甘油三酯葡萄糖指数与冠心病患者不良预后的研究进展
Research Progress on Triglyceride Glucose Index and Adverse Prognosis in Patients with Coronary Heart Disease
摘要: 冠状动脉粥样硬化性心脏病(CHD)作为一种心血管疾病,严重威胁着人类生命健康。而胰岛素抵抗(IR),不仅导致糖尿病发生,也与冠心病的发生发展密切相关,研究两者之间的关系,对冠心病的预防、诊治及随诊至关重要。胰岛素抵抗(IR)的金标准是高胰岛素正葡萄糖钳夹试验,由于其操作复杂、费时等原因限制了在临床的应用。空腹甘油三酯和葡萄糖浓度计算所得的甘油三酯葡萄糖指数(triglycerideglucose index,TyG指数)与葡萄糖钳夹技术有很好的相关性。故临床工作中常用TyG指数评价受试者的胰岛素抵抗程度。近年来,有许多研究证实了TyG与冠心病患者主要不良心血管事件(MACEs)的关系。本研究旨在总结近年来关于TyG与冠心病患者MACEs的研究进展,为冠心病患者冠脉病变严重程度的风险评估提供参考依据,对冠心病患者进行风险分层和针对性干预,延缓疾病进展、节约医疗资源、减轻个人经济负担。
Abstract: Coronary atherosclerotic heart disease (CHD), as a cardiovascular disease, seriously threatens human life and health. Insulin resistance (IR) not only leads to the occurrence of diabetes, but is also closely related to the occurrence and development of coronary heart disease, and studying the relationship between the two is very important for the prevention, diagnosis and treatment of coronary heart disease. The gold standard for insulin resistance (IR) is the hyperinsulinemic euglucose clamp test, which limits its clinical application due to its complex and time-consuming operation. The triglyceride glucose index (TyG index) calculated from fasting triglycerides and glucose concentrations had a good correlation with glucose clamping techniques. Therefore, the TyG index is commonly used in clinical work to evaluate the degree of insulin resistance of subjects. In recent years, a number of studies have confirmed the association between TyG and major adverse cardiovascular events (MACEs) in patients with coronary heart disease. The purpose of this study was to summarize the research progress on TyG and MACEs in patients with coronary heart disease in recent years, to provide a reference basis for the risk assessment of the severity of coronary artery disease in patients with coronary heart disease, to carry out risk stratification and targeted intervention for patients with coronary heart disease, to delay the progression of the disease, to save medical resources, and to reduce the financial burden of individuals.
文章引用:周肖. 甘油三酯葡萄糖指数与冠心病患者不良预后的研究进展[J]. 临床医学进展, 2025, 15(5): 727-733. https://doi.org/10.12677/acm.2025.1551428

1. 引言

近年来,随着城市化进程加剧、人们饮食结构的变化,冠心病的发病率逐年上升,尤其在发展中国家更为明显。根据《中国心血管病报告2021》的数据,中国冠心病患者人数高达1100多万[1],其死亡率也一直居高不下,世界卫生组织(WHO)数据显示,心血管疾病(包括冠心病)每年导致约1790万人死亡,占全球总死亡人数的31%。其主要死于MACEs,包括非致命性心肌梗死、心源性死亡、靶血管重建术、充血性心力衰竭和非致命性中风等,这对我国人民的身心健康及国家财政支出有着沉重负担。可见,早期预防冠心病,积极控制冠心病的发生发展刻不容缓。代表IR的TyG指数与动脉粥样硬化性心血管疾病风险增加显著相关[2],是多种不良心血管结局的独立危险因素[3] [4]

2. IR的研究进展

2.1. 高胰岛素–正葡萄糖钳夹试验

葡萄糖钳夹技术最初由DeFronzo等人[5]开发,被广泛接受为直接测定人体胰岛素代谢敏感性的参考标准。该实验不仅可以了解胰岛素素对全身葡萄糖的处理情况,还可以研究不同部位(主要是肝脏),不同代谢途径,如脂肪分解或蛋白质代谢的敏感性[6]-[9],但其因耗时、耗力、成本高及操作技术难等问题,不适用于常规临床应用。其次,实验所需要注射超生理的稳态胰岛素水平,可能无法确定生理条件下胰岛素作用和葡萄糖代谢过程[10]

