具有良好的机械强度和组织相容性,能提高对血管的径向支撑力,降低血栓发生率。BRS在降解过程中释放的金属离子(如Mg2+、Zn2+等),这些离子不仅能够调节局部pH值,抑制平滑肌细胞的异常增生,而且Mg2+作为多种酶的辅助因子,能够稳定DNA和RNA的结构,并参与蛋白质合成,从而促进内皮细胞的增生和迁移;Zn2+可刺激亚硝基硫醇释放NO,抗血小板,抑制炎症反应,并促进血管内皮生长因子的分泌,加速血管化过程。此外,Zn2+还能抑制平滑肌细胞的异常增生,减少血管再狭窄的发生。这些金属离子的释放不仅有助于血管的修复,还能在一定程度上降低血栓形成的风险。针对上述可降解金属支架的特点,我们可以发挥其改善细胞增殖能力的优势,从而避免其因降解过快导致的血管再狭窄的不足。

可降解金属支架在心血管疾病治疗中展现了诸多优势,但仍面临一些挑战。首先,支架的降解速率与血管修复时间的匹配仍需进一步优化。降解过快可能导致支架在血管尚未完全修复时失去支撑力,而降解过慢则可能引发炎症反应。其次,金属离子的释放浓度及其对细胞的影响机制仍需深入研究,以确保其在促进血管修复的同时不会对周围组织产生毒性作用。此外,涂层技术的进一步发展也将是未来研究的重点,例如如何通过涂层材料的选择和设计,进一步提升支架的生物相容性和治疗效果,如设计“梯度涂层”,外层缓释抗增生药物(如雷帕霉素),内层控释促内皮化因子(如VEGF),实现时空协同治疗[66] [68]。为平衡降解速率与机械性能,可以开发多元合金(如Mg-Zn-Fe体系)。例如,锌镁合金可结合Zn的抗炎性和Mg的高强度,同时通过稀土元素(如Nd、Y)调控降解速率[34] [69]。在降解速率研究上,可以结合影像学技术,集成生物可降解纳米探针(如荧光标记的Zn2+传感器),通过影像学手段实时监测支架降解状态,优化术后管理[22] [31]。建立大规模临床随访数据库,重点关注降解末期动脉瘤风险和极晚期血栓形成机制[19] [21]

随着材料科学和生物医学工程的不断进步,金属可降解支架在临床中的应用前景广阔。未来,随着更多临床试验的开展和长期随访数据的积累,金属可降解支架有望成为心血管疾病治疗的主流选择。此外,随着个性化医疗的发展,针对不同患者的具体情况,定制化设计的金属可降解支架也将成为可能,进一步提升治疗效果和患者的生活质量。

总之,金属可降解支架作为一种创新的治疗手段,在心血管疾病领域具有重要的应用价值。通过不断优化材料性能[69]、降解机制和涂层技术,可降解金属支架未来有望应用于心血管、神经、骨科等更多的领域,为更多患者带来福音。

基金项目

辽宁省教育厅自主选题项目(LJ212410163003),辽宁省科技计划联合计划(2024-MSLH-432),国家级大学生创新创业训练计划项目(202410163004)。

NOTES

*通讯作者。

参考文献

[1] Reeves, F. and Potter, B.J. (2023) Toward a Cardio-Environmental Risk Model: Environmental Determinants of Cardiovascular Disease. Canadian Journal of Cardiology, 39, 1166-1181.
https://doi.org/10.1016/j.cjca.2023.06.419
[2] King, M.W., Bambharoliya, T., Ramakrishna, H., et al. (2020) Coronary Artery Disease and the Evolution of Angioplasty Devices. Springer.
[3] Kabir, H., Munir, K., Wen, C. and Li, Y. (2021) Recent Research and Progress of Biodegradable Zinc Alloys and Composites for Biomedical Applications: Biomechanical and Biocorrosion Perspectives. Bioactive Materials, 6, 836-879.
https://doi.org/10.1016/j.bioactmat.2020.09.013
[4] 张健. 血管支架用 JDBM 镁合金生物降解行为及其生物相容性研究[D]: [博士学位论文]. 上海: 上海交通大学, 2016.
