[1]
|
臧皓, 沈鹏, 王恩鹏, 等. 奎诺二甲基丙烯酸类衍生物的合成及生物活性[J]. 高等学校化学学报, 2018, 39(1).
|
[2]
|
尹天武, 李刚, 陈泽新. 一种奎诺二甲基丙烯酸及其制备方法和应用[P]. 中国, CN202010909901.8. 2024-04-10.
|
[3]
|
余曼丽, 蹇守卫, 穆松. 催化合成奎诺二甲基丙烯酸[J]. 中国建材科技, 2006, 15(6): 4.
|
[4]
|
曼尼希. 奎诺二甲基丙烯酸酯的合成方法及其应用领域[J]. 材料科学杂志, 2022, 32(5): 89-95.
|
[5]
|
卢沛琦. Trolox在肌萎缩侧索硬化症中的神经保护作用及氧化应激、内质网应激与自噬的相关研究[D]: [博士学位论文]. 郑州: 郑州大学, 2015.
|
[6]
|
Alberto, M.E., Russo, N., Grand, A. and Galano, A. (2013) A Physicochemical Examination of the Free Radical Scavenging Activity of Trolox: Mechanism, Kinetics and Influence of the Environment. Physical Chemistry Chemical Physics: PCCP, 15, 4642-4650. https://doi.org/10.1039/C3cp43319f
|
[7]
|
胡荣蓉, 丁世杰, 郭赟, 朱浩哲, 陈益春, 刘政, 丁希, 唐长波, 周光宏. Trolox对猪肌肉干细胞增殖及分化的影响[J]. 中国农业科学, 2021, 54(24): 5290-5301.
|
[8]
|
张小旭. Trolox调控间充质干细胞生物学特性的作用与机制研究[D]: [硕士学位论文]. 青岛: 青岛大学, 2023.
|
[9]
|
Wang, W., Yue, R., Jin, Z., He, L., Shen, R., Du, D., et al. (2020) Efficiency Comparison of Apigenin-7-O-Glucoside and Trolox in Antioxidative Stress and Anti-Inflammatory Properties. Journal of Pharmacy and Pharmacology, 72, 1645-1656. https://doi.org/10.1111/jphp.13347
|
[10]
|
况秀平, 黄蓉萍, 韩绍聪, 张琼谊, 闫昌誉, 李维熙. ORAC法比较几种动物蛋白肽的抗氧化活性[J]. 广东化工, 2022, 49(7): 14-15+52.
|
[11]
|
Usta, M., Semerci, T., Aydinhan, M., Güder, A. and Köseoğlu, M. (2023) Biological Variations of Seven Clinical Chemistry Analytes and Trolox Equivalent Antioxidant Capacity within Salivary Constituents. Clinical Laboratory, 69, No. 3. https://doi.org/10.7754/clin.lab.2022.220532
|
[12]
|
Shimizu, W., Shoji, Y., Ohkubo, K., Ito, H., Nakanishi, I. and Fukuhara, K. (2024) Antioxidant Activity of Planar Catechin Conjugated with Trolox. Antioxidants, 13, Article No. 1165. https://doi.org/10.3390/antiox13101165
|
[13]
|
Liu, J., et al. (2010) Trolox: A Powerful Natural Antioxidant for Health and Longevity. Journal of Nutritional Biochemistry, 21, 592-598.
|
[14]
|
Yuan, Y., et al. (2022) Trolox Mitigates Cisplatin-Induced Nephrotoxicity via Antioxidative and Anti-Inflammatory Mechanisms. Redox Biology, 47, 102-141.
|
[15]
|
徐倩. Trolox衍生物的合成及其体外抗氧化活性评价[D]: [硕士学位论文]. 延吉: 延边大学, 2020.
