|
[1]
|
Sun, K., Zhan, G., Zhang, L., Wang, Z. and Lin, S. (2023) Highly Sensitive NO2 Gas Sensor Based on ZnO Nanoarray Modulated by Oxygen Vacancy with Ce Doping. Sensors and Actuators B: Chemical, 379, Article ID: 133294. [Google Scholar] [CrossRef]
|
|
[2]
|
Sik Choi, M., Young Kim, M., Mirzaei, A., Kim, H., Kim, S., Baek, S., et al. (2021) Selective, Sensitive, and Stable NO2 Gas Sensor Based on Porous ZnO Nanosheets. Applied Surface Science, 568, Article ID: 150910. [Google Scholar] [CrossRef]
|
|
[3]
|
Orellano, P., Reynoso, J., Quaranta, N., Bardach, A. and Ciapponi, A. (2020) Short-Term Exposure to Particulate Matter (PM10 and PM2.5), Nitrogen Dioxide (NO2), and Ozone (O3) and All-Cause and Cause-Specific Mortality: Systematic Review and Meta-Analysis. Environment International, 142, Article ID: 105876. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Atkinson, R.W., Butland, B.K., Anderson, H.R. and Maynard, R.L. (2018) Long-term Concentrations of Nitrogen Dioxide and Mortality: A Meta-Analysis of Cohort Studie. Epidemiology, 29, 460-472. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wang, J., Fan, S., Xia, Y., Yang, C. and Komarneni, S. (2020) Room-Temperature Gas Sensors Based on ZnO Nanorod/Au Hybrids: Visible-Light-Modulated Dual Selectivity to NO2 and NH3. Journal of Hazardous Materials, 381, Article ID: 120919. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Cao, S., Sui, N., Zhang, P., Zhou, T., Tu, J. and Zhang, T. (2022) TiO2 Nanostructures with Different Crystal Phases for Sensitive Acetone Gas Sensors. Journal of Colloid and Interface Science, 607, 357-366. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Moon, J., Park, J., Lee, S., Zyung, T. and Kim, I. (2010) Pd-Doped TiO2 Nanofiber Networks for Gas Sensor Applications. Sensors and Actuators B: Chemical, 149, 301-305. [Google Scholar] [CrossRef]
|
|
[8]
|
Staerz, A., Weimar, U. and Barsan, N. (2022) Current State of Knowledge on the Metal Oxide Based Gas Sensing Mechanism. Sensors and Actuators B: Chemical, 358, Article ID: 131531. [Google Scholar] [CrossRef]
|
|
[9]
|
Goel, N., Kunal, K., Kushwaha, A. and Kumar, M. (2022) Metal Oxide Semiconductors for Gas Sensing. Engineering Reports, 5, e12604. [Google Scholar] [CrossRef]
|
|
[10]
|
Lee, E., Yoon, Y.S. and Kim, D. (2018) Two-dimensional Transition Metal Dichalcogenides and Metal Oxide Hybrids for Gas Sensing. ACS Sensors, 3, 2045-2060. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Li, W., Zhang, Y., Long, X., Cao, J., Xin, X., Guan, X., et al. (2019) Gas Sensors Based on Mechanically Exfoliated MoS2 Nanosheets for Room-Temperature NO2 Detection. Sensors, 19, Article 2123. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Wang, Y., Liu, J., Wang, M., Pei, C., Liu, B., Yuan, Y., et al. (2017) Enhancing the Sensing Properties of TiO2 Nanosheets with Exposed {001} Facets by a Hydrogenation and Sensing Mechanism. Inorganic Chemistry, 56, 1504-1510. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Liu, X., Yin, P., Kulinich, S.A., Zhou, Y., Mao, J., Ling, T., et al. (2016) Arrays of Ultrathin CdS Nanoflakes with High-Energy Surface for Efficient Gas Detection. ACS Applied Materials & Interfaces, 9, 602-609. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lee, J., Kim, H., Lee, T., Jang, W., Lee, K.H. and Soon, A. (2019) Revisiting Polytypism in Hexagonal Ternary Sulfide ZnIn2S4 for Photocatalytic Hydrogen Production within the Z-Scheme. Chemistry of Materials, 31, 9148-9155. [Google Scholar] [CrossRef]