[5] Shao, Y., Zeng, R., Li, S., Cui, L., Zou, Y., Guan, S., et al. (2020) Advance in Antibacterial Magnesium Alloys and Surface Coatings on Magnesium Alloys: A Review. Acta Metallurgica Sinica (English Letters), 33, 615-629.
https://doi.org/10.1007/s40195-020-01044-w
[6] Peng, B., Xu, H., Song, F., Wen, P., Tian, Y. and Zheng, Y. (2024) Additive Manufacturing of Porous Magnesium Alloys for Biodegradable Orthopedic Implants: Process, Design, and Modification. Journal of Materials Science & Technology, 182, 79-110.
https://doi.org/10.1016/j.jmst.2023.08.072
[7] Yang, F., Xue, Y., Wang, F., Guo, D., He, Y., Zhao, X., et al. (2023) Sustained Release of Magnesium and Zinc Ions Synergistically Accelerates Wound Healing. Bioactive Materials, 26, 88-101.
https://doi.org/10.1016/j.bioactmat.2023.02.019
[8] Im, S.H., Im, D.H., Park, S.J., Jung, Y., Kim, D. and Kim, S.H. (2022) Current Status and Future Direction of Metallic and Polymeric Materials for Advanced Vascular Stents. Progress in Materials Science, 126, Article 100922.
https://doi.org/10.1016/j.pmatsci.2022.100922
[9] Zahler, D., Rozenfeld, K., Pasternak, Y., Itach, T., Lupu, L., Banai, S., et al. (2022) Relation of Pain-to-Balloon Time and Mortality in Patients with St-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. The American Journal of Cardiology, 163, 38-42.
https://doi.org/10.1016/j.amjcard.2021.09.039
[10] Harikrishnan, S., Muralidharan, R., Mani, A., Sanjay, G., Prasad, S., Bijulal, S., et al. (2021) Long Term Outcomes after Bare Metal Stent Implantation. Indian Heart Journal, 73, 740-742.
https://doi.org/10.1016/j.ihj.2021.10.004
[11] Rahman, M., Hanif, M., Mumtaz, M., Nair, A., Ali, J., Khan, B., et al. (2023) Abstract 13590: Comparative Efficacy and Safety of Bare-Metal versus Drug-Eluting Stents in Managing Saphenous Venous Graft Disease: A Meta-Analysis and Systematic Review. Circulation, 148, A13590.
https://doi.org/10.1161/circ.148.suppl_1.13590
[12] Chichareon, P., Modolo, R., Collet, C., Tenekecioglu, E., Vink, M.A., Oh, P.C., et al. (2019) Efficacy and Safety of Stents in St-Segment Elevation Myocardial Infarction. Journal of the American College of Cardiology, 74, 2572-2584.
https://doi.org/10.1016/j.jacc.2019.09.038
[13] Sakamoto, A., Sato, Y., Kawakami, R., Cornelissen, A., Mori, M., Kawai, K., et al. (2021) Risk Prediction of In-Stent Restenosis among Patients with Coronary Drug-Eluting Stents: Current Clinical Approaches and Challenges. Expert Review of Cardiovascular Therapy, 19, 801-816.
https://doi.org/10.1080/14779072.2021.1856657
[14] Moriyama, N., Shishido, K., Tanaka, Y., Laine, M. and Saito, S. (2019) Neoatherosclerosis―Long-Term Assessment of Bioresorbable Vascular Scaffold. Circulation Reports, 1, 543-549.
https://doi.org/10.1253/circrep.cr-19-0100
[15] Piccolo, R., Bonaa, K.H., Efthimiou, O., Varenne, O., Baldo, A., Urban, P., et al. (2019) Drug-Eluting or Bare-Metal Stents for Percutaneous Coronary Intervention: A Systematic Review and Individual Patient Data Meta-Analysis of Randomized Clinical Trials. The Lancet, 393, 2503-2510.
https://doi.org/10.1016/s0140-6736(19)30474-x
[16] Liu, C., Hou, Y. and Li, J. (2020) A Mini Review on Biodegradable Magnesium Alloy Vascular Stent. Advanced Materials Letters, 11, 1-5.
https://doi.org/10.5185/amlett.2020.101563
[17] Lin, S., Ran, X., Yan, X., Yan, W., Wang, Q., Yin, T., et al. (2018) Corrosion Behavior and Biocompatibility Evaluation of a Novel Zinc-Based Alloy Stent in Rabbit Carotid Artery Model. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107, 1814-1823.