|
[16]
|
Zhao, J., Gao, S., Zhou, L., Rong, K., Zuo, F., Tang, W., et al. (2025) Trolox Derivatives: Synthesis, Structure-Activity Relationship and Promote Wound Healing by Regulating Oxidative Stress and Inflammation. Bioorganic Chemistry, 154, Article ID: 108045. https://doi.org/10.1016/j.bioorg.2024.108045
|
[17]
|
Shaaban, H.H., Hozayen, W.G., Khaliefa, A.K., El-Kenawy, A.E., Ali, T.M. and Ahmed, O.M. (2022) Diosmin and Trolox Have Anti-Arthritic, Anti-Inflammatory and Antioxidant Potencies in Complete Freund’s Adjuvant-Induced Arthritic Male Wistar Rats: Roles of NF-κB, iNOS, Nrf2 and MMPs. Antioxidants, 11, Article No. 1721. https://doi.org/10.3390/antiox11091721
|
[18]
|
Asha Devi, S., Davargaon, R.S. and Subramanyam, M.V.V. (2021) qRT-PCR Analysis of GLUT-4 and Assessment of Trolox as an Effective Antioxidant in Diabetic Cardiomyoblasts. In: Guest, P.C., Ed., Physical Exercise and Natural and Synthetic Products in Health and Disease, Springer US, 247-258. https://doi.org/10.1007/978-1-0716-1558-4_17
|
[19]
|
Atiq, A., Lee, H.J., Khan, A., Kang, M.H., Rehman, I.U., Ahmad, R., et al. (2023) Vitamin E Analog Trolox Attenuates MPTP-Induced Parkinson’s Disease in Mice, Mitigating Oxidative Stress, Neuroinflammation, and Motor Impairment. International Journal of Molecular Sciences, 24, Article No. 9942. https://doi.org/10.3390/ijms24129942
|
[20]
|
姚娜. 新型红细胞保存液对T2DM患者自体红细胞保护作用及机制研究[D]: [博士学位论文]. 银川: 宁夏医科大学, 2023.
|
[21]
|
Sen, C.K., et al. (2006) Trolox Is More Effective than Vitamins C and E as an Inhibitor of Lipid Peroxidation and Beta Amyloid Aggregation. Biochemical and Biophysical Research Communications, 347, 603-609.
|
[22]
|
Celik, H., Akcay, G., Budak Savas, A., Yesilyurt, F., Ates, D., Demirdogen, F., et al. (2024) Trolox Reduces Neuroblastoma Cell Line-Induced Oxidative Stress and Inflammation. Turkish Neurosurgery, 34, 1117-1121. https://doi.org/10.5137/1019-5149.jtn.46442-24.4
|
[23]
|
Upreti, S., Sharma, P., Sen, S., Biswas, S. and Ghosh, M.P. (2024) Auxiliary Effect of Trolox on Coenzyme Q10 Restricts Angiogenesis and Proliferation of Retinoblastoma Cells via the ERK/Akt Pathway. Scientific Reports, 14, Article No. 27309. https://doi.org/10.1038/s41598-024-76135-0
|
[24]
|
Bonanni, R., Cariati, I., Rinaldi, A.M., Marini, M., D’Arcangelo, G., Tarantino, U., et al. (2024) Trolox and Recombinant Irisin as a Potential Strategy to Prevent Neuronal Damage Induced by Random Positioning Machine Exposure in Differentiated HT22 Cells. PLOS ONE, 19, e0300888. https://doi.org/10.1371/journal.pone.0300888
|
[25]
|
Tahir, M., Kang, M.H., Park, T.J., Ali, J., Choe, K., Park, J.S., et al. (2024) Multifaceted Neuroprotective Approach of Trolox in Alzheimer’s Disease Mouse Model: Targeting Aβ Pathology, Neuroinflammation, Oxidative Stress, and Synaptic Dysfunction. Frontiers in Cellular Neuroscience, 18, Article ID: 1453038. https://doi.org/10.3389/fncel.2024.1453038
|
[26]
|
Hegarty, K.J. and Byrne, F.L. (2020) Comment on “Differential Effects of Mitovite, Α-Tocopherol and Trolox on Oxidative Stress, Mitochondrial Function and Inflammatory Signalling Pathways in Endothelial Cells Cultured under Conditions Mimicking Sepsis. Antioxidants 2020, 9(3), 195”. Antioxidants, 9, Article No. 462. https://doi.org/10.3390/antiox9060462
|
[27]
|
Kitasaka, S., Yagi, M. and Kikuchi, A. (2020) Suppression of Menthyl Anthranilate (UV-A Sunscreen)-Sensitized Singlet Oxygen Generation by Trolox and Α-Tocopherol. Photochemical & Photobiological Sciences, 19, 913-919. https://doi.org/10.1039/d0pp00023j
|
[28]
|