2.2. 胰岛素抑制实验

是一种基于高胰岛素–正葡萄糖钳夹试验的改良实验。最早是由Shen等于1970年提出[11],相对于葡萄糖钳夹技术,该实验较方便,技术含量要求较低,但同样无法适用于大型人群。

2.3. 口服葡萄糖耐量试验(OGTT)

该实验简单易行,目前广泛应用于临床,且更接近于生理条件下的胰岛素与葡萄糖动力学。值得注意的是,受多种激素影响,该实验并不能完全提供关于胰岛素抵抗的相关信息[10]

2.4. 稳态模型评估(HOMA)

当发生胰岛素抵抗,β细胞功能缺陷会导致葡萄糖介导的胰岛素降糖作用减弱,且胰岛素抑制肝脏葡萄糖分解作用减弱[12],该模型正是通过用一非线性方程来描述这种葡萄糖–胰岛素稳态。其公式为(HOMA-IR) = {[空腹胰岛素(μU/ml)] × [空腹血糖(mmol/l)]}/22.5,然而,受不同人群及测量方式的影响,HOMA-IR的变异系数很大。此后,KATZ A等人发现log (HOMA-IR)与葡萄糖钳夹实验所测得的胰岛素敏感性有更强的线性相关性[13],不足的是,在胰岛细胞功能重度受损的情况下,该模型将不再适用[10]。此外,该模型需要测定空腹胰岛素水平,在一些贫困地区及下级医院可能无法实现。因此,急需一种简易且经济的指标来评估胰岛素抵抗程度。

2.5. 甘油三酯葡萄糖指数(TyG)

2008年被首次提出,已被证实可以作为IR的替代物[14]。其公式为Ln [空腹甘油三酯(mg/dL) × 空腹葡萄糖(mg/dL)/2]。然而,相比于高胰岛素–正葡萄糖钳夹试验显示出的高灵敏度(96.5%)和特异性(85.0%),TyG的低特异性(45.0%)和可能高比例的假阳性检测限制了TyG指数在IR筛查中的广泛使用[15]。后来,在一些大规模的临床研究中,发现TyG不仅在糖尿病和糖耐量受损的发生发展中起着至关重要的作用,还在肥胖、高血压、代谢综合征中起着重要作用。这些因素都是冠心病的独立危险因素[16]。目前,越来越多学者开始研究TyG对心血管疾病的发展及不良预后的影响。

3. IR与冠心病的关系

随着社会经济的发展和医疗水平的进步,我国居民人均寿命显著延长,健康意识也不断提升,传统的不良生活习惯如吸烟、饮酒等现象已有所改善。然而,现代生活节奏加快导致的工作压力激增,使得高油、高盐饮食成为普遍选择,加之长期缺乏规律运动以及普遍存在的焦虑、抑郁等心理健康问题,共同促使肥胖症、2型糖尿病和冠心病等慢性代谢性疾病的发病率呈现持续上升趋势。心血管疾病是糖尿病患者死亡的主要原因,大于50%的患者将死于心血管事件,尤其是冠状动脉疾病。胰岛素抵抗是破坏血糖稳态的核心,并已被证实是CVD的危险因素[17]。胰岛素抵抗还是代谢综合征核心机制,而代谢综合征是心血管疾病事件的重要前兆,胰岛素抵抗可通过多种机制促进动脉粥样硬化生成和斑块进展,包括改变心血管疾病危险因素和下调胰岛素信号通路[18]。一项纳入63,746名CAD患者和130,681名健康个体的研究报告称,脂质代谢和炎症是参与冠状动脉粥样硬化发病机制的关键生物学过程[19]。胰岛素抵抗可刺激交感神经兴奋[18],抑制一氧化氮途径,高血糖可刺激肾素–血管紧张素–醛固酮系统兴奋,导致血压升高[19],高血压损伤血管内皮,低密度脂蛋白等脂质颗粒进入血管内皮,内皮细胞释放多种细胞因子和趋化因子,吸引炎症细胞聚集及诱导平滑肌细胞增殖及迁移,导致动脉粥样硬化斑块形成,这恰恰是冠心病发病的主要环节。

