[1]
|
González‐Moles, M.Á., Warnakulasuriya, S., González‐Ruiz, I., González‐Ruiz, L., Ayén, Á., Lenouvel, D., et al. (2020) Worldwide Prevalence of Oral Lichen Planus: A Systematic Review and Meta‐Analysis. Oral Diseases, 27, 813-828. https://doi.org/10.1111/odi.13323
|
[2]
|
McCartan, B.E. and Healy, C.M. (2008) The Reported Prevalence of Oral Lichen Planus: A Review and Critique. Journal of Oral Pathology & Medicine, 37, 447-453. https://doi.org/10.1111/j.1600-0714.2008.00662.x
|
[3]
|
Cheng, L.L. (2022) The Proportion of Oral Lichen Planus Cases with Malignant Transformation May Be Higher, Than Reported to Date. Journal of Evidence-Based Dental Practice, 22, Article ID: 101717. https://doi.org/10.1016/j.jebdp.2022.101717
|
[4]
|
Warnakulasuriya, S., Kujan, O., Aguirre‐Urizar, J.M., Bagan, J.V., González‐Moles, M.Á., Kerr, A.R., et al. (2020) Oral Potentially Malignant Disorders: A Consensus Report from an International Seminar on Nomenclature and Classification, Convened by the WHO Collaborating Centre for Oral Cancer. Oral Diseases, 27, 1862-1880. https://doi.org/10.1111/odi.13704
|
[5]
|
Nammour, S., El Mobadder, M., Brugnera, A.J., Namour, M., Houeis, S., Heysselaer, D., et al. (2021) Photobiomodulation Therapy vs. Corticosteroid for the Management of Erosive/Ulcerative and Painful Oral Lichen Planus. Assessment of Success Rate during One-Year Follow-Up: A Retrospective Study. Healthcare, 9, Article 1137. https://doi.org/10.3390/healthcare9091137
|
[6]
|
Mozaffari, H.R., Zavattaro, E., Saeedi, M., Lopez-Jornet, P., Sadeghi, M., Safaei, M., et al. (2019) Serum and Salivary Interleukin-4 Levels in Patients with Oral Lichen Planus: A Systematic Review and Meta-Analysis. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 128, 123-131. https://doi.org/10.1016/j.oooo.2019.04.003
|
[7]
|
Pouralibaba, F., Babaloo, Z., Pakdel, F., et al. (2013) Serum Level of Interleukin 17 in Patients with Erosive and Non erosive Oral Lichen Planus. Journal of Dental Research, Dental Clinics, Dental Prospects, 7, 91-94.
|
[8]
|
Wang, K., Miao, T., Lu, W., He, J., Cui, B., Li, J., et al. (2015) Analysis of Oral Microbial Community and Th17‐associated Cytokines in Saliva of Patients with Oral Lichen Planus. Microbiology and Immunology, 59, 105-113. https://doi.org/10.1111/1348-0421.12232
|
[9]
|
Chen, J., Liu, K., Sun, X., Shi, X., Zhao, G. and Yang, Z. (2022) Microbiome Landscape of Lesions and Adjacent Normal Mucosal Areas in Oral Lichen Planus Patient. Frontiers in Microbiology, 13, Article 992065. https://doi.org/10.3389/fmicb.2022.992065
|
[10]
|
Pignatelli, P., Curia, M.C., Tenore, G., Bondi, D., Piattelli, A. and Romeo, U. (2024) Oral Bacteriome and Oral Potentially Malignant Disorders: A Systematic Review of the Associations. Archives of Oral Biology, 160, Article ID: 105891. https://doi.org/10.1016/j.archoralbio.2024.105891
|
[11]
|
Shi, X., Ma, T., Sakandar, H.A., Menghe, B. and Sun, Z. (2022) Gut Microbiome and Aging Nexus and Underlying Mechanism. Applied Microbiology and Biotechnology, 106, 5349-5358. https://doi.org/10.1007/s00253-022-12089-5
|
[12]
|
Lezutekong, J.N., Nikhanj, A. and Oudit, G.Y. (2018) Imbalance of Gut Microbiome and Intestinal Epithelial Barrier Dysfunction in Cardiovascular Disease. Clinical Science, 132, 901-904. https://doi.org/10.1042/cs20180172
