[1]
|
中国科学院中国植物志编辑委员会. 中国植物志: 第27卷[M]. 北京: 科学出版社, 1993: 354.
|
[2]
|
Malyutin, N.I. (1987) The System of the Genus Delphinium (Ranunculaceae) Based on the Morphological Features of Seeds. Botanicheskii Zhurnal, 72, 683-693.
|
[3]
|
王文采. 中国翠雀花属修订(一) [J]. 广西植物, 2019, 39(11): 1425-1469.
|
[4]
|
李媛, 刘庆华, 王奎玲, 李伟. 烟台翠雀开花特性研究[C]//2016年中国观赏园艺学术研讨会. 北京: 中国林业出版社, 2016: 443-447.
|
[5]
|
Ahmad, I. and Dastagir, G. (2023) Micromorphological and Phytochemical Profiling of Delphinium suave Huth. from Hindukush Range, Lower Dir Khyber Pakhtunkhwa Pakistan. Microscopy Research and Technique, 87, 446-469. https://doi.org/10.1002/jemt.24445
|
[6]
|
程薪宇. 中国毛茛科植物形态结构的系统学价值[D]: [博士学位论文]. 哈尔滨: 哈尔滨师范大学, 2015: 27-33.
|
[7]
|
王立军, 谷安根. 大花翠雀幼苗初生维管系统的解剖学研究[J]. 植物研究, 1994, 14(1): 76-80+110.
|
[8]
|
Espinosa, F., Damerval, C., Le Guilloux, M., Deroin, T., Wang, W., Pinedo-Castro, M., et al. (2020) Homeosis and Delayed Floral Meristem Termination Could Account for Abnormal Flowers in Cultivars of Delphinium and Aquilegia (Ranunculaceae). Botanical Journal of the Linnean Society, 195, 485-500. https://doi.org/10.1093/botlinnean/boaa063
|
[9]
|
Chen, Y., Jabbour, F., Novikov, A., Wang, W. and Gerber, S. (2018) A Study of Floral Shape Variation in Delphinieae (Ranunculaceae) Using Geometric Morphometrics on Herbarium Specimens. Botany Letters, 165, 368-376. https://doi.org/10.1080/23818107.2018.1427145
|
[10]
|
Chartier, M., Dressler, S., Schönenberger, J., Mora, A.R., Sarthou, C., Wang, W., et al. (2016) The Evolution of Afro‐Montane Delphinium (Ranunculaceae): Morphospecies, Phylogenetics and Biogeography. TAXON, 65, 1313-1327. https://doi.org/10.12705/656.6
|
[11]
|
杨永红, 赵汝能. 翠雀属花粉的扫描电镜观察[J]. 云南农业大学学报, 1995, 10(4): 263-267.
|
[12]
|
Hadidchi, A., Attar, F. and Ullah, F. (2019) Using Microscopic Techniques for Taxonomic Implications of Seed and Fruits of Delphinium L. (Sensu Lato) (Ranunculaceae). Microscopy Research and Technique, 83, 99-117. https://doi.org/10.1002/jemt.23393
|
[13]
|
Luo, X., Nie, T., Liu, H., Ding, X., Huang, Y., Guo, C., et al. (2023) Karyotype and Genome Size Variation in Delphinium Subg. Anthriscifolium (Ranunculaceae). PhytoKeys, 234, 145-165. https://doi.org/10.3897/phytokeys.234.108841
|
[14]
|
刘建全, 何廷农. 青海南部七种翠雀属植物的核型[J]. 植物分类与资源学报, 1999, 21(4): 471-476.
|
[15]
|
杨亲二. 国产十五种翠雀族植物的核型研究[J]. 植物分类学报, 1996, 34(1): 39-47.
|
[16]
|
Okamoto, M., Niki, T., Azuma, M., Shibuya, K. and Ichimura, K. (2022) Expression of Ethylene Biosynthesis Genes in the Gynoecium and Receptacle Associated with Sepal Abscission during Senescence in Delphinium Grandiflorum. Plant Growth Regulation, 97, 593-609. https://doi.org/10.1007/s10725-022-00822-z
|
[17]
|
Jerome, D.K., Petry, W.K., Mooney, K.A. and Iler, A.M. (2021) Snow Melt Timing Acts Independently and in Conjunction with Temperature Accumulation to Drive Subalpine Plant Phenology. Global Change Biology, 27, 5054-5069. https://doi.org/10.1111/gcb.15803
|
[18]
|
周丽, 隆林, 王苑, 龙林梅, 等. 云南翠雀花繁育生物学特性研究[J]. 兴义民族师范学院学报, 2021(1): 119-124.