4. 甘油三酯葡萄糖指数与冠心病的研究进展

高甘油三酯血症可以加速低密度脂蛋白的合成,降低高密度脂蛋白的浓度,促进冠状动脉粥样硬化[20],而高血糖会加速动脉粥样硬化的进展,因此,将二者结合起来的新指数-TyG指数,在冠心病的早期诊断和预后预测方面展现出独特的临床价值。有研究表明,尽管存在糖尿病,但TyG指数与CVD的发病率之间存在显著关系,包括冠状动脉钙化、冠状动脉狭窄,多支血管CAD风险升高相关[21]-[23],目前,大量研究表明,TyG是冠心病发生MACEs的独立危险因素,包括稳定型冠心病、急性冠脉综合征、急性冠脉综合征PCI术后发生血运重建、心肌梗死PCI术后发生血运重建、心力衰竭预后相关。本研究重点概括TyG与冠心病发生MACEs的关系。

5. TyG与MACE的关系

5.1. TyG与ACS患者的不良预后

王等人在一项纳入2531例连续接受冠状动脉造影治疗ACS的糖尿病患者中发现,TyG指数与MACEs升高呈正相关,TyG指数是MACEs的独立预测因子,多变量Cox风险回归分析显示(95% CI 1.201~1.746; P < 0.001) [24]。该研究样本量虽然较大,但并未纳入非糖尿病患者及未接受过冠脉介入治疗的人群,因此具有一定的局限性。刘等人对442例未接受心脏介入手术及冠状动脉旁路移植术患者的一项研究中发现,无论患者是否有糖尿病,TyG与患者冠状动脉严重程度密切相关,是MACEs发生的独立预测因子,CoX比例风险模型分析:高TyG组MACEs发生率是低TyG组的1.79倍[HR = 1.79, 95% CI (1.23, 2.59), P = 0.001] [25],但该研究样本量较小,急需更大的样本量研究。Wang等人在一项纳入5046例诊断为糖尿病合并急性冠脉综合征的前瞻性队列研究中发现,升高的TyG指数(HR: 1.18; 95% CI 1.05~1.32每增加1个单位)与MACCE风险独立相关。该研究属于前瞻性研究,样本量大,随访时间长,纳入了各种可变因素,具有相对高的可信性,但很少有大样本研究在不同糖代谢情况下TyG对ACS不良心血管事件的影响[26]

5.2. TyG与冠心病患者PCI术后发生血运重建的预后

Chen等人随访了633例T2DM合并冠心病患者,中位随访时间为18.33个月,在控制了混杂因素后,发现TyG指数与复发性血运重建风险有较高独立相关性[SHR: 1.4345, (95% CI 1.1458~1.7959), P = 0.002],与空腹血糖(FBG) (0.539, 95% CI 0.466~0.612) (P = 0.0046)和HbA1c (0.520, 95% CI 0.448~0.592) (P = 0.0438)相比,预测复发性血运重建的TyG指数(0.631, 95% CI 0.560~0.702)的受试者工作特征曲线下面积(AUC)显著升高。表明与FBG、HbA1c相比,TyG具有更好地预测复发性血运重建的能力[27],可以为冠心病PCI术后患者提供预测价值,不足的是,该实验是一项小样本单中心研究,未纳入需要行PCI治疗的无症状患者,也不适用于非糖尿病患者。

Zhao等人在随访了1510名被诊断为NSTE-ACS,并接受了择期PCI手术的受试者,随访周期为48个月,发现TyG指数水平升高与MACEs (包括全因死亡、非致死性心肌梗死、非致死性缺血性卒中和缺血驱动的血运重建)风险增加显著相关,即使在调整混杂因素后也是如此[28]。不同于Zhao等人的研究,Yang等人在一项长达29个月的随访中,记录了5489例接受PCI的非糖尿病患者,结果表明,TyG与该患者MACEs无关(HR: 0.77, 95% CI 0.56~1.16, MACCE的P = 0.210) [29],这可能与该研究纳入了部分慢性冠脉综合征患者有关。有研究表明,ACS患者易发生应激性高血糖,掩盖TyG指数对预后的影响[30]。贾等人对486名诊断为AMI并行经皮冠状动脉介入治疗的患者,进行了为期平均31个月的随访,发现,高TyG指数组的MACE发生率显著升高,而在非糖尿病患者TyG指数对心梗患者PCI后长期预后的亚组分析中仅发现再次血运重建的发生随着TyG指数的增高而增高,并未发现TyG指数与MACE、全因死亡及再梗死有显著相关性[31],这可能与该研究样本量较少,误差较大有关。随后便有一项纳入20,403例样本的大规模研究表明,较高的TyG指数可作为预测AMI患者的MACCE和全因死亡的独立指标。并不受糖尿病状态及冠状动脉血运重建的影响[32]

