肠道菌群在抑郁合并心力衰竭患者分布特征
Distribution Characteristics of Intestinal Microbiota in Patients with Depression and Heart Failure
DOI: 10.12677/acm.2025.1551388, PDF, HTML, XML,   
作者: 杨宝彤:包头医学院研究生院,内蒙古 包头;周志宏:巴彦淖尔市市医院心内科,内蒙古 临河;高 雯*:巴彦淖尔市市医院急诊科,内蒙古 临河
关键词: 肠道菌群抑郁心力衰竭Gut Microbiota Depression Heart Failure
摘要: 目的:研究抑郁状态下不同心力衰竭程度患者肠道菌群分布特征,探究其差异及寻找潜在菌群及治疗方案。方法:随机选取2023年1月至2025年1月巴彦淖尔市医院收治的心力衰竭患者,依据病人健康9项筛查(patienthealthquestionnaire-9, PHQ-9)对HF患者进行抑郁症状评估,选取心衰合并抑郁状态的患者60例,按照射血分数 < 35% (Q组25例),≥35% (W组35例);统计分析两组肠道菌群分布状态。结果:按照GEN分类排名前10位的分别是:EnterococcusEscherichia-ShigellaBacteroidesStreptococcusLigilactobacillusAgathobacterBifidobacteriumAkkermansiaFaecalibacteriumBlautia;火山图中提示下调代谢物:Faecalibacterium;上调代谢物:EggerthellaDielma、UBA1819。结论:本研究发现抑郁合并不同程度心力衰竭的肠道菌群有异质性,FaecalibacteriumEggerthella改变与短链脂肪酸、胆汁酸代谢相关,心衰病人早期给予肠道菌群调节,延缓疾病进程。
Abstract: Objective: Study the distribution characteristics of gut microbiota in patients with different degrees of heart failure under depression, explore their differences, and search for potential microbiota and treatment plans. Method: Patients with HF admitted to Bayannur Hospital from January 2023 to January 2025 were randomly selected, and their depressive symptoms were assessed using the 9-item Patient Health Questionnaire (PHQ-9). A total of 60 patients with HF and depression were included and divided into two groups based on ejection fraction (EF): Group Q (EF < 35%, 25 cases) and Group W (EF ≥ 35%, 35 cases). The distribution of gut microbiota was statistically analyzed between these two groups. Result: The top 10 rankings according to GEN classification are: Enterococcus, Escherichia-Shigella, Bacteroides, Streptococcus, Ligilactobacillus, Agathobacter, Bifidobacterium, Akkermansia, Faecalibacterium, and Blautia. The volcano plot indicated that Faecalibacterium was downregulated, while Eggerthella, Dielma, and UBA1819 were upregulated. Conclusion: This study found heterogeneity in the gut microbiota of patients with depression and varying degrees of heart failure. The changes in Faecalibacterium and Eggerthella were associated with short-chain fatty acid and bile acid metabolism, suggesting that early modulation of gut microbiota in patients with HF may help delay disease progression.
文章引用:杨宝彤, 周志宏, 高雯. 肠道菌群在抑郁合并心力衰竭患者分布特征[J]. 临床医学进展, 2025, 15(5): 418-424. https://doi.org/10.12677/acm.2025.1551388

1. 引言

心力衰竭(Heart failure, HF)是各种心血管疾病的终末期疾病,心衰患者的5年生存率仅为45% [1]。心力衰竭中抑郁发病率明显高于没有心力衰竭人群,发病率在31.0%至77.5%之间,由于HF的严重程度增加,抑郁症的发病率增加[2];抑郁症会增加心脏病的发病率和死亡率[3] [4],以及其发病机制不清楚。近年来,多项研究表明肠道微生物及其代谢产物通过肠–心或肠–脑轴参与心血管疾病或精神疾病的发生发展[5]。本研究分析不同心力衰竭程度合并抑郁状态的肠道菌群分布状态,提出通过调节肠道菌群来治疗心力衰竭合并抑郁状态的新思路。

2. 资料与方法

2.1. 研究对象

取2024年1月至2025年1月巴彦淖尔市医院60例心力衰竭合并抑郁患者作为研究对象,所有参与者(或其直系亲属)均签署知情同意书。根据射血分数分为轻度心力衰竭(Q组25例)和重度心力衰竭(W组35例)。两组一般资料差异无统计学意义(P > 0.05)。见表1