|
[13]
|
Jandhyala, S.M. (2015) Role of the Normal Gut Microbiota. World Journal of Gastroenterology, 21, 8787-8803. https://doi.org/10.3748/wjg.v21.i29.8787
|
[14]
|
Hotamisligil, G.S. (2017) Inflammation, Metaflammation and Immunometabolic Disorders. Nature, 542, 177-185. https://doi.org/10.1038/nature21363
|
[15]
|
Santos, W.S., Solon, I.G. and Branco, L.G.S. (2024) Impact of Periodontal Lipopolysaccharides on Systemic Health: Mechanisms, Clinical Implications, and Future Directions. Molecular Oral Microbiology, 40, 117-127. https://doi.org/10.1111/omi.12490
|
[16]
|
Narayanan, A., Kieri, O., Vesterbacka, J., Manoharan, L., Chen, P., Ghorbani, M., et al. (2024) Exploring the Interplay between Antiretroviral Therapy and the Gut-Oral Microbiome Axis in People Living with HIV. Scientific Reports, 14, Article No. 17820. https://doi.org/10.1038/s41598-024-68479-4
|
[17]
|
Maki, K.A., Kazmi, N., Barb, J.J. and Ames, N. (2020) The Oral and Gut Bacterial Microbiomes: Similarities, Differences, and Connections. Biological Research for Nursing, 23, 7-20. https://doi.org/10.1177/1099800420941606
|
[18]
|
Chen, B., Lin, W., Li, Y., Bi, C., Du, L., Liu, Y., et al. (2023) Roles of Oral Microbiota and Oral-Gut Microbial Transmission in Hypertension. Journal of Advanced Research, 43, 147-161. https://doi.org/10.1016/j.jare.2022.03.007
|
[19]
|
Buhaș, M.C., Gavrilaș, L.I., Candrea, R., Cătinean, A., Mocan, A., Miere, D., et al. (2022) Gut Microbiota in Psoriasis. Nutrients, 14, Article 2970. https://doi.org/10.3390/nu14142970
|
[20]
|
Franzosa, E.A., Sirota-Madi, A., Avila-Pacheco, J., Fornelos, N., Haiser, H.J., Reinker, S., et al. (2018) Gut Microbiome Structure and Metabolic Activity in Inflammatory Bowel Disease. Nature Microbiology, 4, 293-305. https://doi.org/10.1038/s41564-018-0306-4
|
[21]
|
Xu, J., Zhang, S., Tian, Y., Si, H., Zeng, Y., Wu, Y., et al. (2022) Genetic Causal Association between Iron Status and Osteoarthritis: A Two-Sample Mendelian Randomization. Nutrients, 14, Article 3683. https://doi.org/10.3390/nu14183683
|
[22]
|
Davies, N.M., Holmes, M.V. and Davey Smith, G. (2018) Reading Mendelian Randomisation Studies: A Guide, Glossary, and Checklist for Clinicians. BMJ, 362, k601. https://doi.org/10.1136/bmj.k601
|
[23]
|
Sekula, P., Del Greco M, F., Pattaro, C. and Köttgen, A. (2016) Mendelian Randomization as an Approach to Assess Causality Using Observational Data. Journal of the American Society of Nephrology, 27, 3253-3265. https://doi.org/10.1681/asn.2016010098
|
[24]
|
Kurilshikov, A., Medina-Gomez, C., Bacigalupe, R., Radjabzadeh, D., Wang, J., Demirkan, A., et al. (2021) Large-Scale Association Analyses Identify Host Factors Influencing Human Gut Microbiome Composition. Nature Genetics, 53, 156-165. https://doi.org/10.1038/s41588-020-00763-1
|
[25]
|
Kurki, M.I., Karjalainen, J., Palta, P., Sipilä, T.P., Kristiansson, K., Donner, K.M., et al. (2023) FinnGen Provides Genetic Insights from a Well-Phenotyped Isolated Population. Nature, 613, 508-518. https://doi.org/10.1038/s41586-022-05473-8
|
[26]
|
Burgess, S., Davey Smith, G., Davies, N.M., Dudbridge, F., Gill, D., Glymour, M.M., et al. (2019) Guidelines for Performing Mendelian Randomization Investigations: Update for Summer 2023. Wellcome Open Research, 4, Article 186. https://doi.org/10.12688/wellcomeopenres.15555.1