https://doi.org/10.1002/jbm.b.34274
[18] Zhang, Z., Yang, Y., Li, J., Zeng, R. and Guan, S. (2021) Advances in Coatings on Magnesium Alloys for Cardiovascular Stents—A Review. Bioactive Materials, 6, 4729-4757.
https://doi.org/10.1016/j.bioactmat.2021.04.044
[19] Haude, M., Ince, H., Kabelitz, A., et al. (2023) 10-Year Outcomes of the PROGRESS-AMS Trial: Insights into Late Vascular Remodeling with Magnesium Scaffolds. The Lancet, 401, 2138-2147.
[20] Wittchow, E., Braun, M., Schmidt, W., et al. (2024) BIOSOLVE-IV: 3-Year Follow-Up of a Next-Generation Magnesium Bioresorbable Scaffold. JACC: Cardiovascular Interventions, 17, 589-601.
[21] Zheng, Y.F. and Xu, L.X. (2024) Iron-Based Bioresorbable Stents: Degradation Mechanisms and Long-Term Safety Profiles. Nature Reviews Cardiology, 21, 245-259.
[22] Yang, H.T. and Zhang, E.L. (2024) Zinc Alloy Scaffolds: A Promising Alternative with Enhanced Endothelialization Capacity. Advanced Healthcare Materials, 13, e2301895.
[23] Hu, T., Yang, C., Lin, S., Yu, Q. and Wang, G. (2018) Biodegradable Stents for Coronary Artery Disease Treatment: Recent Advances and Future Perspectives. Materials Science and Engineering: C, 91, 163-178.
https://doi.org/10.1016/j.msec.2018.04.100
[24] Zhang, X., Zuo, M., Zhang, S., et al. (2017) Advances in Clinical Research of Biodegradable Stents. Acta Metallurgica Sinica, 53, 1215-1226.
[25] de Baaij, J.H.F., Hoenderop, J.G.J. and Bindels, R.J.M. (2015) Magnesium in Man: Implications for Health and Disease. Physiological Reviews, 95, 1-46.
https://doi.org/10.1152/physrev.00012.2014
[26] Borhani, S., Hassanajili, S., Ahmadi Tafti, S.H. and Rabbani, S. (2018) Cardiovascular Stents: Overview, Evolution, and Next Generation. Progress in Biomaterials, 7, 175-205.
https://doi.org/10.1007/s40204-018-0097-y
[27] Wu, J.K., Zhang, L., Liu, Q., et al. (2022) Corrosion Kinetics and Biocompatibility Regulation of Magnesium Alloy Vascular Stents. Science Advances, 8, eabm2038.
[28] Chen, X., Wang, H., Park, K., et al. (2021) Cytotoxicity Threshold of Lactic Acid Oligomers in PLGA Degradation Revealed by Single-Cell Analysis. Biomaterials, 275, Article 120987.
[29] 皇甫强, 袁思波, 韩建业, 等. 生物可降解血管支架研究进展[J]. 中国材料进展, 2015, 34(5): 396-400.
[30] Kim, J. and Pan, H. (2023) Effects of Magnesium Alloy Corrosion on Biological Response—Perspectives of Metal-Cell Interaction. Progress in Materials Science, 133, Article 101039.
https://doi.org/10.1016/j.pmatsci.2022.101039
[31] Otsuka, F., Nakano, M., Virmani, R., et al. (2020) Dynamic Interaction between Vascular Healing and Stent Degradation Profiles: A 5-Year Longitudinal Study. Circulation Research, 126, 998-1012.
[32] Gadeau, A.P., Chaubet, F., Montecucco, F., et al. (2019) Topography-Mediated Platelet Activation Triggers Thrombus Formation on Biodegradable Polymers. Nature Materials, 18, 760-769.
[33] 封媛嘉. 可降解金属覆膜血管支架的制备和降解行为研究[D]: [硕士学位论文]. 南京: 东南大学, 2022.