2.2. 纳入标准

(1) 符合2023年ESC心力衰竭诊断指南标准[6],即同时合并以下情况中的至少一项:存在心功能异常致肺循环或体循环游血的客观依据,包括影像学检查(如胸片、超声心动图、心脏磁共振等)、血流动力学监测(如中心静脉导管、肺动脉漂浮导管)等;NYHA分级为Ⅱ-Ⅳ级;年龄18岁至80岁。排除标准:(1) 合并严重脑血管疾病。(2) 糖尿病、恶性肿瘤、凝血功能障碍、肝肾功能不全。(3) 消化道手术史及器质性病变,近期(1个月以内)患有炎症性肠病等。(4) 1个月以内使用任何影响肠道菌群及血脂的药物。(5) 存在精神和沟通障碍。

HF患者采用PHQ-9抑郁自评量表评估是否伴随抑郁症状。PHQ-9是国际公认的筛查抑郁症状的有效工具之一[7],包含9个项目,具有较高的灵敏度及特异度。本研宄按照欧洲心脏学会推荐,将抑郁症状定义为:PHQ-9最终评分 ≥ 5分。

2.3. 粪便样本及检测处理

在排便后立即用无菌粪便收集管收集新鲜粪便标本,用无菌勺挖取粪便内部没有接触空气和地面的部分1满勺,尽量避免被尿液和周围细菌污染,迅速放置于−80℃低温冰箱中保存备用,送诺和致源公司进行16SrDNA检测。

2.4. 统计学方法

使用SPSS24.0统计软件对本研究中的数据进行统计分析,对样本进行带QQ图观察符合正态分布,计量资料以x ± s来表示,两组间比较采用独立样本t检验,制图使用诺和致源云平台软件。

3. 结果

(1) 两组患者一般临床资料比较:不同时射血分数下两组患者在在年龄、肌酐、身高、体重BMI方面没有差异(P > 0.05,表1)。

(2) 两组患者按照GEN水平的位列前10的菌群分布状态Enterococcus (肠球菌)、Escherichia-ShigellaBacteroidesStreptococcusLigilactobacillusAgathobacterBifidobacteriumAkkermansiaFaecalibacteriumBlautiaBacteroidesBlautiaFaecalibacterium在W组较Q组减少(图1)。

(3) 两组在组间有差异,Q组组内较聚集,W组较离散(见图2)。

(4) 火山图中提示下调代谢物:Faecalibacterium;上调代谢物:EggerthellaDielma、UBA1819 (见图3)。

Table 1. Comparison of the same materials used in the two groups

1. 两组一般资料比较

Q (n = 24)

W (n = 36)

t

P

射血分数(%)

37.33 ± 1.167

29.06 ± 3.928

10.009

0

年龄(岁)

68.83 ± 12.713

66.69 ± 13.763

10.009

0.539

肌酐(umol/l)

88.23 ± 18.014

92.22 ± 25.609

−0.382

0.163

身高(cm)

162.83 ± 26.171

168.17 ± 7.197

−1.163

0.169

体重(kg)

72.1254 ± 21.8678

66.056 ± 12.8579

1.354

0.327

BMI (kg/m2)

24.0104 ± 4.12393

23.255 ± 3.91877

0.716

0.327

4. 讨论

人类肠道是一个动态的、复杂的微生态系统,包含数百种细菌,数量约为1 × 1014[8]。正常的肠道菌群主要由6门类细菌组成,即拟杆菌门、厚壁菌门、变形菌门、放线菌门、梭杆菌门和疣微菌门[9]。在不同个体中,这些菌群的结构和比例并不相同,而这种多样性主要受宿主因素(遗传差异、年龄与性别)

Figure 1. The two groups of patients were ranked first according to their level

1. 两组患者按照GEN水平的位列前10的菌群分布状态

Figure 2. Comparison between groups

2. 组间对比

Figure 3. Volcano map

3. 火山图

Figure 4. Abundance comparison

4. 丰度对比

与环境因素(生活方式、饮食与抗生素的使用)影响。心衰患者体内血液再分配可造成肠道通透性增加及肠上皮屏障功能受损,导致肠道菌群丰度改变,代谢产物及内毒素等释放入血[10]

