[1]
|
Reeves, F. and Potter, B.J. (2023) Toward a Cardio-Environmental Risk Model: Environmental Determinants of Cardiovascular Disease. Canadian Journal of Cardiology, 39, 1166-1181. https://doi.org/10.1016/j.cjca.2023.06.419
|
[2]
|
King, M.W., Bambharoliya, T., Ramakrishna, H., et al. (2020) Coronary Artery Disease and the Evolution of Angioplasty Devices. Springer.
|
[3]
|
Kabir, H., Munir, K., Wen, C. and Li, Y. (2021) Recent Research and Progress of Biodegradable Zinc Alloys and Composites for Biomedical Applications: Biomechanical and Biocorrosion Perspectives. Bioactive Materials, 6, 836-879. https://doi.org/10.1016/j.bioactmat.2020.09.013
|
[4]
|
张健. 血管支架用 JDBM 镁合金生物降解行为及其生物相容性研究[D]: [博士学位论文]. 上海: 上海交通大学, 2016.
|
[5]
|
Shao, Y., Zeng, R., Li, S., Cui, L., Zou, Y., Guan, S., et al. (2020) Advance in Antibacterial Magnesium Alloys and Surface Coatings on Magnesium Alloys: A Review. Acta Metallurgica Sinica (English Letters), 33, 615-629. https://doi.org/10.1007/s40195-020-01044-w
|
[6]
|
Peng, B., Xu, H., Song, F., Wen, P., Tian, Y. and Zheng, Y. (2024) Additive Manufacturing of Porous Magnesium Alloys for Biodegradable Orthopedic Implants: Process, Design, and Modification. Journal of Materials Science & Technology, 182, 79-110. https://doi.org/10.1016/j.jmst.2023.08.072
|
[7]
|
Yang, F., Xue, Y., Wang, F., Guo, D., He, Y., Zhao, X., et al. (2023) Sustained Release of Magnesium and Zinc Ions Synergistically Accelerates Wound Healing. Bioactive Materials, 26, 88-101. https://doi.org/10.1016/j.bioactmat.2023.02.019
|
[8]
|
Im, S.H., Im, D.H., Park, S.J., Jung, Y., Kim, D. and Kim, S.H. (2022) Current Status and Future Direction of Metallic and Polymeric Materials for Advanced Vascular Stents. Progress in Materials Science, 126, Article 100922. https://doi.org/10.1016/j.pmatsci.2022.100922
|
[9]
|
Zahler, D., Rozenfeld, K., Pasternak, Y., Itach, T., Lupu, L., Banai, S., et al. (2022) Relation of Pain-to-Balloon Time and Mortality in Patients with St-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. The American Journal of Cardiology, 163, 38-42. https://doi.org/10.1016/j.amjcard.2021.09.039
|
[10]
|
Harikrishnan, S., Muralidharan, R., Mani, A., Sanjay, G., Prasad, S., Bijulal, S., et al. (2021) Long Term Outcomes after Bare Metal Stent Implantation. Indian Heart Journal, 73, 740-742. https://doi.org/10.1016/j.ihj.2021.10.004
|
[11]
|
Rahman, M., Hanif, M., Mumtaz, M., Nair, A., Ali, J., Khan, B., et al. (2023) Abstract 13590: Comparative Efficacy and Safety of Bare-Metal versus Drug-Eluting Stents in Managing Saphenous Venous Graft Disease: A Meta-Analysis and Systematic Review. Circulation, 148, A13590. https://doi.org/10.1161/circ.148.suppl_1.13590
|
[12]
|
Chichareon, P., Modolo, R., Collet, C., Tenekecioglu, E., Vink, M.A., Oh, P.C., et al. (2019) Efficacy and Safety of Stents in St-Segment Elevation Myocardial Infarction. Journal of the American College of Cardiology, 74, 2572-2584. https://doi.org/10.1016/j.jacc.2019.09.038
|
[13]
|
Sakamoto, A., Sato, Y., Kawakami, R., Cornelissen, A., Mori, M., Kawai, K., et al. (2021) Risk Prediction of In-Stent Restenosis among Patients with Coronary Drug-Eluting Stents: Current Clinical Approaches and Challenges. Expert Review of Cardiovascular Therapy, 19, 801-816. https://doi.org/10.1080/14779072.2021.1856657
|
[14]
|
Moriyama, N., Shishido, K., Tanaka, Y., Laine, M. and Saito, S. (2019) Neoatherosclerosis―Long-Term Assessment of Bioresorbable Vascular Scaffold. Circulation Reports, 1, 543-549. https://doi.org/10.1253/circrep.cr-19-0100
