[1]
|
Pols, T.W.H., Noriega, L.G., Nomura, M., Auwerx, J. and Schoonjans, K. (2011) The Bile Acid Membrane Receptor TGR5 as an Emerging Target in Metabolism and Inflammation. Journal of Hepatology, 54, 1263-1272. https://doi.org/10.1016/j.jhep.2010.12.004
|
[2]
|
Wahlström, A., Sayin, S.I., Marschall, H. and Bäckhed, F. (2016) Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metabolism, 24, 41-50. https://doi.org/10.1016/j.cmet.2016.05.005
|
[3]
|
Piechota, J. and Jelski, W. (2020) Intrahepatic Cholestasis in Pregnancy: Review of the Literature. Journal of Clinical Medicine, 9, Article 1361. https://doi.org/10.3390/jcm9051361
|
[4]
|
de Aguiar Vallim, T.Q., Tarling, E.J. and Edwards, P.A. (2013) Pleiotropic Roles of Bile Acids in Metabolism. Cell Metabolism, 17, 657-669. https://doi.org/10.1016/j.cmet.2013.03.013
|
[5]
|
Forman, B.M., Goode, E., Chen, J., Oro, A.E., Bradley, D.J., Perlmann, T., et al. (1995) Identification of a Nuclear Receptor That Is Activated by Farnesol Metabolites. Cell, 81, 687-693. https://doi.org/10.1016/0092-8674(95)90530-8
|
[6]
|
Sayin, S.I., Wahlström, A., Felin, J., Jäntti, S., Marschall, H., Bamberg, K., et al. (2013) Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-Beta-Muricholic Acid, a Naturally Occurring FXR Antagonist. Cell Metabolism, 17, 225-235. https://doi.org/10.1016/j.cmet.2013.01.003
|
[7]
|
Foley, M.H., O’Flaherty, S., Allen, G., Rivera, A.J., Stewart, A.K., Barrangou, R., et al. (2021) Lactobacillus Bile Salt Hydrolase Substrate Specificity Governs Bacterial Fitness and Host Colonization. Proceedings of the National Academy of Sciences, 118, e2017709118. https://doi.org/10.1073/pnas.2017709118
|
[8]
|
Ridlon, J.M., Harris, S.C., Bhowmik, S., Kang, D. and Hylemon, P.B. (2016) Consequences of Bile Salt Biotransformations by Intestinal Bacteria. Gut Microbes, 7, 22-39. https://doi.org/10.1080/19490976.2015.1127483
|
[9]
|
Collins, S.L., Stine, J.G., Bisanz, J.E., Okafor, C.D. and Patterson, A.D. (2022) Bile Acids and the Gut Microbiota: Metabolic Interactions and Impacts on Disease. Nature Reviews Microbiology, 21, 236-247. https://doi.org/10.1038/s41579-022-00805-x
|
[10]
|
Devlin, A.S. and Fischbach, M.A. (2015) A Biosynthetic Pathway for a Prominent Class of Microbiota-Derived Bile Acids. Nature Chemical Biology, 11, 685-690. https://doi.org/10.1038/nchembio.1864
|
[11]
|
Li, Y., Tang, R., Leung, P.S.C., Gershwin, M.E. and Ma, X. (2017) Bile Acids and Intestinal Microbiota in Autoimmune Cholestatic Liver Diseases. Autoimmunity Reviews, 16, 885-896. https://doi.org/10.1016/j.autrev.2017.07.002
|
[12]
|
Gonzalez, F.J., Jiang, C. and Patterson, A.D. (2016) An Intestinal Microbiota-Farnesoid X Receptor Axis Modulates Metabolic Disease. Gastroenterology, 151, 845-859. https://doi.org/10.1053/j.gastro.2016.08.057
|
[13]
|
Makki, K., Deehan, E.C., Walter, J. and Bäckhed, F. (2018) The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host & Microbe, 23, 705-715. https://doi.org/10.1016/j.chom.2018.05.012
|
[14]
|
Cremers, C.M., Knoefler, D., Vitvitsky, V., Banerjee, R. and Jakob, U. (2014) Bile Salts Act as Effective Protein-Unfolding Agents and Instigators of Disulfide Stress in Vivo. Proceedings of the National Academy of Sciences, 111, E1610-E1619. https://doi.org/10.1073/pnas.1401941111
|
[15]
|