大脑可以通过改变胃肠道蠕动、肠道屏障通透性以及活性物质的释放等来影响肠道菌群。反过来,肠道菌群通过分泌活性代谢物来影响大脑,被称为肠–脑互动[5]。肠道菌群作为肠脑轴的关键组成部分,发挥着重要的作用。近年来,有大量研究支持了肠道菌群通过肠脑轴参与抑郁症发生发展过程这一观点,肠脑轴的功能障碍是抑郁症的主要病理基础。Liu S等[11]发现将抑郁症及健康人群的粪便菌群移植入无菌大鼠体内,接受抑郁症供体的大鼠表现出明显的抑郁样行为,而接受健康供体的大鼠未出现抑郁样行为。

CHF的发展往往伴随着肠道菌群[12]中病原体的富集。与健康个体相比,CHF患者有更多的定殖致病菌,包括弯曲杆菌、沙门氏菌、志贺氏大肠杆菌、小肠结肠炎耶尔森菌和念珠菌种。与轻度心衰患者相比,中度至重度心衰患者中含有念珠菌、弯曲杆菌和志贺氏菌[13]较多。一项随机三盲临床试验显示,双歧杆菌显著降低血清低密度脂蛋白水平,这可能与通过多种途径(抗氧化代谢物的产生、MAPK等途径)增加总抗氧化能力有关[14]

Faecalibacterium是健康成人肠道中最丰富的微生物之一,对宿主的生理和健康起着至关重要的作用。它通过调节炎症和免疫反应,维持肠道的稳态,并展现出抗炎和抗肿瘤的效果,同时影响宿主肠道菌群的组成。它是主要丁酸盐生产者之一。丁酸盐在肠道生理学和宿主健康中起着至关重要的作用。丁酸盐是结肠细胞的主要能量来源之一,能够保持肠道内壁的完整性,防止病原体通过肠道进入人体,丁酸盐可以通过抑制NF-κB转录因子激活、上调PPARγ和抑制干扰素γ来减轻肠黏膜炎症。Faecalibacterium的丰度变化对宿主疾病状态高度敏感,预计将成为诊断宿主某些疾病的一个潜在生物标志物[15]。越来越多的证据表明,Faecalibacterium与多种疾病有关,例如克罗恩病、溃疡性结肠炎、结直肠癌、肥胖和糖尿病[16]。本研究中Faecalibacterium下调,意味着随着心力衰竭程度加重,炎症介质增多。Eggerthella在患有MDD的患者中富集,这些细菌通过激活Th17细胞[17]引起肠道炎症,表明Th17/Treg细胞失衡介导了肠道微生物群失调与抑郁之间的关系。有趣的是,除了抑郁之外,Eggerthella也被发现在其他精神障碍患者中富集,如双相情感障碍、精神分裂症和精神病。Eggerthella编码了一种甲酰四氢叶酸合成酶基因,这表明Eggerthella可能具有产乙酸的潜力[18]。3-羟基苯乙酸能够改善心肌梗死后的心功能,降低心脏纤维化,抑制心肌肥厚,从而改善心力衰竭。Eggerthella浓度升高(图4)有助于区别不同心力衰竭患者的程度。

抑郁与心力衰竭两种疾病本身就有共同的发病机制,本研究发现了抑郁合并心力衰竭患者中随着心力衰竭程度不同,有不同的肠道菌群分布状态,针对这一现象,尽早的服用调整肠道菌群药物可以有效地延缓抑郁合并心力衰竭患者的发病进程。