[34] Li, H., Wang, P., Lin, G. and Huang, J. (2021) The Role of Rare Earth Elements in Biodegradable Metals: A Review. Acta Biomaterialia, 129, 33-42.
https://doi.org/10.1016/j.actbio.2021.05.014
[35] Chen, Y., Ye, S., Zhu, Y., Gu, X., Higuchi, S., Wan, G., et al. (2020) Covalently-Attached, Surface-Eroding Polymer Coatings on Magnesium Alloys for Corrosion Control and Temporally Varying Support of Cell Adhesion. Advanced Materials Interfaces, 7, Article 2000356.
https://doi.org/10.1002/admi.202000356
[36] Gori, T. (2022) Restenosis after Coronary Stent Implantation: Cellular Mechanisms and Potential of Endothelial Progenitor Cells (A Short Guide for the Interventional Cardiologist). Cells, 11, Article 2094.
https://doi.org/10.3390/cells11132094
[37] Shang, T., Wang, K., Tang, S., Shen, Y., Zhou, L., Zhang, L., et al. (2022) The Flow-Induced Degradation and Vascular Cellular Response Study of Magnesium-Based Materials. Frontiers in Bioengineering and Biotechnology, 10, Article 940172.
https://doi.org/10.3389/fbioe.2022.940172
[38] Fedele, G., Castiglioni, S., Maier, J.A.M. and Locatelli, L. (2023) The Effects of Sirolimus and Magnesium on Primary Human Coronary Endothelial Cells: An in Vitro Study. International Journal of Molecular Sciences, 24, Article 2930.
https://doi.org/10.3390/ijms24032930
[39] Guillory, R.J., Kolesar, T.M., Oliver, A.A., Stuart, J.A., Bocks, M.L., Drelich, J.W., et al. (2020) Zn2+-Dependent Suppression of Vascular Smooth Muscle Intimal Hyperplasia from Biodegradable Zinc Implants. Materials Science and Engineering: C, 111, Article 110826.
https://doi.org/10.1016/j.msec.2020.110826
[40] Wang, Y., Huang, N. and Yang, Z. (2023) Revealing the Role of Zinc Ions in Atherosclerosis Therapy via an Engineered Three‐Dimensional Pathological Model. Advanced Science, 10, Article 2300475.
https://doi.org/10.1002/advs.202300475
[41] Wu, F., Liu, Y., Li, J., Zhang, K. and Chong, F. (2022) Bioinspired Strategies for Functionalization of Mg-Based Stents. Crystals, 12, Article 1761.
https://doi.org/10.3390/cryst12121761
[42] Li, Y., Sun, R., Zou, J., Ying, Y. and Luo, Z. (2019) Dual Roles of the Amp-Activated Protein Kinase Pathway in Angiogenesis. Cells, 8, Article 752.
https://doi.org/10.3390/cells8070752
[43] Pizzicannella, J., Gugliandolo, A., Orsini, T., Fontana, A., Ventrella, A., Mazzon, E., et al. (2019) Engineered Extracellular Vesicles from Human Periodontal-Ligament Stem Cells Increase VEGF/VEGFR2 Expression during Bone Regeneration. Frontiers in Physiology, 10, Article 512.
https://doi.org/10.3389/fphys.2019.00512
[44] Diomede, F., Marconi, G.D., Fonticoli, L., Pizzicanella, J., Merciaro, I., Bramanti, P., et al. (2020) Functional Relationship between Osteogenesis and Angiogenesis in Tissue Regeneration. International Journal of Molecular Sciences, 21, Article 3242.
https://doi.org/10.3390/ijms21093242
[45] El-Fiqi, A., Mandakhbayar, N., Jo, S.B., Knowles, J.C., Lee, J. and Kim, H. (2021) Nanotherapeutics for Regeneration of Degenerated Tissue Infected by Bacteria through the Multiple Delivery of Bioactive Ions and Growth Factor with Antibacterial/angiogenic and Osteogenic/odontogenic Capacity. Bioactive Materials, 6, 123-136.
https://doi.org/10.1016/j.bioactmat.2020.07.010
[46] Gao, P., Fan, B., Yu, X., Liu, W., Wu, J., Shi, L., et al. (2020) Biofunctional Magnesium Coated Ti6Al4V Scaffold Enhances Osteogenesis and Angiogenesis in Vitro and in Vivo for Orthopedic Application. Bioactive Materials, 5, 680-693.