5.3. TyG对心力衰竭患者发生不良心血管事件的预后价值

NI等人在一项纳入了8693例射血分数保留的心力衰竭(HFpEF)患者的队列研究中发现,TyG及其他衍生胰岛素抵抗代谢指标,如yG指数与体重指数(TyG-BMI)、血浆动脉粥样硬化指数(AIP)和胰岛素抵抗代谢评分(METS-IR),均与MACE独立相关,包括全因死亡率和心力衰竭再住院。其中TyG是HFpEF患者风险分层最有希望的指标[33],但该研究并未纳入射血分数降低的心力衰竭(HFrEF),具有一定局限性。在另一项纳入慢性心力衰竭(CHF)患者并基于LVEF进行亚组分析的回顾性队列研究发现,TyG指数与HFpEF及射血分数中间值心力衰竭(HFmrEF)患者的长期死亡率相关,但与HFrEF无关[34]。这可能与IR影响糖脂代谢,导致心肌细胞耗氧量增加,缺氧导致活性氧及炎症因子增加,损伤细胞内正常化学通路,激活肾素–血管紧张素系统有关[35]。但目前尚无关于TyG对冠心病导致的心力衰竭不良预后的预测价值相关研究。

6. 小结及展望

冠心病是危害人民生命健康的危险因素,其不良心血管事件是导致患者死亡的主要原因,甘油三酯葡萄糖指数作为已经被公认为可以代替IR的有效指标,可以有效预测心血管不良事件。除此之外,目前有一些其他衍生指标,如甘油三酯葡萄糖–腰围(TyG-WC)、甘油三酯葡萄糖–腰围比(TyG-WHtR)、甘油三酯葡萄糖–体重指数(TyG-BMI),计算公式为WHtR = 腰围/身高;TyG-WC = TyG × 腰围;TyG-WHtR = TyG × WHtR;TyG-BMI = TyG × BMI。以上指标与心血管疾病(CVD)死亡率、充血性心力衰竭、心肌梗死、心绞痛、冠心病显著相关。甚至比TyG更好预测CVD死亡率[36],基于以往研究,腰围和腰臀比,可能比单独提高BMI更能反映内脏脂肪堆积和不良代谢特征[37],上述指标突出了腹型肥胖结合TyG对冠心病的影响,相比于单一TyG,上述指标在肥胖人群更具代表性,未来可以在此相关方面进行更多的研究。除可以预测冠心病的不良预后外,TyG也可以预测慢性冠脉综合征合并冠状动脉微血管功能障碍患者的不良预后[38]。因此,如何控制TyG在合理范围之内,显得尤为重要。除积极控制血脂和血糖外,目前有研究表明,钠–葡萄糖协同转运蛋白2 (SGLT2)抑制剂(达格列净)等新型抗糖尿病药物可以改善TyG及降低MACE [39]。未来可以进一步深入研究TyG与其他导致冠心病的相关分子生物学研究,如炎症反应。也可以通过大规模前瞻性研究分析不同人群,如不同人种间,不同糖代谢状态人群中TyG指数对冠心病患者的不良预后价值,构建多中心预测体系等。总体来说,TyG与冠心病的不良预后相关,可利用其早期识别冠心病高危人群,同时评估冠状动脉病变严重程度及预测患者临床结局,协助医师进行危险分层,为制定治疗方案提供重要依据,大大减少医疗负担。