|
[19]
|
钟玉琴, 敏文睿, 赵祥, 等. 蓝翠雀花退化雄蕊的功能及其适应意义[J]. 植物科学学报, 2022, 40(6): 744-750.
|
[20]
|
樊宝丽, 孟金柳, 赵志刚, 等. 海拔对青藏高原东部毛茛科植物繁殖特征和资源分配的影响[J]. 西北植物学报, 2008, 28(4): 4805-4811.
|
[21]
|
Hou, Q., Wang, T., Yang, G., Shao, W., Min, W. and Zhong, Y. (2022) A Decrease in the Staminode-Mediated Visitor Screening Mechanism in Response to Nectar Robbers Positively Affects Reproduction in Delphinium caeruleum Jacq. ex Camb. (Ranunculaceae). Biology, 11, Article No. 1203. https://doi.org/10.3390/biology11081203
|
[22]
|
Zhao, Q., Guo, J., Shu, M., Wang, P. and Hu, S. (2020) Impacts of Drought and Nitrogen Enrichment on Leaf Nutrient Resorption and Root Nutrient Allocation in Four Tibetan Plant Species. Science of the Total Environment, 723, Article ID: 138106. https://doi.org/10.1016/j.scitotenv.2020.138106
|
[23]
|
李博. 水分胁迫对大花飞燕草种子萌发及幼苗生理特性的影响[D]: [硕士学位论文]. 哈尔滨: 东北林业大学, 2011: 32-40.
|
[24]
|
张彦妮, 李博, 何淼. 盐胁迫对大花飞燕草种子萌发的影响[J]. 草业科学, 2012, 29(8): 1235-1239.
|
[25]
|
Zhang, H. and Zhang, M. (2012) Genetic Structure of the Delphinium Naviculare Species Group Tracks Pleistocene Climatic Oscillations in the Tianshan Mountains, Arid Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 353, 93-103. https://doi.org/10.1016/j.palaeo.2012.07.013
|
[26]
|
Duan, H., Lu, Y., Duan, X., Zhou, X., Wang, C., Tian, F., et al. (2019) Characterization of the Complete Chloroplast Genome of Delphinium grandiflorum L. Mitochondrial DNA Part B, 5, 35-36. https://doi.org/10.1080/23802359.2019.1692707
|
[27]
|
Miyahara, T., Hamada, A., Okamoto, M., Hirose, Y., Sakaguchi, K., Hatano, S., et al. (2016) Identification of Flavonoid 3’-Hydroxylase in the Yellow Flower of Delphinium Zalil. Journal of Plant Physiology, 202, 92-96. https://doi.org/10.1016/j.jplph.2016.07.013
|
[28]
|
Ishii, I., Sakaguchi, K., Fujita, K., Ozeki, Y. and Miyahara, T. (2017) A Double Knockout Mutant of Acyl-Glucose-Dependent Anthocyanin Glucosyltransferase Genes in Delphinium Grandiflorum. Journal of Plant Physiology, 216, 74-78. https://doi.org/10.1016/j.jplph.2017.05.009
|
[29]
|
Sarvas, C., Puttick, D., Forseille, L., Cram, D. and Smith, M.A. (2021) Ectopic Expression of cDNAs from Larkspur (Consolida ajacis) for Increased Synthesis of Gondoic Acid (Cis-11 Eicosenoic Acid) and Its Positional Redistribution in Seed Triacylglycerol of Camelina Sativa. Planta, 254, Article No. 32. https://doi.org/10.1007/s00425-021-03682-5
|
[30]
|
Matsuba, Y., Sasaki, N., Tera, M., Okamura, M., Abe, Y., Okamoto, E., et al. (2010) A Novel Glucosylation Reaction on Anthocyanins Catalyzed by Acyl-Glucose-Dependent Glucosyltransferase in the Petals of Carnation and Delphinium. The Plant Cell, 22, 3374-3389. https://doi.org/10.1105/tpc.110.077487
|