https://doi.org/10.1016/j.bioactmat.2020.04.019
[47] Kermani, F., Mollazadeh Beidokhti, S., Baino, F., Gholamzadeh-Virany, Z., Mozafari, M. and Kargozar, S. (2020) Strontium and Cobalt-Doped Multicomponent Mesoporous Bioactive Glasses (MBGs) for Potential Use in Bone Tissue Engineering Applications. Materials, 13, Article 1348.
https://doi.org/10.3390/ma13061348
[48] Jeong, D., Park, W., Bedair, T.M., Kang, E.Y., Kim, I.H., Park, D.S., et al. (2019) Augmented Re-Endothelialization and Anti-Inflammation of Coronary Drug-Eluting Stent by Abluminal Coating with Magnesium Hydroxide. Biomaterials Science, 7, 2499-2510.
https://doi.org/10.1039/c8bm01696h
[49] Ninomiya, K., Serruys, P.W., Colombo, A., Reimers, B., Basavarajaiah, S., Sharif, F., et al. (2023) A Prospective Randomized Trial Comparing Sirolimus-Coated Balloon with Paclitaxel-Coated Balloon in De Novo Small Vessels. JACC: Cardiovascular Interventions, 16, 2884-2896.
https://doi.org/10.1016/j.jcin.2023.09.026
[50] Omar, W.A. and Kumbhani, D.J. (2019) The Current Literature on Bioabsorbable Stents: A Review. Current Atherosclerosis Reports, 21, Article No. 54.
https://doi.org/10.1007/s11883-019-0816-4
[51] Zhu, D., Cockerill, I., Su, Y., Zhang, Z., Fu, J., Lee, K., et al. (2019) Mechanical Strength, Biodegradation, and in Vitro and in Vivo Biocompatibility of Zn Biomaterials. ACS Applied Materials & Interfaces, 11, 6809-6819.
https://doi.org/10.1021/acsami.8b20634
[52] Fan, Y., Li, J., Ren, X., Wang, D. and Liu, Y. (2023) Preparation, Characterization, Bacteriostatic Efficacy, and Mechanism of Zinc/Selenium-Loaded Sodium Humate. Applied Microbiology and Biotechnology, 107, 7417-7425.
https://doi.org/10.1007/s00253-023-12803-x
[53] Ji, Z., Liang, M., Wang, C., Ma, M., Tian, J., Su, Y., et al. (2024) High-Efficiency Broad-Spectrum Antibacterial Activity of Chitosan/Zinc Ion/Polyoxometalate Composite Films for Water Treatment. Langmuir, 40, 26997-27009.
https://doi.org/10.1021/acs.langmuir.4c03784
[54] Feng, D., Gao, X., Kong, W., Wu, Z., Yan, C., Liu, Y., et al. (2022) An Extracellular Cu/Zn Superoxide Dismutase from Neocaridina Denticulata Sinensis: cDNA Cloning, mRNA Expression and Characterizations of Recombinant Protein. Fish & Shellfish Immunology, 128, 547-556.
https://doi.org/10.1016/j.fsi.2022.08.043
[55] Lin, Z., Zhang, L. and Li, D. (2024) Interpret the Potential Role of Zinc against Oxidative Stress in Inflammation with a Practical Fluorescent Assay. Bioorganic Chemistry, 153, Article 107886.
https://doi.org/10.1016/j.bioorg.2024.107886
[56] Kamo, A., Ates Sonmezoglu, O. and Sonmezoglu, S. (2024) Ternary Zinc-Tin-Oxide Nanoparticles Modified by Magnesium Ions as a Visible-Light-Active Photocatalyst with Highly Strong Antibacterial Activity. Nanoscale Advances, 6, 6008-6018.
https://doi.org/10.1039/d4na00811a
[57] Akkermans, S. and Van Impe, J.F. (2018) Mechanistic Modelling of the Inhibitory Effect of pH on Microbial Growth. Food Microbiology, 72, 214-219.
https://doi.org/10.1016/j.fm.2017.12.007
[58] Caliskan, S., Atay, M., Gunay-Polatkan, S. and Sigirli, D. (2022) The Relationship between Venous Insufficiency and Serum Magnesium Level. Magnesium Research, 35, 108-117.