参考文献

[1] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要[J]. 中国循环杂志, 2022, 37(6): 553-578.
[2] Araújo, S.P., Juvanhol, L.L., Bressan, J. and Hermsdorff, H.H.M. (2022) Triglyceride Glucose Index: A New Biomarker in Predicting Cardiovascular Risk. Preventive Medicine Reports, 29, Article ID: 101941.
https://doi.org/10.1016/j.pmedr.2022.101941
[3] Li, Q. and Yuan, J. (2023) Abstract 13237: The Combined Effect of Triglyceride-Glucose Index and High Sensitivity C-Reactive Protein on Cardiovascular Outcomes in Patients with Chronic Coronary Syndrome: A Multicenter Cohort Study. Circulation, 148, A13237.
https://doi.org/10.1161/circ.148.suppl_1.13237
[4] Chen, Q., Xiong, S., Zhang, Z., Yu, X., Chen, Y., Ye, T., et al. (2023) Triglyceride-Glucose Index Is Associated with Recurrent Revascularization in Patients with Type 2 Diabetes Mellitus after Percutaneous Coronary Intervention. Cardiovascular Diabetology, 22, Article No. 284.
https://doi.org/10.1186/s12933-023-02011-2
[5] DeFronzo, R.A., Tobin, J.D. and Andres, R. (1979) Glucose Clamp Technique: A Method for Quantifying Insulin Secretion and Resistance. American Journal of Physiology-Endocrinology and Metabolism, 237, E214-E223.
https://doi.org/10.1152/ajpendo.1979.237.3.e214
[6] Campbell, P.J., Mandarino, L.J. and Gerich, J.E. (1988) Quantification of the Relative Impairment in Actions of Insulin on Hepatic Glucose Production and Peripheral Glucose Uptake in Non-Insulin-Dependent Diabetes Mellitus. Metabolism, 37, 15-21.
https://doi.org/10.1016/0026-0495(88)90023-6
[7] Rizza, R.A., Mandarino, L.J. and Gerich, J.E. (1981) Dose-Response Characteristics for Effects of Insulin on Production and Utilization of Glucose in Man. American Journal of Physiology-Endocrinology and Metabolism, 240, E630-E639.
https://doi.org/10.1152/ajpendo.1981.240.6.e630
[8] Gelfand, R.A. and Barrett, E.J. (1987) Effect of Physiologic Hyperinsulinemia on Skeletal Muscle Protein Synthesis and Breakdown in Man. Journal of Clinical Investigation, 80, 1-6.
https://doi.org/10.1172/jci113033
[9] Groop, L.C., Bonadonna, R.C., DelPrato, S., Ratheiser, K., Zyck, K., Ferrannini, E., et al. (1989) Glucose and Free Fatty Acid Metabolism in Non-Insulin-Dependent Diabetes Mellitus. Evidence for Multiple Sites of Insulin Resistance. Journal of Clinical Investigation, 84, 205-213.
https://doi.org/10.1172/jci114142
[10] Muniyappa, R., Lee, S., Chen, H. and Quon, M.J. (2008) Current Approaches for Assessing Insulin Sensitivity and Resistance in Vivo: Advantages, Limitations, and Appropriate Usage. American Journal of Physiology-Endocrinology and Metabolism, 294, E15-E26.
https://doi.org/10.1152/ajpendo.00645.2007
[11] Shen, S., Reaven, G.M. and Farquhar, J.W. (1970) Comparison of Impedance to Insulin-Mediated Glucose Uptake in Normal Subjects and in Subjects with Latent Diabetes. Journal of Clinical Investigation, 49, 2151-2160.
https://doi.org/10.1172/jci106433
[12] Matthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A., Treacher, D.F. and Turner, R.C. (1985) Homeostasis Model Assessment: Insulin Resistance and β-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia, 28, 412-419.
https://doi.org/10.1007/bf00280883
[13] Katz, A., Nambi, S.S., Mather, K., Baron, A.D., Follmann, D.A., Sullivan, G., et al. (2000) Quantitative Insulin Sensitivity Check Index: A Simple, Accurate Method for Assessing Insulin Sensitivity in Humans. The Journal of Clinical Endocrinology & Metabolism, 85, 2402-2410.
https://doi.org/10.1210/jcem.85.7.6661
