[1]
|
Lou, T., Yang, R. and Fan, J. (2024) The Global Burden of Fatty Liver Disease: The Major Impact of China. Hepatobiliary Surgery and Nutrition, 13, 119-123. https://doi.org/10.21037/hbsn-23-556
|
[2]
|
Younossi, Z., Anstee, Q.M., Marietti, M., Hardy, T., Henry, L., Eslam, M., et al. (2017) Global Burden of NAFLD and NASH: Trends, Predictions, Risk Factors and Prevention. Nature Reviews Gastroenterology & Hepatology, 15, 11-20. https://doi.org/10.1038/nrgastro.2017.109
|
[3]
|
Leung, P.B., Davis, A.M. and Kumar, S. (2023) Diagnosis and Management of Nonalcoholic Fatty Liver Disease. JAMA, 330, 1687-1688. https://doi.org/10.1001/jama.2023.17935
|
[4]
|
Vidal-Cevallos, P., Murúa-Beltrán Gall, S., Uribe, M. and Chávez-Tapia, N.C. (2023) Understanding the Relationship between Nonalcoholic Fatty Liver Disease and Thyroid Disease. International Journal of Molecular Sciences, 24, Article No. 14605. https://doi.org/10.3390/ijms241914605
|
[5]
|
Gereben, B., McAninch, E.A., Ribeiro, M.O. and Bianco, A.C. (2015) Scope and Limitations of Iodothyronine Deiodinases in Hypothyroidism. Nature Reviews Endocrinology, 11, 642-652. https://doi.org/10.1038/nrendo.2015.155
|
[6]
|
Damiano, F., Rochira, A., Gnoni, A. and Siculella, L. (2017) Action of Thyroid Hormones, T3 and T2, on Hepatic Fatty Acids: Differences in Metabolic Effects and Molecular Mechanisms. International Journal of Molecular Sciences, 18, Article No. 744. https://doi.org/10.3390/ijms18040744
|
[7]
|
Lonardo, A., Ballestri, S., Mantovani, A., Nascimbeni, F., Lugari, S. and Targher, G. (2019) Pathogenesis of Hypothyroidism-Induced NAFLD: Evidence for a Distinct Disease Entity? Digestive and Liver Disease, 51, 462-470. https://doi.org/10.1016/j.dld.2018.12.014
|
[8]
|
Gariani, K. and Jornayvaz, F.R. (2021) Pathophysiology of NASH in Endocrine Diseases. Endocrine Connections, 10, R52-R65. https://doi.org/10.1530/ec-20-0490
|
[9]
|
Mavromati, M. and Jornayvaz, F.R. (2021) Hypothyroidism-Associated Dyslipidemia: Potential Molecular Mechanisms Leading to NAFLD. International Journal of Molecular Sciences, 22, Article No. 12797. https://doi.org/10.3390/ijms222312797
|
[10]
|
Li, Y., Wang, L., Zhou, L., Song, Y., Ma, S., Yu, C., et al. (2017) Thyroid Stimulating Hormone Increases Hepatic Gluconeogenesis via CRTC2. Molecular and Cellular Endocrinology, 446, 70-80. https://doi.org/10.1016/j.mce.2017.02.015
|
[11]
|
Kim, D., Kim, W., Joo, S.K., Bae, J.M., Kim, J.H. and Ahmed, A. (2018) Subclinical Hypothyroidism and Low-Normal Thyroid Function Are Associated with Nonalcoholic Steatohepatitis and Fibrosis. Clinical Gastroenterology and Hepatology, 16, 123-131.e1. https://doi.org/10.1016/j.cgh.2017.08.014
|
[12]
|
Lee, K.W., Bang, K.B., Rhee, E.J., Kwon, H.J., Lee, M.Y. and Cho, Y.K. (2015) Impact of Hypothyroidism on the Development of Non-Alcoholic Fatty Liver Disease: A 4-Year Retrospective Cohort Study. Clinical and Molecular Hepatology, 21, 372-378. https://doi.org/10.3350/cmh.2015.21.4.372
|
[13]
|