|
|
[15]
|
Kumar, Y., Kumar, R., Raizada, P., Khan, A.A.P., Le, Q.V., Singh, P., et al. (2021) Novel Z-Scheme ZnIn2S4-Based Photocatalysts for Solar-Driven Environmental and Energy Applications: Progress and Perspectives. Journal of Materials Science & Technology, 87, 234-257. [Google Scholar] [CrossRef]
|
|
[16]
|
Zheng, X., Song, Y., Liu, Y., Yang, Y., Wu, D., Yang, Y., et al. (2023) ZnIn2S4-Based Photocatalysts for Photocatalytic Hydrogen Evolution via Water Splitting. Coordination Chemistry Reviews, 475, Article ID: 214898. [Google Scholar] [CrossRef]
|
|
[17]
|
Liu, H., Xv, J., Wang, L., Qian, Y., Fu, H., Huang, M., et al. (2022) Sensitivity Enhanced and Selectivity Improved Ethanol Sensor Based on ZnIn2S4 Nanosheet-Coated In2O3 Nanosphere Core-Shell Heterostructure. Journal of Alloys and Compounds, 898, Article ID: 163000. [Google Scholar] [CrossRef]
|
|
[18]
|
Fan, Y., Wang, W., Guan, H., Liu, C., Li, X., Chen, Y., et al. (2023) Sulfur Vacancy-Rich ZnIn2S4 Microflower with {0001} Facets for Rapid Sensing of Triethylamine. Sensors and Actuators B: Chemical, 374, Article ID: 132826. [Google Scholar] [CrossRef]
|
|
[19]
|
Bedala, K.K., Gonugunta, P., Soleimani, M., Mádai, E., Taheri, P., Padamati, S.K., et al. (2023) Facile Synthesis of ZnIn2S4/Cu2O Hierarchical Heterostructures for Enhanced Selectivity and Sensitivity of NH3 Gas at Room Temperature. Applied Surface Science, 640, Article ID: 158315. [Google Scholar] [CrossRef]
|
|
[20]
|
Han, S., Qiao, X., Zhao, Q., Guo, J., Yu, D., Xu, J., et al. (2024) Ultrafast and Parts-Per-Billion-Level MEMS Gas Sensors by Hetero-Interface Engineering of 2D/2D Cu-TCPP@ZnIn2S4 with Enriched Surface Sulfur Vacancies. Nano Letters, 24, 7389-7396. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wei, W., Zhang, H., Tao, T., Xia, X., Bao, Y., Lourenço, M., et al. (2023) A CuO/TiO2 Heterojunction Based Co Sensor with High Response and Selectivity. Energy & Environmental Materials, 6, e12570. [Google Scholar] [CrossRef]
|
|
[22]
|
Zhang, H., Wei, W., Tao, T., Li, X., Xia, X., Bao, Y., et al. (2023) Hierarchical NiO/TiO2 Heterojuntion-Based Conductometric Hydrogen Sensor with Anti-Co-Interference. Sensors and Actuators B: Chemical, 380, Article ID; 133321. [Google Scholar] [CrossRef]
|
|
[23]
|
Liu, Q., Lu, H., Shi, Z., Wu, F., Guo, J., Deng, K., et al. (2014) 2D ZnIn2S4 Nanosheet/1D TiO2 Nanorod Heterostructure Arrays for Improved Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 6, 17200-17207. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Mahadik, M.A., Shinde, P.S., Cho, M. and Jang, J.S. (2016) Metal Oxide Top Layer as an Interfacial Promoter on a ZnIn2S4/TiO2 Heterostructure Photoanode for Enhanced Photoelectrochemical Performance. Applied Catalysis B: Environmental, 184, 337-346. [Google Scholar] [CrossRef]
|
|
[25]
|
Xu, W., Gao, W., Meng, L., Tian, W. and Li, L. (2021) Incorporation of Sulfate Anions and Sulfur Vacancies in ZnIn2S4 Photoanode for Enhanced Photoelectrochemical Water Splitting. Advanced Energy Materials, 11, Article ID: 2101181. [Google Scholar] [CrossRef]
|
|
[26]
|