Begley, M., Gahan, C.G.M. and Hill, C. (2005) The Interaction between Bacteria and Bile. FEMS Microbiology Reviews, 29, 625-651. https://doi.org/10.1016/j.femsre.2004.09.003
|
[16]
|
Ridlon, J.M., Kang, D.J., Hylemon, P.B. and Bajaj, J.S. (2014) Bile Acids and the Gut Microbiome. Current Opinion in Gastroenterology, 30, 332-338. https://doi.org/10.1097/mog.0000000000000057
|
[17]
|
Basson, A., Trotter, A., Rodriguez-Palacios, A. and Cominelli, F. (2016) Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Frontiers in Immunology, 7, Article 290. https://doi.org/10.3389/fimmu.2016.00290
|
[18]
|
Kakiyama, G., Pandak, W.M., Gillevet, P.M., Hylemon, P.B., Heuman, D.M., Daita, K., et al. (2013) Modulation of the Fecal Bile Acid Profile by Gut Microbiota in Cirrhosis. Journal of Hepatology, 58, 949-955. https://doi.org/10.1016/j.jhep.2013.01.003
|
[19]
|
Inagaki, T., Moschetta, A., Lee, Y., Peng, L., Zhao, G., Downes, M., et al. (2006) Regulation of Antibacterial Defense in the Small Intestine by the Nuclear Bile Acid Receptor. Proceedings of the National Academy of Sciences, 103, 3920-3925. https://doi.org/10.1073/pnas.0509592103
|
[20]
|
Vaishnava, S., Behrendt, C.L., Ismail, A.S., et al. (2008) Paneth Cells Directly Sense Gut Commensals and Maintain Homeostasis at the Intestinal Host-Microbial Interface. Proceedings of the National Academy of Sciences of the United States of America, 105, 20858-20863.
|
[21]
|
Song, X., Sun, X., Oh, S.F., Wu, M., Zhang, Y., Zheng, W., et al. (2019) Microbial Bile Acid Metabolites Modulate Gut RORγ+ Regulatory T Cell Homeostasis. Nature, 577, 410-415. https://doi.org/10.1038/s41586-019-1865-0
|
[22]
|
Lefebvre, P., Cariou, B., Lien, F., Kuipers, F. and Staels, B. (2009) Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation. Physiological Reviews, 89, 147-191. https://doi.org/10.1152/physrev.00010.2008
|
[23]
|
Porter, J.L., Fordtran, J.S., Santa Ana, C.A., Emmett, M., Hagey, L.R., MacDonald, E.A., et al. (2003) Accurate Enzymatic Measurement of Fecal Bile Acids in Patients with Malabsorption. Journal of Laboratory and Clinical Medicine, 141, 411-418. https://doi.org/10.1016/s0022-2143(03)00040-4
|
[24]
|
David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E., Wolfe, B.E., et al. (2013) Diet Rapidly and Reproducibly Alters the Human Gut Microbiome. Nature, 505, 559-563. https://doi.org/10.1038/nature12820
|
[25]
|
Zhang, Y., Limaye, P.B., Renaud, H.J. and Klaassen, C.D. (2014) Effect of Various Antibiotics on Modulation of Intestinal Microbiota and Bile Acid Profile in Mice. Toxicology and Applied Pharmacology, 277, 138-145. https://doi.org/10.1016/j.taap.2014.03.009
|
[26]
|
Dethloff, F., Vargas, F., Elijah, E., Quinn, R., Park, D.I., Herzog, D.P., et al. (2020) Paroxetine Administration Affects Microbiota and Bile Acid Levels in Mice. Frontiers in Psychiatry, 11, Article 518. https://doi.org/10.3389/fpsyt.2020.00518
|
[27]
|
Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., et al. (2013) Richness of Human Gut Microbiome Correlates with Metabolic Markers. Nature, 500, 541-546. https://doi.org/10.1038/nature12506
|
[28]
|
Zheng, X., Chen, T., Jiang, R., et al. (2021) Hyocholic Acid Species Improve Glucose Homeostasis through a Distinct TGR5 and FXR Signaling Mechanism. Cell Metabolism, 33, 791-803 https://pubmed.ncbi.nlm.nih.gov/33338411.