[14] Simental-Mendía, L.E., Rodríguez-Morán, M. and Guerrero-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304.
https://doi.org/10.1089/met.2008.0034
[15] Guerrero-Romero, F., Simental-Mendía, L.E., González-Ortiz, M., Martínez-Abundis, E., Ramos-Zavala, M.G., Hernández-González, S.O., et al. (2010) The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. The Journal of Clinical Endocrinology & Metabolism, 95, 3347-3351.
https://doi.org/10.1210/jc.2010-0288
[16] Tao, L., Xu, J., Wang, T., Hua, F. and Li, J. (2022) Triglyceride-Glucose Index as a Marker in Cardiovascular Diseases: Landscape and Limitations. Cardiovascular Diabetology, 21, Article No. 68.
https://doi.org/10.1186/s12933-022-01511-x
[17] Laakso, M. and Kuusisto, J. (2014) Insulin Resistance and Hyperglycaemia in Cardiovascular Disease Development. Nature Reviews Endocrinology, 10, 293-302.
https://doi.org/10.1038/nrendo.2014.29
[18] Bornfeldt, K.E. and Tabas, I. (2011) Insulin Resistance, Hyperglycemia, and Atherosclerosis. Cell Metabolism, 14, 575-585.
https://doi.org/10.1016/j.cmet.2011.07.015
[19] Deloukas, P., et al. (2013) Large-Scale Association Analysis Identified New Risk Loci for Coronary Heart Disease. Nature Genetics, 45, 25-33.
[20] Ginsberg, H.N., Packard, C.J., Chapman, M.J., Borén, J., Aguilar-Salinas, C.A., Averna, M., et al. (2021) Triglyceride-rich Lipoproteins and Their Remnants: Metabolic Insights, Role in Atherosclerotic Cardiovascular Disease, and Emerging Therapeutic Strategies—A Consensus Statement from the European Atherosclerosis Society. European Heart Journal, 42, 4791-4806.
https://doi.org/10.1093/eurheartj/ehab551
[21] Wang, X., Xu, W., Song, Q., Zhao, Z., Meng, X., Xia, C., et al. (2022) Association between the Triglyceride-Glucose Index and Severity of Coronary Artery Disease. Cardiovascular Diabetology, 21, Article No. 168.
https://doi.org/10.1186/s12933-022-01606-5
[22] Park, K., Ahn, C.W., Lee, S.B., Kang, S., Nam, J.S., Lee, B.K., et al. (2019) Elevated Tyg Index Predicts Progression of Coronary Artery Calcification. Diabetes Care, 42, 1569-1573.
https://doi.org/10.2337/dc18-1920
[23] Lee, E.Y., Yang, H.K., Lee, J., Kang, B., Yang, Y., Lee, S., et al. (2016) Triglyceride Glucose Index, a Marker of Insulin Resistance, Is Associated with Coronary Artery Stenosis in Asymptomatic Subjects with Type 2 Diabetes. Lipids in Health and Disease, 15, Article No. 155.
https://doi.org/10.1186/s12944-016-0324-2
[24] Wang, W., Yang, J., Wang, K., Niu, J., Liu, Y. and Ge, H. (2024) Association between the Triglyceride-Glucose Index and In-Hospital Major Adverse Cardiovascular Events in Patients with Acute Coronary Syndrome: Results from the Improving Care for Cardiovascular Disease in China (CCC)-Acute Coronary Syndrome Project. Cardiovascular Diabetology, 23, Article No. 170.
https://doi.org/10.1186/s12933-024-02270-7
[25] 刘正阳, 张月兰. 甘油三酯-葡萄糖指数对ACS患者冠状动脉病变严重程度及MACEs的预测价值[J]. 重庆医学, 2023, 52(8): 1141-1146.
[26] Wang, M., Zhou, L., Su, W., Dang, W., Li, H. and Chen, H. (2023) Independent and Joint Associations between the Triglyceride-Glucose Index and NT-proBNP with the Risk of Adverse Cardiovascular Events in Patients with Diabetes and Acute Coronary Syndrome: A Prospective Cohort Study. Cardiovascular Diabetology, 22, Article No. 149.
https://doi.org/10.1186/s12933-023-01890-9
[27] Chen, Q., Xiong, S., Zhang, Z., Yu, X., Chen, Y., Ye, T., et al. (2023) Triglyceride-Glucose Index Is Associated with Recurrent Revascularization in Patients with Type 2 Diabetes Mellitus after Percutaneous Coronary Intervention. Cardiovascular Diabetology, 22, Article No. 284.