|
[15]
|
Piccolo, R., Bonaa, K.H., Efthimiou, O., Varenne, O., Baldo, A., Urban, P., et al. (2019) Drug-Eluting or Bare-Metal Stents for Percutaneous Coronary Intervention: A Systematic Review and Individual Patient Data Meta-Analysis of Randomized Clinical Trials. The Lancet, 393, 2503-2510. https://doi.org/10.1016/s0140-6736(19)30474-x
|
[16]
|
Liu, C., Hou, Y. and Li, J. (2020) A Mini Review on Biodegradable Magnesium Alloy Vascular Stent. Advanced Materials Letters, 11, 1-5. https://doi.org/10.5185/amlett.2020.101563
|
[17]
|
Lin, S., Ran, X., Yan, X., Yan, W., Wang, Q., Yin, T., et al. (2018) Corrosion Behavior and Biocompatibility Evaluation of a Novel Zinc-Based Alloy Stent in Rabbit Carotid Artery Model. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107, 1814-1823. https://doi.org/10.1002/jbm.b.34274
|
[18]
|
Zhang, Z., Yang, Y., Li, J., Zeng, R. and Guan, S. (2021) Advances in Coatings on Magnesium Alloys for Cardiovascular Stents—A Review. Bioactive Materials, 6, 4729-4757. https://doi.org/10.1016/j.bioactmat.2021.04.044
|
[19]
|
Haude, M., Ince, H., Kabelitz, A., et al. (2023) 10-Year Outcomes of the PROGRESS-AMS Trial: Insights into Late Vascular Remodeling with Magnesium Scaffolds. The Lancet, 401, 2138-2147.
|
[20]
|
Wittchow, E., Braun, M., Schmidt, W., et al. (2024) BIOSOLVE-IV: 3-Year Follow-Up of a Next-Generation Magnesium Bioresorbable Scaffold. JACC: Cardiovascular Interventions, 17, 589-601.
|
[21]
|
Zheng, Y.F. and Xu, L.X. (2024) Iron-Based Bioresorbable Stents: Degradation Mechanisms and Long-Term Safety Profiles. Nature Reviews Cardiology, 21, 245-259.
|
[22]
|
Yang, H.T. and Zhang, E.L. (2024) Zinc Alloy Scaffolds: A Promising Alternative with Enhanced Endothelialization Capacity. Advanced Healthcare Materials, 13, e2301895.
|
[23]
|
Hu, T., Yang, C., Lin, S., Yu, Q. and Wang, G. (2018) Biodegradable Stents for Coronary Artery Disease Treatment: Recent Advances and Future Perspectives. Materials Science and Engineering: C, 91, 163-178. https://doi.org/10.1016/j.msec.2018.04.100
|
[24]
|
Zhang, X., Zuo, M., Zhang, S., et al. (2017) Advances in Clinical Research of Biodegradable Stents. Acta Metallurgica Sinica, 53, 1215-1226.
|
[25]
|
de Baaij, J.H.F., Hoenderop, J.G.J. and Bindels, R.J.M. (2015) Magnesium in Man: Implications for Health and Disease. Physiological Reviews, 95, 1-46. https://doi.org/10.1152/physrev.00012.2014
|
[26]
|
Borhani, S., Hassanajili, S., Ahmadi Tafti, S.H. and Rabbani, S. (2018) Cardiovascular Stents: Overview, Evolution, and Next Generation. Progress in Biomaterials, 7, 175-205. https://doi.org/10.1007/s40204-018-0097-y
|
[27]
|
Wu, J.K., Zhang, L., Liu, Q., et al. (2022) Corrosion Kinetics and Biocompatibility Regulation of Magnesium Alloy Vascular Stents. Science Advances, 8, eabm2038.
|
[28]
|
Chen, X., Wang, H., Park, K., et al. (2021) Cytotoxicity Threshold of Lactic Acid Oligomers in PLGA Degradation Revealed by Single-Cell Analysis. Biomaterials, 275, Article 120987.
|
[29]
|
皇甫强, 袁思波, 韩建业, 等. 生物可降解血管支架研究进展[J]. 中国材料进展, 2015, 34(5): 396-400.
|
[30]
|
Kim, J. and Pan, H. (2023) Effects of Magnesium Alloy Corrosion on Biological Response—Perspectives of Metal-Cell Interaction. Progress in Materials Science, 133, Article 101039. https://doi.org/10.1016/j.pmatsci.2022.101039
|
[31]
|
Otsuka, F., Nakano, M., Virmani, R., et al. (2020) Dynamic Interaction between Vascular Healing and Stent Degradation Profiles: A 5-Year Longitudinal Study. Circulation Research, 126, 998-1012.