|
[27]
|
Holmes, M.V., Ala-Korpela, M. and Smith, G.D. (2017) Mendelian Randomization in Cardiometabolic Disease: Challenges in Evaluating Causality. Nature Reviews Cardiology, 14, 577-590. https://doi.org/10.1038/nrcardio.2017.78
|
[28]
|
Ismail, S.B., Kumar, S.K.S. and Zain, R.B. (2007) Oral Lichen Planus and Lichenoid Reactions: Etiopathogenesis, Diagnosis, Management and Malignant Transformation. Journal of Oral Science, 49, 89-106. https://doi.org/10.2334/josnusd.49.89
|
[29]
|
Kato, L.M., Kawamoto, S., Maruya, M. and Fagarasan, S. (2014) The Role of the Adaptive Immune System in Regulation of Gut Microbiota. Immunological Reviews, 260, 67-75. https://doi.org/10.1111/imr.12185
|
[30]
|
Caesar, R. (2024) The Impact of Novel Probiotics Isolated from the Human Gut on the Gut Microbiota and Health. Diabetes, Obesity and Metabolism, 27, 3-14. https://doi.org/10.1111/dom.16129
|
[31]
|
Yi, C., Huang, S., Zhang, W., Guo, L., Xia, T., Huang, F., et al. (2025) Synergistic Interactions between Gut Microbiota and Short Chain Fatty Acids: Pioneering Therapeutic Frontiers in Chronic Disease Management. Microbial Pathogenesis, 199, Article ID: 107231. https://doi.org/10.1016/j.micpath.2024.107231
|
[32]
|
Holmstrøm, K., Collins, M.D., Møller, T., Falsen, E. and Lawson, P.A. (2004) Subdoligranulum variabile gen. nov., sp. nov. from human feces. Anaerobe, 10, 197-203. https://doi.org/10.1016/j.anaerobe.2004.01.004
|
[33]
|
Sun, B., Jia, Y., Hong, J., Sun, Q., Gao, S., Hu, Y., et al. (2018) Sodium Butyrate Ameliorates High-Fat-Diet-Induced Non-Alcoholic Fatty Liver Disease through Peroxisome Proliferator-Activated Receptor α-Mediated Activation of β Oxidation and Suppression of Inflammation. Journal of Agricultural and Food Chemistry, 66, 7633-7642. https://doi.org/10.1021/acs.jafc.8b01189
|
[34]
|
Ye, J., Lv, L., Wu, W., Li, Y., Shi, D., Fang, D., et al. (2018) Butyrate Protects Mice against Methionine-Choline-Deficient Diet-Induced Non-Alcoholic Steatohepatitis by Improving Gut Barrier Function, Attenuating Inflammation and Reducing Endotoxin Levels. Frontiers in Microbiology, 9, Article 1967. https://doi.org/10.3389/fmicb.2018.01967
|
[35]
|
Amiri, P., Arefhosseini, S., Bakhshimoghaddam, F., Jamshidi Gurvan, H. and Hosseini, S.A. (2022) Mechanistic Insights into the Pleiotropic Effects of Butyrate as a Potential Therapeutic Agent on NAFLD Management: A Systematic Review. Frontiers in Nutrition, 9, Article 1037696. https://doi.org/10.3389/fnut.2022.1037696
|
[36]
|
Baumann, A., Jin, C., Brandt, A., Sellmann, C., Nier, A., Burkard, M., et al. (2020) Oral Supplementation of Sodium Butyrate Attenuates the Progression of Non-Alcoholic Steatohepatitis. Nutrients, 12, Article 951. https://doi.org/10.3390/nu12040951
|
[37]
|
Yang, T., Yang, H., Heng, C., Wang, H., Chen, S., Hu, Y., et al. (2020) Amelioration of Non-Alcoholic Fatty Liver Disease by Sodium Butyrate Is Linked to the Modulation of Intestinal Tight Junctions in Db/Db Mice. Food & Function, 11, 10675-10689. https://doi.org/10.1039/d0fo01954b
|
[38]
|
Zhou, D., Pan, Q., Xin, F., Zhang, R., He, C., Chen, G., et al. (2017) Sodium Butyrate Attenuates High-Fat Diet-Induced Steatohepatitis in Mice by Improving Gut Microbiota and Gastrointestinal Barrier. World Journal of Gastroenterology, 23, 60-75. https://doi.org/10.3748/wjg.v23.i1.60