Wang, X., Wang, X., Huang, J., Li, S., Meng, A. and Li, Z. (2021) Interfacial Chemical Bond and Internal Electric Field Modulated Z-Scheme Sv-ZnIn2S4/MoSe2 Photocatalyst for Efficient Hydrogen Evolution. Nature Communications, 12, Article No. 4112. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Wang, J., Zhang, Y., Liu, G., Zhang, T., Zhang, C., Zhang, Y., et al. (2023) Improvements in the Magnesium Ion Transport Properties of Graphene/CNT‐Wrapped TiO2‐B Nanoflowers by Nickel Doping. Small, 20, Article ID: 2304969. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhang, N., Li, X., Guo, Y., Guo, Y., Dai, Q., Wang, L., et al. (2023) Crystal Engineering of TiO2 for Enhanced Catalytic Oxidation of 1, 2-Dichloroethane on a Pt/TiO2 Catalyst. Environmental Science & Technology, 57, 7086-7096. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Li, J., Wu, C., Li, J., Dong, B., Zhao, L. and Wang, S. (2022) 1D/2D TiO2/ZnIn2S4 S-Scheme Heterojunction Photocatalyst for Efficient Hydrogen Evolution. Chinese Journal of Catalysis, 43, 339-349. [Google Scholar] [CrossRef]
|
|
[30]
|
Wang, L., Cheng, B., Zhang, L. and Yu, J. (2021) In Situ Irradiated XPS Investigation on S‐Scheme TiO2@ZnIn2S4 Photocatalyst for Efficient Photocatalytic CO2 Reduction. Small, 17, Article ID: 2103447. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhang, P., Li, Y., Zhang, Y., Hou, R., Zhang, X., Xue, C., et al. (2020) Photogenerated Electron Transfer Process in Heterojunctions: In Situ Irradiation XPS. Small Methods, 4, Article ID: 2000214. [Google Scholar] [CrossRef]
|
|
[32]
|
Liu, S., Zhou, X., Yang, C., Wei, C. and Hu, Y. (2023) Cu Atoms on Uio-66-NH2/ZnIn2S4 Nanosheets Enhance Photocatalytic Performance for Recovering Hydrogen Energy from Organic Wastewater Treatment. Applied Catalysis B: Environmental, 330, Article ID: 122572. [Google Scholar] [CrossRef]
|
|
[33]
|
Hu, Q., Yin, S., Chen, Y., Wang, B., Li, M., Ding, Y., et al. (2020) Construction of MIL-125(Ti)/ZnIn2S4 Composites with Accelerated Interfacial Charge Transfer for Boosting Visible Light Photoreactivity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585, Article ID: 124078. [Google Scholar] [CrossRef]
|
|
[34]
|
Liu, S., Jiang, X., Waterhouse, G.I.N., Zhang, Z. and Yu, L. (2022) A Novel Z-Scheme NH2-MIL-125(Ti)/Ti3C2 QDs/ZnIn2S4 Photocatalyst with Fast Interfacial Electron Transfer Properties for Visible Light-Driven Antibiotic Degradation and Hydrogen Evolution. Separation and Purification Technology, 294, Article ID: 121094. [Google Scholar] [CrossRef]
|
|
[35]
|
Tan, M., Ma, Y., Yu, C., Luan, Q., Li, J., Liu, C., et al. (2021) Boosting Photocatalytic Hydrogen Production via Interfacial Engineering on 2D Ultrathin Z‐scheme Znin2S4/G‐C3N4 Heterojunction. Advanced Functional Materials, 32, Article ID: 2111740. [Google Scholar] [CrossRef]
|
|
[36]
|
Li, X., He, H., Tan, T., Zou, Z., Tian, Z., Zhou, W., et al. (2023) Annealing Effect on the Methane Sensing Performance of Pt-SnO2/ZnO Double Layer Sensor. Applied Surface Science, 640, Article ID: 158428. [Google Scholar] [CrossRef]
|
|
[37]
|
Wang, S., Hu, H., Tan, T., Li, X., Zhou, W., Tian, Z., et al. (2025) Enhancing NO2 Sensing Performance through Interface Engineering in Cs2AgBiBr6/SnO2/ZnO-NRs Sensor. Sensors and Actuators B: Chemical, 422, Article ID: 136654. [Google Scholar] [CrossRef]
|
|
[38]
|
Tan, T., Hang, Z., Li, X., Wang, S., Homewood, K., Xia, X., et al. (2024) Ultra-High-Response Heat Free H2 Sensor Based on a WO3/Pt-ZnO Thin Film. Journal of Alloys and Compounds, 979, Article ID: 173527. [Google Scholar] [CrossRef]
|
|
[39]
|
Li, X., Hu, H., Tan, T., Sun, M., Bao, Y., Huang, Z., et al. (2024) Enhancing Methane Gas Sensing through Defect Engineering in Ag-Ru Co-Doped ZnO Nanorods. ACS Applied Materials & Interfaces, 16, 26395-26405. [Google Scholar] [CrossRef] [PubMed]
|