[1]
|
Haccuria, A., Van Muylem, A., Malinovschi, A., Doan, V. and Michils, A. (2018) Small Airways Dysfunction: The Link between Allergic Rhinitis and Allergic Asthma. European Respiratory Journal, 51, Article 1701749. https://doi.org/10.1183/13993003.01749-2017
|
[2]
|
Michils, A., Elkrim, Y., Haccuria, A. and Van Muylem, A. (2011) Adenosine 5’-Monophosphate Challenge Elicits a More Peripheral Airway Response than Methacholine Challenge. Journal of Applied Physiology, 110, 1241-1247. https://doi.org/10.1152/japplphysiol.01401.2010
|
[3]
|
Jutel, M. and Akdis, C.A. (2011) Immunological Mechanisms of Allergen-Specific Immunotherapy. Allergy, 66, 725-732. https://doi.org/10.1111/j.1398-9995.2011.02589.x
|
[4]
|
Potaczek, D.P., Harb, H., Michel, S., Alhamwe, B.A., Renz, H. and Tost, J. (2017) Epigenetics and Allergy: From Basic Mechanisms to Clinical Applications. Epigenomics, 9, 539-571. https://doi.org/10.2217/epi-2016-0162
|
[5]
|
Li, J., Sha, J., Sun, L., Zhu, D. and Meng, C. (2021) Contribution of Regulatory T Cell Methylation Modifications to the Pathogenesis of Allergic Airway Diseases. Journal of Immunology Research, 2021, 1-8. https://doi.org/10.1155/2021/5590217
|
[6]
|
Li, X., Gao, H., Liu, l., Yang, Y., Sun, S. and Liu, Y. (2024) Genetic Polymorphisms of BACH2, a Key Gene Regulating Th2 Immune Response, Increasing Risk of Allergic Rhinitis. Gene, 926, Article 148624. https://doi.org/10.1016/j.gene.2024.148624
|
[7]
|
Burgess, S., Davey Smith, G., Davies, N.M., Dudbridge, F., Gill, D., Glymour, M.M., et al. (2019) Guidelines for Performing Mendelian Randomization Investigations. Wellcome Open Research, 4, Article 186. https://doi.org/10.12688/wellcomeopenres.15555.1
|
[8]
|
Zhu, Z., Zhang, F., Hu, H., Bakshi, A., Robinson, M.R., Powell, J.E., et al. (2016) Integration of Summary Data from GWAS and eQTL Studies Predicts Complex Trait Gene Targets. Nature Genetics, 48, 481-487. https://doi.org/10.1038/ng.3538
|
[9]
|
McRae, A.F., Marioni, R.E., Shah, S., Yang, J., Powell, J.E., Harris, S.E., et al. (2018) Identification of 55,000 Replicated DNA Methylation QTL. Scientific Reports, 8, Article No. 17605. https://doi.org/10.1038/s41598-018-35871-w
|
[10]
|
Võsa, U., Claringbould, A., Westra, H., Bonder, M.J., Deelen, P., Zeng, B., et al. (2021) Large-Scale Cis and Trans-eQTL Analyses Identify Thousands of Genetic Loci and Polygenic Scores That Regulate Blood Gene Expression. Nature Genetics, 53, 1300-1310. https://doi.org/10.1038/s41588-021-00913-z
|
[11]
|
Chauquet, S., Zhu, Z., O’Donovan, M.C., Walters, J.T.R., Wray, N.R. and Shah, S. (2021) Association of Antihypertensive Drug Target Genes with Psychiatric Disorders. JAMA Psychiatry, 78, 623-631. https://doi.org/10.1001/jamapsychiatry.2021.0005
|
[12]
|
Giambartolomei, C., Vukcevic, D., Schadt, E.E., Franke, L., Hingorani, A.D., Wallace, C., et al. (2014) Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics. PLOS Genetics, 10, e1004383. https://doi.org/10.1371/journal.pgen.1004383
|
[13]
|
Chen, J., Ruan, X., Sun, Y., Lu, S., Hu, S., Yuan, S., et al. (2024) Multi-Omic Insight into the Molecular Networks of Mitochondrial Dysfunction in the Pathogenesis of Inflammatory Bowel Disease. eBioMedicine, 99, Article 104934. https://doi.org/10.1016/j.ebiom.2023.104934