|
[32]
|
Gadeau, A.P., Chaubet, F., Montecucco, F., et al. (2019) Topography-Mediated Platelet Activation Triggers Thrombus Formation on Biodegradable Polymers. Nature Materials, 18, 760-769.
|
[33]
|
封媛嘉. 可降解金属覆膜血管支架的制备和降解行为研究[D]: [硕士学位论文]. 南京: 东南大学, 2022.
|
[34]
|
Li, H., Wang, P., Lin, G. and Huang, J. (2021) The Role of Rare Earth Elements in Biodegradable Metals: A Review. Acta Biomaterialia, 129, 33-42. https://doi.org/10.1016/j.actbio.2021.05.014
|
[35]
|
Chen, Y., Ye, S., Zhu, Y., Gu, X., Higuchi, S., Wan, G., et al. (2020) Covalently-Attached, Surface-Eroding Polymer Coatings on Magnesium Alloys for Corrosion Control and Temporally Varying Support of Cell Adhesion. Advanced Materials Interfaces, 7, Article 2000356. https://doi.org/10.1002/admi.202000356
|
[36]
|
Gori, T. (2022) Restenosis after Coronary Stent Implantation: Cellular Mechanisms and Potential of Endothelial Progenitor Cells (A Short Guide for the Interventional Cardiologist). Cells, 11, Article 2094. https://doi.org/10.3390/cells11132094
|
[37]
|
Shang, T., Wang, K., Tang, S., Shen, Y., Zhou, L., Zhang, L., et al. (2022) The Flow-Induced Degradation and Vascular Cellular Response Study of Magnesium-Based Materials. Frontiers in Bioengineering and Biotechnology, 10, Article 940172. https://doi.org/10.3389/fbioe.2022.940172
|
[38]
|
Fedele, G., Castiglioni, S., Maier, J.A.M. and Locatelli, L. (2023) The Effects of Sirolimus and Magnesium on Primary Human Coronary Endothelial Cells: An in Vitro Study. International Journal of Molecular Sciences, 24, Article 2930. https://doi.org/10.3390/ijms24032930
|
[39]
|
Guillory, R.J., Kolesar, T.M., Oliver, A.A., Stuart, J.A., Bocks, M.L., Drelich, J.W., et al. (2020) Zn2+-Dependent Suppression of Vascular Smooth Muscle Intimal Hyperplasia from Biodegradable Zinc Implants. Materials Science and Engineering: C, 111, Article 110826. https://doi.org/10.1016/j.msec.2020.110826
|
[40]
|
Wang, Y., Huang, N. and Yang, Z. (2023) Revealing the Role of Zinc Ions in Atherosclerosis Therapy via an Engineered Three‐Dimensional Pathological Model. Advanced Science, 10, Article 2300475. https://doi.org/10.1002/advs.202300475
|
[41]
|
Wu, F., Liu, Y., Li, J., Zhang, K. and Chong, F. (2022) Bioinspired Strategies for Functionalization of Mg-Based Stents. Crystals, 12, Article 1761. https://doi.org/10.3390/cryst12121761
|
[42]
|
Li, Y., Sun, R., Zou, J., Ying, Y. and Luo, Z. (2019) Dual Roles of the Amp-Activated Protein Kinase Pathway in Angiogenesis. Cells, 8, Article 752. https://doi.org/10.3390/cells8070752
|
[43]
|
Pizzicannella, J., Gugliandolo, A., Orsini, T., Fontana, A., Ventrella, A., Mazzon, E., et al. (2019) Engineered Extracellular Vesicles from Human Periodontal-Ligament Stem Cells Increase VEGF/VEGFR2 Expression during Bone Regeneration. Frontiers in Physiology, 10, Article 512. https://doi.org/10.3389/fphys.2019.00512
|
[44]
|
Diomede, F., Marconi, G.D., Fonticoli, L., Pizzicanella, J., Merciaro, I., Bramanti, P., et al. (2020) Functional Relationship between Osteogenesis and Angiogenesis in Tissue Regeneration. International Journal of Molecular Sciences, 21, Article 3242. https://doi.org/10.3390/ijms21093242
|
[45]
|
El-Fiqi, A., Mandakhbayar, N., Jo, S.B., Knowles, J.C., Lee, J. and Kim, H. (2021) Nanotherapeutics for Regeneration of Degenerated Tissue Infected by Bacteria through the Multiple Delivery of Bioactive Ions and Growth Factor with Antibacterial/angiogenic and Osteogenic/odontogenic Capacity. Bioactive Materials, 6, 123-136. https://doi.org/10.1016/j.bioactmat.2020.07.010
