[1]
|
Gao, Y., Chu, T., Zhou, C., Huang, W. and Zheng, Y. (2024) Fe, Cu Co-Doped Carbon Nanosheets for Electrochemical-Colorimetric Detection of Acetaminophen. ACS Applied Nano Materials, 7, 14321-14330. https://doi.org/10.1021/acsanm.4c01798
|
[2]
|
Perveen, S., Baig, J.A., Nur-e-Alam, M., Kazi, M., Memon, S., Kazi, T.G., et al. (2025) Electrocatalytic Detection of Acetaminophen by Sodium Ferrite. Results in Physics, 68, Article ID: 108073. https://doi.org/10.1016/j.rinp.2024.108073
|
[3]
|
Pandey, R.R., Alshahrani, H.S., Krylyuk, S., Williams, E.H., Davydov, A.V. and Chusuei, C.C. (2018) Electrochemical Detection of Acetaminophen with Silicon Nanowires. Electroanalysis, 30, 886-891. https://doi.org/10.1002/elan.201700806
|
[4]
|
Wei, M., Yuan, Y., Chen, D., Pan, L., Tong, W. and Lu, W. (2024) A Systematic Review on Electrochemical Sensors for the Detection of Acetaminophen. Analytical Methods, 16, 6134-6155. https://doi.org/10.1039/d4ay01307g
|
[5]
|
Qiao, Y., Liu, Q., Lu, S., Chen, G., Gao, S., Lu, W., et al. (2020) High-Performance Non-Enzymatic Glucose Detection: Using a Conductive Ni-Mof as an Electrocatalyst. Journal of Materials Chemistry B, 8, 5411-5415. https://doi.org/10.1039/d0tb00131g
|
[6]
|
Cernat, A., Tertiş, M., Săndulescu, R., Bedioui, F., Cristea, A. and Cristea, C. (2015) Electrochemical Sensors Based on Carbon Nanomaterials for Acetaminophen Detection: A Review. Analytica Chimica Acta, 886, 16-28. https://doi.org/10.1016/j.aca.2015.05.044
|
[7]
|
Barnes, T.M., van de Lagemaat, J., Levi, D., Rumbles, G., Coutts, T.J., Weeks, C.L., et al. (2007) Optical Characterization of Highly Conductive Single-Wall Carbon-Nanotube Transparent Electrodes. Physical Review B, 75, Article ID: 235410. https://doi.org/10.1103/physrevb.75.235410
|
[8]
|
Sajjad, M. and Lu, W. (2021) Covalent Organic Frameworks Based Nanomaterials: Design, Synthesis, and Current Status for Supercapacitor Applications: A Review. Journal of Energy Storage, 39, Article ID: 102618. https://doi.org/10.1016/j.est.2021.102618
|
[9]
|
Kong, L., Liu, M., Huang, H., Xu, Y. and Bu, X. (2021) Metal/Covalent‐Organic Framework Based Cathodes for Metal‐ion Batteries. Advanced Energy Materials, 12, Article ID: 2100172. https://doi.org/10.1002/aenm.202100172
|
[10]
|
Cao, Y., Peng, W., Li, Y., Zhang, F., Zhu, Y. and Fan, X. (2023) Atomically Dispersed Metal Sites in Cof-Based Nanomaterials for Electrochemical Energy Conversion. Green Energy & Environment, 8, 360-382. https://doi.org/10.1016/j.gee.2021.11.005
|
[11]
|
Lv, Z., Zhang, J., Zhang, Y., Li, K., Ye, X., Fang, M., et al. (2022) Selective and Efficient Removal of Radioactive Ions from Water with Well-Dispersed Metal Oxide Nanoparticles@n-Doped Carbon. Separation and Purification Technology, 285, Article ID: 120366. https://doi.org/10.1016/j.seppur.2021.120366
|
[12]
|
