[1]
|
Chen, X., Chen, M., Mehmood, M.Q., Wen, D., Yue, F., Qiu, C., et al. (2015) Longitudinal Multifoci Metalens for Circularly Polarized Light. Advanced Optical Materials, 3, 1201-1206. https://doi.org/10.1002/adom.201500110
|
[2]
|
Li, S., Li, X., Wang, G., Liu, S., Zhang, L., Zeng, C., et al. (2018) Multidimensional Manipulation of Photonic Spin Hall Effect with a Single‐Layer Dielectric Metasurface. Advanced Optical Materials, 7, Article ID: 1801365. https://doi.org/10.1002/adom.201801365
|
[3]
|
Zhang, Z., Wen, D., Zhang, C., Chen, M., Wang, W., Chen, S., et al. (2018) Multifunctional Light Sword Metasurface Lens. ACS Photonics, 5, 1794-1799. https://doi.org/10.1021/acsphotonics.7b01536
|
[4]
|
Zang, X., Ding, H., Intaravanne, Y., Chen, L., Peng, Y., Xie, J., et al. (2019) A Multi‐Foci Metalens with Polarization‐Rotated Focal Points. Laser & Photonics Reviews, 13, Article ID: 1900182. https://doi.org/10.1002/lpor.201900182
|
[5]
|
Yao, B., Zang, X., Li, Z., Chen, L., Xie, J., Zhu, Y., et al. (2020) Dual-Layered Metasurfaces for Asymmetric Focusing. Photonics Research, 8, 830-843. https://doi.org/10.1364/prj.387672
|
[6]
|
Yue, F., Wen, D., Zhang, C., Gerardot, B.D., Wang, W., Zhang, S., et al. (2017) Multichannel Polarization‐Controllable Superpositions of Orbital Angular Momentum States. Advanced Materials, 29, Article ID: 1603838. https://doi.org/10.1002/adma.201603838
|
[7]
|
Devlin, R.C., Ambrosio, A., Rubin, N.A., Mueller, J.P.B. and Capasso, F. (2017) Arbitrary Spin-to-Orbital Angular Momentum Conversion of Light. Science, 358, 896-901. https://doi.org/10.1126/science.aao5392
|
[8]
|
Zhang, K., Yuan, Y., Ding, X., Li, H., Ratni, B., Wu, Q., et al. (2020) Polarization‐Engineered Noninterleaved Metasurface for Integer and Fractional Orbital Angular Momentum Multiplexing. Laser & Photonics Reviews, 15, Article ID: 2000351. https://doi.org/10.1002/lpor.202000351
|
[9]
|
Zhu, Y., Lu, B., Fan, Z., Yue, F., Zang, X., Balakin, A.V., et al. (2022) Geometric Metasurface for Polarization Synthesis and Multidimensional Multiplexing of Terahertz Converged Vortices. Photonics Research, 10, Article No. 1517. https://doi.org/10.1364/prj.455459
|
[10]
|
Cheng, K., Liu, Z., Hu, Z., Cao, G., Wu, J. and Wang, J. (2022) Generation of Integer and Fractional Perfect Vortex Beams Using All-Dielectric Geometrical Phase Metasurfaces. Applied Physics Letters, 120, Article ID: 201701. https://doi.org/10.1063/5.0094549
|
[11]
|
Sun, B., Zang, X., Lu, B., Chi, H., Zhou, Y., Zhu, Y., et al. (2023) Generalized Terahertz Perfect Vortices with Transmutable Intensity Profiles Based on Spin‐decoupled Geometric Metasurfaces. Advanced Optical Materials, 11, Article ID: 2301048. https://doi.org/10.1002/adom.202301048
|
[12]
|
Wen, D., Yue, F., Li, G., Zheng, G., Chan, K., Chen, S., et al. (2015) Helicity Multiplexed Broadband Metasurface Holograms. Nature Communications, 6, Article No. 8241. https://doi.org/10.1038/ncomms9241
|
[13]
|
Zhao, R., Sain, B., Wei, Q., Tang, C., Li, X., Weiss, T., et al. (2018) Multichannel Vectorial Holographic Display and Encryption. Light: Science & Applications, 7, Article No. 95. https://doi.org/10.1038/s41377-018-0091-0