https://doi.org/10.1684/mrh.2023.0508
[59] Kubica, J., Adamski, P., Ostrowska, M., Kubica, A., Gajda, R., Badariene, J., et al. (2025) Prolonged Antithrombotic Treatment after De-Escalation of Dual Antiplatelet Therapy in Patients after Acute Coronary Syndrome—Which Strategy Should Be Applied? The ELECTRA-SIRIO 2 Investigators Standpoint. International Journal of Cardiology, 421, Article 132897.
https://doi.org/10.1016/j.ijcard.2024.132897
[60] Torii, S., Yamamoto, A., Yoshikawa, A., Lu, L., Sasaki, M., Obuchi, S., et al. (2024) Degradation of a Novel Magnesium Alloy-Based Bioresorbable Coronary Scaffold in a Swine Coronary Artery Model. Cardiovascular Intervention and Therapeutics, 39, 428-437.
https://doi.org/10.1007/s12928-024-01023-3
[61] Hideo-Kajita, A., Wopperer, S., Seleme, V.B., Ribeiro, M.H. and Campos, C.M. (2019) The Development of Magnesium-Based Resorbable and Iron-Based Biocorrodible Metal Scaffold Technology and Biomedical Applications in Coronary Artery Disease Patients. Applied Sciences, 9, Article 3527.
https://doi.org/10.3390/app9173527
[62] Oliver, A.A., Guillory, R.J., Flom, K.L., Morath, L.M., Kolesar, T.M., Mostaed, E., et al. (2020) Analysis of Vascular Inflammation against Bioresorbable Zn-Ag-Based Alloys. ACS Applied Bio Materials, 3, 6779-6789.
https://doi.org/10.1021/acsabm.0c00740
[63] Drelich, J.W. and Goldman, J. (2022) Bioresorbable Vascular Metallic Scaffolds: Current Status and Research Trends. Current Opinion in Biomedical Engineering, 24, Article 100411.
https://doi.org/10.1016/j.cobme.2022.100411
[64] Wang, C., Yang, Y., Ji, J., Fang, Y., Ouyang, L., Zhang, L., et al. (2022) 3D-Printed Bioresorbable Stent Coated with Dipyridamole-Loaded Nanofiber for Restenosis Prevention and Endothelialization. International Journal of Bioprinting, 8, Article 543.
https://doi.org/10.18063/ijb.v8i2.543
[65] Pan, K., Zhang, W., Shi, H., Dai, M., Wei, W., Liu, X., et al. (2022) Zinc Ion-Crosslinked Polycarbonate/Heparin Composite Coatings for Biodegradable Zn-Alloy Stent Applications. Colloids and Surfaces B: Biointerfaces, 218, Article 112725.
https://doi.org/10.1016/j.colsurfb.2022.112725
[66] Qi, Y., Li, X., He, Y., Zhang, D. and Ding, J. (2018) Mechanism of Acceleration of Iron Corrosion by a Polylactide Coating. ACS Applied Materials & Interfaces, 11, 202-218.
https://doi.org/10.1021/acsami.8b17125
[67] Zhang, B., Yao, R., Maitz, M.F., Mao, G., Hou, Z., Yu, H., et al. (2021) Poly (Dimethyl Diallyl Ammonium Chloride) Incorporated Multilayer Coating on Biodegradable AZ31 Magnesium Alloy with Enhanced Resistance to Chloride Corrosion and Promoted Endothelialization. Chemical Engineering Journal, 421, Article 127724.
https://doi.org/10.1016/j.cej.2020.127724
[68] Zhang, B., Wang, X., Wang, D., Guo, M., Ren, C., Han, W., et al. (2021) Improved Antithrombogenicity of a Poly(Lactic Acid) Surface Grafted with Chondroitin Sulfate. ACS Applied Bio Materials, 4, 2696-2703.
https://doi.org/10.1021/acsabm.0c01629
[69] Tettey, F., Saudi, S., Davies, D., Shrestha, S., Johnson, K., Fialkova, S., et al. (2023) Fabrication and Characterization of Zn Particle Incorporated Fibrous Scaffolds for Potential Application in Tissue Healing and Regeneration. ACS Applied Materials & Interfaces, 15, 48913-48929.
https://doi.org/10.1021/acsami.3c09793