|
[29]
|
Leung, C., Rivera, L., Furness, J.B. and Angus, P.W. (2016) The Role of the Gut Microbiota in NAFLD. Nature Reviews Gastroenterology & Hepatology, 13, 412-425. https://doi.org/10.1038/nrgastro.2016.85
|
[30]
|
Sun, L., Cai, J. and Gonzalez, F.J. (2021) The Role of Farnesoid X Receptor in Metabolic Diseases, and Gastrointestinal and Liver Cancer. Nature Reviews Gastroenterology & Hepatology, 18, 335-347. https://doi.org/10.1038/s41575-020-00404-2
|
[31]
|
Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R. and Gordon, J.I. (2006) An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature, 444, 1027-1031. https://doi.org/10.1038/nature05414
|
[32]
|
Liu, L., Yang, M., Dong, W., Liu, T., Song, X., Gu, Y., et al. (2021) Gut Dysbiosis and Abnormal Bile Acid Metabolism in Colitis-Associated Cancer. Gastroenterology Research and Practice, 2021, 1-12. https://doi.org/10.1155/2021/6645970
|
[33]
|
Cao, H., Xu, M., Dong, W., Deng, B., Wang, S., Zhang, Y., et al. (2017) Secondary Bile Acid-Induced Dysbiosis Promotes Intestinal Carcinogenesis. International Journal of Cancer, 140, 2545-2556. https://doi.org/10.1002/ijc.30643
|
[34]
|
Wu, L., Feng, J., Li, J., Yu, Q., Ji, J., Wu, J., et al. (2021) The Gut Microbiome-Bile Acid Axis in Hepatocarcinogenesis. Biomedicine & Pharmacotherapy, 133, Article 111036. https://doi.org/10.1016/j.biopha.2020.111036
|
[35]
|
Paratore, M., Santopaolo, F., Cammarota, G., Pompili, M., Gasbarrini, A. and Ponziani, F.R. (2021) Fecal Microbiota Transplantation in Patients with HBV Infection or Other Chronic Liver Diseases: Update on Current Knowledge and Future Perspectives. Journal of Clinical Medicine, 10, Article 2605. https://doi.org/10.3390/jcm10122605
|
[36]
|
Hassouneh, R. and Bajaj, J.S. (2021) Gut Microbiota Modulation and Fecal Transplantation: An Overview on Innovative Strategies for Hepatic Encephalopathy Treatment. Journal of Clinical Medicine, 10, Article 330. https://doi.org/10.3390/jcm10020330
|
[37]
|
Kao, D., Roach, B., Silva, M., Beck, P., Rioux, K., Kaplan, G.G., et al. (2017) Effect of Oral Capsule-vs Colonoscopy-Delivered Fecal Microbiota Transplantation on Recurrent Clostridium difficile Infection. A Randomized Clinical Trial JAMA, 318, 1985-1993. https://doi.org/10.1001/jama.2017.17077
|
[38]
|
Bajaj, J.S., Shamsaddini, A., Fagan, A., Sterling, R.K., Gavis, E., Khoruts, A., et al. (2021) Fecal Microbiota Transplant in Cirrhosis Reduces Gut Microbial Antibiotic Resistance Genes: Analysis of Two Trials. Hepatology Communications, 5, 258-271. https://doi.org/10.1002/hep4.1639
|