|
[14]
|
Zhao, H., Zhang, C., Guo, J., Liu, S., Chen, X. and Zhang, Y. (2019) Metasurface Hologram for Multi-Image Hiding and Seeking. Physical Review Applied, 12, Article ID: 054011. https://doi.org/10.1103/physrevapplied.12.054011
|
[15]
|
So, S., Kim, J., Badloe, T., Lee, C., Yang, Y., Kang, H., et al. (2023) Multicolor and 3D Holography Generated by Inverse‐Designed Single‐Cell Metasurfaces. Advanced Materials, 35, Article ID: 2208520. https://doi.org/10.1002/adma.202208520
|
[16]
|
Yang, H., He, P., Ou, K., Hu, Y., Jiang, Y., Ou, X., et al. (2023) Angular Momentum Holography via a Minimalist Metasurface for Optical Nested Encryption. Light: Science & Applications, 12, Article No. 79. https://doi.org/10.1038/s41377-023-01125-2
|
[17]
|
Yin, Y., Jiang, Q., Wang, H., Liu, J., Xie, Y., Wang, Q., et al. (2024) Multi‐Dimensional Multiplexed Metasurface Holography by Inverse Design. Advanced Materials, 36, Article ID: 2312303. https://doi.org/10.1002/adma.202312303
|
[18]
|
Lin, X., Rivenson, Y., Yardimci, N.T., Veli, M., Luo, Y., Jarrahi, M., et al. (2018) All-Optical Machine Learning Using Diffractive Deep Neural Networks. Science, 361, 1004-1008. https://doi.org/10.1126/science.aat8084
|
[19]
|
Qian, C., Lin, X., Lin, X., Xu, J., Sun, Y., Li, E., et al. (2020) Performing Optical Logic Operations by a Diffractive Neural Network. Light: Science & Applications, 9, Article No. 59. https://doi.org/10.1038/s41377-020-0303-2
|
[20]
|
Luo, X., Hu, Y., Ou, X., Li, X., Lai, J., Liu, N., et al. (2022) Metasurface-Enabled On-Chip Multiplexed Diffractive Neural Networks in the Visible. Light: Science & Applications, 11, Article No. 158. https://doi.org/10.1038/s41377-022-00844-2
|
[21]
|
Zhu, Y., Zang, X., Chi, H., Zhou, Y., Zhu, Y. and Zhuang, S. (2023) Metasurfaces Designed by a Bidirectional Deep Neural Network and Iterative Algorithm for Generating Quantitative Field Distributions. Light: Advanced Manufacturing, 4, 104-114. https://doi.org/10.37188/lam.2023.009
|
[22]
|
He, C., Zhao, D., Fan, F., Zhou, H., Li, X., Li, Y., et al. (2024) Pluggable Multitask Diffractive Neural Networks Based on Cascaded Metasurfaces. Opto-Electronic Advances, 7, Article ID: 230005. https://doi.org/10.29026/oea.2024.230005
|
[23]
|
Chi, H., Zang, X., Zhang, T., Wang, G., Fan, Z., Zhu, Y., et al. (2024) Metasurface Enabled Multi‐Target and Multi‐Wavelength Diffraction Neural Networks. Laser & Photonics Reviews, 19, Article ID: 2401178. https://doi.org/10.1002/lpor.202401178
|
[24]
|
Zheng, C., Li, J., Liu, J., Li, J., Yue, Z., Li, H., et al. (2022) Creating Longitudinally Varying Vector Vortex Beams with an All‐Dielectric Metasurface. Laser & Photonics Reviews, 16, Article ID: 2200236. https://doi.org/10.1002/lpor.202200236
|
[25]
|
Li, H., Duan, S., Zheng, C., Li, J., Xu, H., Song, C., et al. (2023) Longitudinal Manipulation of Scalar to Vector Vortex Beams Evolution Empowered by All‐Silicon Metasurfaces (Advanced Optical Materials 22/2023). Advanced Optical Materials, 11, Article ID: 2301368. https://doi.org/10.1002/adom.202370091
|