https://doi.org/10.1186/s12933-023-02011-2
[28] Zhao, Q., Zhang, T., Cheng, Y., Ma, Y., Xu, Y., Yang, J., et al. (2021) Triglyceride-Glucose Index as a Surrogate Marker of Insulin Resistance for Predicting Cardiovascular Outcomes in Nondiabetic Patients with Non-ST-Segment Elevation Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. Journal of Atherosclerosis and Thrombosis, 28, 1175-1194.
https://doi.org/10.5551/jat.59840
[29] Yang, J., Tang, Y., Zheng, Y., Li, C., Zhou, Q., Gao, J., et al. (2021) The Impact of the Triglyceride-Glucose Index on Poor Prognosis in Nondiabetic Patients Undergoing Percutaneous Coronary Intervention. Frontiers in Endocrinology, 12, Article ID: 710240.
https://doi.org/10.3389/fendo.2021.710240
[30] Al Jumaily, T., Rose'Meyer, R.B., Sweeny, A. and Jayasinghe, R. (2015) Cardiac Damage Associated with Stress Hyperglycaemia and Acute Coronary Syndrome Changes According to Level of Presenting Blood Glucose. International Journal of Cardiology, 196, 16-21.
https://doi.org/10.1016/j.ijcard.2015.05.143
[31] 贾宁, 王明生, 赵霞. 甘油三酯-葡萄糖指数对急性心肌梗死患者经皮冠状动脉介入治疗后长期预后的影响[J]. 重庆医科大学学报, 2023, 48(4): 417-422.
[32] Liu, H., Wang, L., Wang, H., Hao, X., Du, Z., Li, C., et al. (2024) The Association of Triglyceride-Glucose Index with Major Adverse Cardiovascular and Cerebrovascular Events after Acute Myocardial Infarction: A Meta-Analysis of Cohort Studies. Nutrition & Diabetes, 14, Article No. 39.
https://doi.org/10.1038/s41387-024-00295-1
[33] Ni, W., Jiang, R., Xu, D., Zhu, J., Chen, J., Lin, Y., et al. (2025) Association between Insulin Resistance Indices and Outcomes in Patients with Heart Failure with Preserved Ejection Fraction. Cardiovascular Diabetology, 24, Article No. 32.
https://doi.org/10.1186/s12933-025-02595-x
[34] Zhou, Y., Wang, C., Che, H., Cheng, L., Zhu, D., Rao, C., et al. (2023) Association between the Triglyceride-Glucose Index and the Risk of Mortality among Patients with Chronic Heart Failure: Results from a Retrospective Cohort Study in China. Cardiovascular Diabetology, 22, Article No. 171.
https://doi.org/10.1186/s12933-023-01895-4
[35] Aroor, A.R., Mandavia, C.H. and Sowers, J.R. (2012) Insulin Resistance and Heart Failure: Molecular Mechanisms. Heart Failure Clinics, 8, 609-617.
https://doi.org/10.1016/j.hfc.2012.06.005
[36] Dang, K., Wang, X., Hu, J., Zhang, Y., Cheng, L., Qi, X., et al. (2024) The Association between Triglyceride-Glucose Index and Its Combination with Obesity Indicators and Cardiovascular Disease: NHANES 2003-2018. Cardiovascular Diabetology, 23, Article No. 8.
https://doi.org/10.1186/s12933-023-02115-9
[37] The Emerging Risk Factors Collaboration, (2011) Separate and Combined Associations of Body-Mass Index and Abdominal Adiposity with Cardiovascular Disease: Collaborative Analysis of 58 Prospective Studies. The Lancet, 377, 1085-1095.
https://doi.org/10.1016/s0140-6736(11)60105-0
[38] Zhang, W., Liu, L., Chen, H., Li, S., Wan, M., Mohammed, A., et al. (2023) Association between the Triglyceride-Glucose Index and the Presence and Prognosis of Coronary Microvascular Dysfunction in Patients with Chronic Coronary Syndrome. Cardiovascular Diabetology, 22, Article No. 113.
https://doi.org/10.1186/s12933-023-01846-z
[39] Wang, K., Fan, T., He, F., Li, H., Fang, Y., Hu, G., et al. (2024) Influence of Sodium-Glucose Cotransporter 2 Inhibitors on the Triglyceride-Glucose Index in Acute Myocardial Infarction Patients with Type 2 Diabetes Mellitus. Cardiovascular Diagnosis and Therapy, 14, 1096-1107.
https://doi.org/10.21037/cdt-24-287