|
[14]
|
Xu, S., Li, X., Zhang, S., Qi, C., Zhang, Z., Ma, R., et al. (2023) Oxidative Stress Gene Expression, DNA Methylation, and Gut Microbiota Interaction Trigger Crohn’s Disease: A Multi-Omics Mendelian Randomization Study. BMC Medicine, 21, Article No. 179. https://doi.org/10.1186/s12916-023-02878-8
|
[15]
|
Alshevskaya, A., Zhukova, J., Kireev, F., Lopatnikova, J., Evsegneeva, I., Demina, D., et al. (2022) Redistribution of TNF Receptor 1 and 2 Expression on Immune Cells in Patients with Bronchial Asthma. Cells, 11, Article 1736. https://doi.org/10.3390/cells11111736
|
[16]
|
Ahmad, S., Azid, N.A., Boer, J.C., Lim, J., Chen, X., Plebanski, M., et al. (2018) The Key Role of TNF-TNFR2 Interactions in the Modulation of Allergic Inflammation: A Review. Frontiers in Immunology, 9, Article 2572. https://doi.org/10.3389/fimmu.2018.02572
|
[17]
|
Li, X., Chen, X., Gu, W., Guo, Y., Cheng, Y., Peng, J., et al. (2017) Impaired TNF/TNFR2 Signaling Enhances Th2 and Th17 Polarization and Aggravates Allergic Airway Inflammation. American Journal of Physiology-Lung Cellular and Molecular Physiology, 313, L592-L601. https://doi.org/10.1152/ajplung.00409.2016
|
[18]
|
Zhang, X., Cai, J., Song, F. and Yang, Z. (2022) Prognostic and Immunological Role of FCER1G in Pan-Cancer. Pathology—Research and Practice, 240, Article 154174. https://doi.org/10.1016/j.prp.2022.154174
|
[19]
|
Fu, L., Cheng, Z., Dong, F., Quan, L., Cui, L., Liu, Y., et al. (2020) Enhanced Expression of FCER1G Predicts Positive Prognosis in Multiple Myeloma. Journal of Cancer, 11, 1182-1194. https://doi.org/10.7150/jca.37313
|
[20]
|
Shin, J. and Greer, A.M. (2015) The Role of Fcεri Expressed in Dendritic Cells and Monocytes. Cellular and Molecular Life Sciences, 72, 2349-2360. https://doi.org/10.1007/s00018-015-1870-x
|
[21]
|
Xuan, D.T.M., Wu, C., Kao, T., Ta, H.D.K., Anuraga, G., Andriani, V., et al. (2021) Prognostic and Immune Infiltration Signatures of Proteasome 26S Subunit, Non-Atpase (PSMD) Family Genes in Breast Cancer Patients. Aging, 13, 24882-24913. https://doi.org/10.18632/aging.203722
|
[22]
|
Briones, A.C., Megino, R.F., Marin, A.V., Chacón-Arguedas, D., García-Martinez, E., Balastegui-Martín, H., et al. (2024) Nonsense CD247 Mutations Show Dominant-Negative Features in T-Cell Receptor Expression and Function. Journal of Allergy and Clinical Immunology, 154, 1022-1032. https://doi.org/10.1016/j.jaci.2024.06.019
|
[23]
|
Zhu, Z., Lee, P.H., Chaffin, M.D., Chung, W., Loh, P., Lu, Q., et al. (2018) A Genome-Wide Cross-Trait Analysis from UK Biobank Highlights the Shared Genetic Architecture of Asthma and Allergic Diseases. Nature Genetics, 50, 857-864. https://doi.org/10.1038/s41588-018-0121-0
|
[24]
|
Portelli, M.A., Rakkar, K., Hu, S., Guo, Y. and Adcock, I.M. (2021) Translational Analysis of Moderate to Severe Asthma GWAS Signals into Candidate Causal Genes and Their Functional, Tissue-Dependent and Disease-Related Associations. Frontiers in Allergy, 2, Article 73841. https://doi.org/10.3389/falgy.2021.738741
|