NOTES

*通讯作者。

参考文献

[1] He, X., Du, T., Long, T., Liao, X., Dong, Y. and Huang, Z. (2022) Signaling Cascades in the Failing Heart and Emerging Therapeutic Strategies. Signal Transduction and Targeted Therapy, 7, Article No. 134.
https://doi.org/10.1038/s41392-022-00972-6
[2] Rashid, S., Qureshi, A.G., Noor, T.A., Yaseen, K., Sheikh, M.A.A., Malik, M., et al. (2023) Anxiety and Depression in Heart Failure: An Updated Review. Current Problems in Cardiology, 48, Article ID: 101987.
https://doi.org/10.1016/j.cpcardiol.2023.101987
[3] Zhao, Q., Sun, X., Zhang, Y., Zhang, Y. and Chen, C. (2024) Network Analysis of Anxiety and Depressive Symptoms among Patients with Heart Failure. BMC Psychiatry, 24, Article No. 803.
https://doi.org/10.1186/s12888-024-06259-0
[4] Shah, B.u.D., Raj, R., Kaur, P., Karim, A., Bansari, R.B., Mehmoodi, A., et al. (2024) Association of Transportation Noise with Cardiovascular Diseases. Clinical Cardiology, 47, e24275.
https://doi.org/10.1002/clc.24275
[5] Góralczyk-Bińkowska, A., Szmajda-Krygier, D. and Kozłowska, E. (2022) The Microbiota-Gut-Brain Axis in Psychiatric Disorders. International Journal of Molecular Sciences, 23, Article 11245.
https://doi.org/10.3390/ijms231911245
[6] Bauersachs, J. and Soltani, S. (2023) Herzinsuffizienz: Leitlinien-Update der ESC 2023. Herz, 49, 19-21.
https://doi.org/10.1007/s00059-023-05221-2
[7] Costantini, L., Pasquarella, C., Odone, A., Colucci, M.E., Costanza, A., Serafini, G., et al. (2021) Screening for Depression in Primary Care with Patient Health Questionnaire-9 (PHQ-9): A Systematic Review. Journal of Affective Disorders, 279, 473-483.
https://doi.org/10.1016/j.jad.2020.09.131
[8] Jin, M., Qian, Z., Yin, J., Xu, W. and Zhou, X. (2019) The Role of Intestinal Microbiota in Cardiovascular Disease. Journal of Cellular and Molecular Medicine, 23, 2343-2350.
https://doi.org/10.1111/jcmm.14195
[9] Luqman, A., Hassan, A., Ullah, M., Naseem, S., Ullah, M., Zhang, L., et al. (2024) Role of the Intestinal Microbiome and Its Therapeutic Intervention in Cardiovascular Disorder. Frontiers in Immunology, 15, Article 1321395.
https://doi.org/10.3389/fimmu.2024.1321395
[10] Tang, W.H.W., Li, D.Y. and Hazen, S.L. (2018) Dietary Metabolism, the Gut Microbiome, and Heart Failure. Nature Reviews Cardiology, 16, 137-154.
https://doi.org/10.1038/s41569-018-0108-7
[11] Liu, S., Gao, J., Zhu, M., Liu, K. and Zhang, H. (2020) Gut Microbiota and Dysbiosis in Alzheimer’s Disease: Implications for Pathogenesis and Treatment. Molecular Neurobiology, 57, 5026-5043.
https://doi.org/10.1007/s12035-020-02073-3
[12] Wang, Z., Cai, Z., Ferrari, M.W., Liu, Y., Li, C., Zhang, T., et al. (2021) The Correlation between Gut Microbiota and Serum Metabolomic in Elderly Patients with Chronic Heart Failure. Mediators of Inflammation, 2021, Article ID: 5587428.
https://doi.org/10.1155/2021/5587428
[13] Hayashi, T., Yamashita, T., Watanabe, H., Kami, K., Yoshida, N., Tabata, T., et al. (2018) Gut Microbiome and Plasma Microbiome-Related Metabolites in Patients with Decompensated and Compensated Heart Failure. Circulation Journal, 83, 182-192.
https://doi.org/10.1253/circj.cj-18-0468
[14] DiRienzo, D.B. (2013) Effect of Probiotics on Biomarkers of Cardiovascular Disease: Implications for Heart-Healthy Diets. Nutrition Reviews, 72, 18-29.
https://doi.org/10.1111/nure.12084
[15] Zhao, S., Qu, Y., Huang, H., Xie, P., Cai, X., Peng, Q., et al. (2025) Causal Relationship between Faecalibacterium Abundance and Risk of Faecalibacterium-Related Diseases: A Two-Sample Bi-Directional Mendelian Randomisation Study. Beneficial Microbes.
https://doi.org/10.1163/18762891-bja00058
[16] Martín, R., Rios-Covian, D., Huillet, E., Auger, S., Khazaal, S., Bermúdez-Humarán, L.G., et al. (2023) Faecalibacterium: A Bacterial Genus with Promising Human Health Applications. FEMS Microbiology Reviews, 47, fuad039.
https://doi.org/10.1093/femsre/fuad039
[17] Liu, L., Wang, H., Zhang, H., Chen, X., Zhang, Y., Wu, J., et al. (2022) Toward a Deeper Understanding of Gut Microbiome in Depression: The Promise of Clinical Applicability. Advanced Science, 9, e2203707.
https://doi.org/10.1002/advs.202203707
[18] Hylemon, P.B., Harris, S.C. and Ridlon, J.M. (2018) Metabolism of Hydrogen Gases and Bile Acids in the Gut Microbiome. FEBS Letters, 592, 2070-2082.
https://doi.org/10.1002/1873-3468.13064