|
[39]
|
Peng, L., Li, Z., Green, R.S., Holzmanr, I.R. and Lin, J. (2009) Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers. The Journal of Nutrition, 139, 1619-1625. https://doi.org/10.3945/jn.109.104638
|
[40]
|
Zhong, S., Yang, Y., Huo, J., Sun, Y., Zhao, H., Dong, X., et al. (2025) Cyanidin-3-Rutinoside from Mori Fructus Ameliorates Dyslipidemia via Modulating Gut Microbiota and Lipid Metabolism Pathway. The Journal of Nutritional Biochemistry, 137, Article ID: 109834. https://doi.org/10.1016/j.jnutbio.2024.109834
|
[41]
|
Xu, H., Huang, H., Liu, Y., Zhu, J., Zhou, Y., Chen, H., et al. (2021) Selection Strategy of Dextran Sulfate Sodium-Induced Acute or Chronic Colitis Mouse Models Based on Gut Microbial Profile. BMC Microbiology, 21, Article No. 279. https://doi.org/10.1186/s12866-021-02342-8
|
[42]
|
Ma, D., Zhang, M. and Feng, J. (2024) Gut Microbiota Alleviates Intestinal Injury Induced by Extended Exposure to Light via Inhibiting the Activation of NLRP3 Inflammasome in Broiler Chickens. International Journal of Molecular Sciences, 25, Article 6695. https://doi.org/10.3390/ijms25126695
|
[43]
|
Yeoh, Y.K., Sun, Y., Ip, L.Y.T., Wang, L., Chan, F.K.L., Miao, Y., et al. (2022) Prevotella Species in the Human Gut Is Primarily Comprised of Prevotella copri, Prevotella stercorea and Related Lineages. Scientific Reports, 12, Article No. 9055. https://doi.org/10.1038/s41598-022-12721-4
|
[44]
|
Patrone, V., Puglisi, E., Cardinali, M., Schnitzler, T.S., Svegliati, S., Festa, A., et al. (2017) Gut Microbiota Profile in Systemic Sclerosis Patients with and without Clinical Evidence of Gastrointestinal Involvement. Scientific Reports, 7, Article No. 14874. https://doi.org/10.1038/s41598-017-14889-6
|
[45]
|
Low, A.H.L., Teng, G.G., Pettersson, S., de Sessions, P.F., Ho, E.X.P., Fan, Q., et al. (2019) A Double-Blind Randomized Placebo-Controlled Trial of Probiotics in Systemic Sclerosis Associated Gastrointestinal Disease. Seminars in Arthritis and Rheumatism, 49, 411-419. https://doi.org/10.1016/j.semarthrit.2019.05.006
|
[46]
|
Ao, X. and Zhang, Z. (2024) Effect of Xylo-Oligosaccharides on Intestinal Bacterial Diversity in Mice with Spleen Deficiency Constipation. Frontiers in Microbiology, 15, Article 1474374. https://doi.org/10.3389/fmicb.2024.1474374
|
[47]
|
Li, R., Shokri, F., Rincon, A., Rivadeneira, F., Medina-Gomez, C. and Ahmadizar, F. (2023) Bi-Directional Interactions between Glucose-Lowering Medications and Gut Microbiome in Patients with Type 2 Diabetes Mellitus: A Systematic Review. Genes, 14, Article 1572. https://doi.org/10.3390/genes14081572
|
[48]
|
Bäckhed, F., Ding, H., Wang, T., Hooper, L.V., Koh, G.Y., Nagy, A., et al. (2004) The Gut Microbiota as an Environmental Factor That Regulates Fat Storage. Proceedings of the National Academy of Sciences of the United States of America, 101, 15718-15723. https://doi.org/10.1073/pnas.0407076101
|
[49]
|
Wang, K., Jin, X., Li, Q., Sawaya, A.C.H.F., Le Leu, R.K., Conlon, M.A., et al. (2018) Propolis from Different Geographic Origins Decreases Intestinal Inflammation and Bacteroides Spp. Populations in a Model of DSS‐Induced Colitis. Molecular Nutrition & Food Research, 62, Article ID: 1800080. https://doi.org/10.1002/mnfr.201800080
|