Intagliata, S., Spadaro, A., Lorenti, M., Panico, A., Siciliano, E.A., Barbagallo, S., et al. (2020) In Vitro Antioxidant and Anti-Glycation Activity of Resveratrol and Its Novel Triester with Trolox. Antioxidants, 10, Article No. 12. https://doi.org/10.3390/antiox10010012
|
[29]
|
Giordano, M.E., Caricato, R. and Lionetto, M.G. (2020) Concentration Dependence of the Antioxidant and Prooxidant Activity of Trolox in Hela Cells: Involvement in the Induction of Apoptotic Volume Decrease. Antioxidants, 9, Article No. 1058. https://doi.org/10.3390/antiox9111058
|
[30]
|
Souard, F., Nicolle, E., Cressend, D., Valentin, A. and Boumendjel, A. (2020) Two in One: Bifunctional Derivatives of Trolox Acting as Antimalarial and Antioxidant Agents. Future Medicinal Chemistry, 12, 1845-1854. https://doi.org/10.4155/fmc-2020-0106
|
[31]
|
Gomes, K.C., Lima, F.W.B., da Silva Aguiar, H.Q., de Araújo, S.S., de Cordova, C.A.S. and de Cordova, F.M. (2021) Thiamine Deficiency and Recovery: Impact of Recurrent Episodes and Beneficial Effect of Treatment with Trolox and Dimethyl Sulfoxide. Naunyn-Schmiedeberg’s Archives of Pharmacology, 394, 2289-2307. https://doi.org/10.1007/s00210-021-02148-5
|
[32]
|
Elveny, M., Akhmadeev, R., Dinari, M., Abdelbasset, W.K., Bokov, D.O. and Jafari, M.M.M. (2021) Implementing PSO‐ELM Model to Approximate Trolox Equivalent Antioxidant Capacity as One of the Most Important Biological Properties of Food. BioMed Research International, 2021, Article ID: 3805748. https://doi.org/10.1155/2021/3805748
|
[33]
|
Arbneshi, T., Frangu, A., Frühbauerová, M., Červenka, L., Berisha, L., Kalcher, K., et al. (2021) Flow Injection Amperometric Evaluation of Trolox Equivalent Antioxidant Capacity of Chocolates with Different Cocoa Content at a Boron-Doped Diamond Electrode. Food Technology and Biotechnology, 59, 194-200. https://doi.org/10.17113/ftb.59.02.21.6984
|
[34]
|
Coutts, C.W., Baldwin, A.M., Jebeli, M., Jolin, G.E., Mungai, R.W. and Billiar, K.L. (2023) The Role of Apoptosis and Oxidative Stress in a Cell Spheroid Model of Calcific Aortic Valve Disease. Cells, 13, Article No. 45. https://doi.org/10.3390/cells13010045
|
[35]
|
Flores, R., Iqbal, S. and Sikazwe, D. (2023) Phenylacetyl-/Trolox-Amides: Synthesis, Sigma-1, HDAC-6, and Antioxidant Activities. International Journal of Molecular Sciences, 24, Article No. 15295. https://doi.org/10.3390/ijms242015295
|
[36]
|
Upreti, S., Nag, T.C. and Ghosh, M.P. (2024) Trolox Aids Coenzyme Q10 in Neuroprotection against NMDA Induced Damage via Upregulation of VEGF in Rat Model of Glutamate Excitotoxicity. Experimental Eye Research, 238, Article ID: 109740. https://doi.org/10.1016/j.exer.2023.109740
|
[37]
|
Bartosz, G., Pieńkowska, N. and Sadowska-Bartosz, I. (2024) Effect of Selected Antioxidants on the in Vitro Aging of Human Fibroblasts. International Journal of Molecular Sciences, 25, Article No. 1529. https://doi.org/10.3390/ijms25031529
|
[38]
|
Romodin, L.A., Nikitenko, O.V., Bychkova, T.M., Zrilova, Y.A., Rodionova, E.D. and Bocharov, D.A. (2024) Assessment of the Acute Toxicity of Chlorophyllin and Trolox for the Possibility of Studying Their Radioprotective Properties. Bulletin of Experimental Biology and Medicine, 177, 44-46. https://doi.org/10.1007/s10517-024-06128-6
|
[39]
|
Romodin, L.A., Nikitenko, O.V., Bychkova, T.M., Zrilova, Y.A., Rodionova, E.D. and Bocharov, D.A. (2024) Comparative Evaluation of the Radioprotective Properties of Copper Chlorophyllin, Trolox, and Indralin in an Experiment on Mice. Bulletin of Experimental Biology and Medicine, 177, 328-332. https://doi.org/10.1007/s10517-024-06183-z
|