|
[46]
|
Gao, P., Fan, B., Yu, X., Liu, W., Wu, J., Shi, L., et al. (2020) Biofunctional Magnesium Coated Ti6Al4V Scaffold Enhances Osteogenesis and Angiogenesis in Vitro and in Vivo for Orthopedic Application. Bioactive Materials, 5, 680-693. https://doi.org/10.1016/j.bioactmat.2020.04.019
|
[47]
|
Kermani, F., Mollazadeh Beidokhti, S., Baino, F., Gholamzadeh-Virany, Z., Mozafari, M. and Kargozar, S. (2020) Strontium and Cobalt-Doped Multicomponent Mesoporous Bioactive Glasses (MBGs) for Potential Use in Bone Tissue Engineering Applications. Materials, 13, Article 1348. https://doi.org/10.3390/ma13061348
|
[48]
|
Jeong, D., Park, W., Bedair, T.M., Kang, E.Y., Kim, I.H., Park, D.S., et al. (2019) Augmented Re-Endothelialization and Anti-Inflammation of Coronary Drug-Eluting Stent by Abluminal Coating with Magnesium Hydroxide. Biomaterials Science, 7, 2499-2510. https://doi.org/10.1039/c8bm01696h
|
[49]
|
Ninomiya, K., Serruys, P.W., Colombo, A., Reimers, B., Basavarajaiah, S., Sharif, F., et al. (2023) A Prospective Randomized Trial Comparing Sirolimus-Coated Balloon with Paclitaxel-Coated Balloon in De Novo Small Vessels. JACC: Cardiovascular Interventions, 16, 2884-2896. https://doi.org/10.1016/j.jcin.2023.09.026
|
[50]
|
Omar, W.A. and Kumbhani, D.J. (2019) The Current Literature on Bioabsorbable Stents: A Review. Current Atherosclerosis Reports, 21, Article No. 54. https://doi.org/10.1007/s11883-019-0816-4
|
[51]
|
Zhu, D., Cockerill, I., Su, Y., Zhang, Z., Fu, J., Lee, K., et al. (2019) Mechanical Strength, Biodegradation, and in Vitro and in Vivo Biocompatibility of Zn Biomaterials. ACS Applied Materials & Interfaces, 11, 6809-6819. https://doi.org/10.1021/acsami.8b20634
|
[52]
|
Fan, Y., Li, J., Ren, X., Wang, D. and Liu, Y. (2023) Preparation, Characterization, Bacteriostatic Efficacy, and Mechanism of Zinc/Selenium-Loaded Sodium Humate. Applied Microbiology and Biotechnology, 107, 7417-7425. https://doi.org/10.1007/s00253-023-12803-x
|
[53]
|
Ji, Z., Liang, M., Wang, C., Ma, M., Tian, J., Su, Y., et al. (2024) High-Efficiency Broad-Spectrum Antibacterial Activity of Chitosan/Zinc Ion/Polyoxometalate Composite Films for Water Treatment. Langmuir, 40, 26997-27009. https://doi.org/10.1021/acs.langmuir.4c03784
|
[54]
|
Feng, D., Gao, X., Kong, W., Wu, Z., Yan, C., Liu, Y., et al. (2022) An Extracellular Cu/Zn Superoxide Dismutase from Neocaridina Denticulata Sinensis: cDNA Cloning, mRNA Expression and Characterizations of Recombinant Protein. Fish & Shellfish Immunology, 128, 547-556. https://doi.org/10.1016/j.fsi.2022.08.043
|
[55]
|
Lin, Z., Zhang, L. and Li, D. (2024) Interpret the Potential Role of Zinc against Oxidative Stress in Inflammation with a Practical Fluorescent Assay. Bioorganic Chemistry, 153, Article 107886. https://doi.org/10.1016/j.bioorg.2024.107886
|
[56]
|
Kamo, A., Ates Sonmezoglu, O. and Sonmezoglu, S. (2024) Ternary Zinc-Tin-Oxide Nanoparticles Modified by Magnesium Ions as a Visible-Light-Active Photocatalyst with Highly Strong Antibacterial Activity. Nanoscale Advances, 6, 6008-6018. https://doi.org/10.1039/d4na00811a
|
[57]
|
Akkermans, S. and Van Impe, J.F. (2018) Mechanistic Modelling of the Inhibitory Effect of pH on Microbial Growth. Food Microbiology, 72, 214-219. https://doi.org/10.1016/j.fm.2017.12.007
|
[58]
|