Li, Y., Xu, X., Hou, S., Ma, J., Lu, T., Wang, J., et al. (2018) Facile Dual Doping Strategy via Carbonization of Covalent Organic Frameworks to Prepare Hierarchically Porous Carbon Spheres for Membrane Capacitive Deionization. Chemical Communications, 54, 14009-14012. https://doi.org/10.1039/c8cc06855k
|
[13]
|
Liu, H., Hu, L., Cai, W., Feng, X., Zhang, F., Shao, R., et al. (2022) Ultrafine Pt Nanoparticles Supported on Ultrathin Nanobowl‐Shaped N‐Doped Carbon for the Oxygen Reduction Reaction. ChemElectroChem, 9, e202200123. https://doi.org/10.1002/celc.202200123
|
[14]
|
Li, Y., Ding, Z., Zhang, X., Li, J., Liu, X., Lu, T., et al. (2019) Novel Hybrid Capacitive Deionization Constructed by a Redox-Active Covalent Organic Framework and Its Derived Porous Carbon for Highly Efficient Desalination. Journal of Materials Chemistry A, 7, 25305-25313. https://doi.org/10.1039/c9ta07344b
|
[15]
|
Ahmed, I., Lee, H.J. and Jhung, S.H. (2024) Porous Carbon Derived from Covalent Organic Frameworks and Relevant Porous Polymers: Preparation and Application in Adsorption and Catalysis. Chemical Engineering Journal, 499, Article ID: 156148. https://doi.org/10.1016/j.cej.2024.156148
|
[16]
|
Li, Y., Wang, J., Xu, S., Li, M. and Chen, F. (2024) The Preparation of 2D TpPa-COF/2D g-C3N4 Heterojunction via In-Situ Growth for Enhanced Visible-Light Photocatalysis. International Journal of Hydrogen Energy, 60, 1433-1441. https://doi.org/10.1016/j.ijhydene.2024.02.118
|
[17]
|
Huang, L., Mao, N., Yan, Q., Zhang, D. and Shuai, Q. (2019) Magnetic Covalent Organic Frameworks for the Removal of Diclofenac Sodium from Water. ACS Applied Nano Materials, 3, 319-326. https://doi.org/10.1021/acsanm.9b01969
|
[18]
|
Jin, P., Ren, G., Gao, N., Qing, C., Zeng, H., Wang, X., et al. (2024) Electrochemiluminescence Reveals the Structure‐catalytic Activity Relationship of Heteroatom‐Doped Carbon‐Based Materials. Small Methods, 9, Article ID: 2401496. https://doi.org/10.1002/smtd.202401496
|
[19]
|
Vomo, L.A., Deffo, G., Fotsop, C.G., Djemmoe, L.G., Tchieda, V.K., Eya’ane, F.M., et al. (2024) Synthesis of Zinc Oxide Nanoparticles Based on Coffee Husks Embedded on Mesoporous Silica for the Sensing of Acetaminophen. ChemElectroChem, 11, e202400088. https://doi.org/10.1002/celc.202400088
|
[20]
|
Liu, X., Guo, J., Wang, Y., Wang, A., Yu, X. and Ding, L. (2023) A Flexible Electrochemical Sensor for Paracetamol Based on Porous Honeycomb-Like NiCo-MOF Nanosheets. Rare Metals, 42, 3311-3317. https://doi.org/10.1007/s12598-023-02349-2
|
[21]
|
Pierpaoli, M., Jakóbczyk, P., Dec, B., Giosuè, C., Czerwińska, N., Lewkowicz, A., et al. (2022) A Novel Hierarchically-Porous Diamondized Polyacrylonitrile Sponge-Like Electrodes for Acetaminophen Electrochemical Detection. Electrochimica Acta, 430, Article ID: 141083. https://doi.org/10.1016/j.electacta.2022.141083
|
[22]
|
Dong, P., Li, N., Zhao, H., Cui, M., Zhang, C., Han, H., et al. (2019) POMs as Active Center for Sensitively Electrochemical Detection of Bisphenol a and Acetaminophen. Chemical Research in Chinese Universities, 35, 592-597. https://doi.org/10.1007/s40242-019-8370-8
|