Caliskan, S., Atay, M., Gunay-Polatkan, S. and Sigirli, D. (2022) The Relationship between Venous Insufficiency and Serum Magnesium Level. Magnesium Research, 35, 108-117. https://doi.org/10.1684/mrh.2023.0508
|
[59]
|
Kubica, J., Adamski, P., Ostrowska, M., Kubica, A., Gajda, R., Badariene, J., et al. (2025) Prolonged Antithrombotic Treatment after De-Escalation of Dual Antiplatelet Therapy in Patients after Acute Coronary Syndrome—Which Strategy Should Be Applied? The ELECTRA-SIRIO 2 Investigators Standpoint. International Journal of Cardiology, 421, Article 132897. https://doi.org/10.1016/j.ijcard.2024.132897
|
[60]
|
Torii, S., Yamamoto, A., Yoshikawa, A., Lu, L., Sasaki, M., Obuchi, S., et al. (2024) Degradation of a Novel Magnesium Alloy-Based Bioresorbable Coronary Scaffold in a Swine Coronary Artery Model. Cardiovascular Intervention and Therapeutics, 39, 428-437. https://doi.org/10.1007/s12928-024-01023-3
|
[61]
|
Hideo-Kajita, A., Wopperer, S., Seleme, V.B., Ribeiro, M.H. and Campos, C.M. (2019) The Development of Magnesium-Based Resorbable and Iron-Based Biocorrodible Metal Scaffold Technology and Biomedical Applications in Coronary Artery Disease Patients. Applied Sciences, 9, Article 3527. https://doi.org/10.3390/app9173527
|
[62]
|
Oliver, A.A., Guillory, R.J., Flom, K.L., Morath, L.M., Kolesar, T.M., Mostaed, E., et al. (2020) Analysis of Vascular Inflammation against Bioresorbable Zn-Ag-Based Alloys. ACS Applied Bio Materials, 3, 6779-6789. https://doi.org/10.1021/acsabm.0c00740
|
[63]
|
Drelich, J.W. and Goldman, J. (2022) Bioresorbable Vascular Metallic Scaffolds: Current Status and Research Trends. Current Opinion in Biomedical Engineering, 24, Article 100411. https://doi.org/10.1016/j.cobme.2022.100411
|
[64]
|
Wang, C., Yang, Y., Ji, J., Fang, Y., Ouyang, L., Zhang, L., et al. (2022) 3D-Printed Bioresorbable Stent Coated with Dipyridamole-Loaded Nanofiber for Restenosis Prevention and Endothelialization. International Journal of Bioprinting, 8, Article 543. https://doi.org/10.18063/ijb.v8i2.543
|
[65]
|
Pan, K., Zhang, W., Shi, H., Dai, M., Wei, W., Liu, X., et al. (2022) Zinc Ion-Crosslinked Polycarbonate/Heparin Composite Coatings for Biodegradable Zn-Alloy Stent Applications. Colloids and Surfaces B: Biointerfaces, 218, Article 112725. https://doi.org/10.1016/j.colsurfb.2022.112725
|
[66]
|
Qi, Y., Li, X., He, Y., Zhang, D. and Ding, J. (2018) Mechanism of Acceleration of Iron Corrosion by a Polylactide Coating. ACS Applied Materials & Interfaces, 11, 202-218. https://doi.org/10.1021/acsami.8b17125
|
[67]
|
Zhang, B., Yao, R., Maitz, M.F., Mao, G., Hou, Z., Yu, H., et al. (2021) Poly (Dimethyl Diallyl Ammonium Chloride) Incorporated Multilayer Coating on Biodegradable AZ31 Magnesium Alloy with Enhanced Resistance to Chloride Corrosion and Promoted Endothelialization. Chemical Engineering Journal, 421, Article 127724. https://doi.org/10.1016/j.cej.2020.127724
|
[68]
|
Zhang, B., Wang, X., Wang, D., Guo, M., Ren, C., Han, W., et al. (2021) Improved Antithrombogenicity of a Poly(Lactic Acid) Surface Grafted with Chondroitin Sulfate. ACS Applied Bio Materials, 4, 2696-2703. https://doi.org/10.1021/acsabm.0c01629
|
[69]
|
Tettey, F., Saudi, S., Davies, D., Shrestha, S., Johnson, K., Fialkova, S., et al. (2023) Fabrication and Characterization of Zn Particle Incorporated Fibrous Scaffolds for Potential Application in Tissue Healing and Regeneration. ACS Applied Materials & Interfaces, 15, 48913-48929. https://doi.org/10.1021/acsami.3c09793
|