Mantovani, A., Nascimbeni, F., Lonardo, A., Zoppini, G., Bonora, E., Mantzoros, C.S., et al. (2018) Association between Primary Hypothyroidism and Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Thyroid, 28, 1270-1284. https://doi.org/10.1089/thy.2018.0257
|
[14]
|
Lee, J., Ha, J., Jo, K., Lim, D., Lee, J., Chang, S., et al. (2018) Male-Specific Association between Subclinical Hypothyroidism and the Risk of Non-Alcoholic Fatty Liver Disease Estimated by Hepatic Steatosis Index: Korea National Health and Nutrition Examination Survey 2013 to 2015. Scientific Reports, 8, Article No. 15145. https://doi.org/10.1038/s41598-018-32245-0
|
[15]
|
He, W., An, X., Li, L., Shao, X., Li, Q., Yao, Q., et al. (2017) Relationship between Hypothyroidism and Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Frontiers in Endocrinology, 8, Article No. 335. https://doi.org/10.3389/fendo.2017.00335
|
[16]
|
Guo, Z., Li, M., Han, B. and Qi, X. (2018) Association of Non-Alcoholic Fatty Liver Disease with Thyroid Function: A Systematic Review and Meta-analysis. Digestive and Liver Disease, 50, 1153-1162. https://doi.org/10.1016/j.dld.2018.08.012
|
[17]
|
Chen, Y., Tian, S., Wu, J., Li, H., Li, S., Xu, Z., et al. (2023) Impact of Thyroid Function on the Prevalence and Mortality of Metabolic Dysfunction-Associated Fatty Liver Disease. The Journal of Clinical Endocrinology & Metabolism, 108, e434-e443. https://doi.org/10.1210/clinem/dgad016
|
[18]
|
Kim, D., Vazquez-Montesino, L.M., Escober, J.A., Fernandes, C.T., Cholankeril, G., Loomba, R., et al. (2020) Low Thyroid Function in Nonalcoholic Fatty Liver Disease Is an Independent Predictor of All-Cause and Cardiovascular Mortality. American Journal of Gastroenterology, 115, 1496-1504. https://doi.org/10.14309/ajg.0000000000000654
|
[19]
|
Wang, H., Zheng, C. and Wang, P. (2025) Exploring the Nexus between Hypothyroidism and Metabolic Dysfunction-Associated Steatotic Liver Disease: A UK Biobank Cohort Study. Scientific Reports, 15, Article No. 6692. https://doi.org/10.1038/s41598-025-91221-7
|
[20]
|
Mantovani, A., Csermely, A., Bilson, J., Borella, N., Enrico, S., Pecoraro, B., et al. (2024) Association between Primary Hypothyroidism and Metabolic Dysfunction-Associated Steatotic Liver Disease: An Updated Meta-Analysis. Gut, 73, 1554-1561. https://doi.org/10.1136/gutjnl-2024-332491
|
[21]
|
苏志燕, 刘薇, 史婷婷. 甲状腺功能正常的2型糖尿病患者促甲状腺激素与代谢相关性脂肪肝的相关性研究[J]. 临床内科杂志, 2024, 41(6): 389-392.
|
[22]
|
Qiu, S., Cao, P., Guo, Y., Lu, H. and Hu, Y. (2021) Exploring the Causality between Hypothyroidism and Non-Alcoholic Fatty Liver: A Mendelian Randomization Study. Frontiers in Cell and Developmental Biology, 9, Article ID: 643582. https://doi.org/10.3389/fcell.2021.643582
|
[23]
|
王冬冬, 高梦瑶, 穆华夏, 卜伟晓, 王蒙, 孔雨佳, 王素珍. 基于孟德尔随机化的甲状腺功能减退症与非酒精性脂肪性肝病的因果分析[J]. 中国卫生统计, 2024, 41(3): 398-403.
|
[24]
|
Zhou, J., Tripathi, M., Ho, J.P., Widjaja, A.A., Shekeran, S.G., Camat, M.D., et al. (2022) Thyroid Hormone Decreases Hepatic Steatosis, Inflammation, and Fibrosis in a Dietary Mouse Model of Nonalcoholic Steatohepatitis. Thyroid, 32, 725-738. https://doi.org/10.1089/thy.2021.0621
|
[25]
|
Brenta, G., Berg, G., Miksztowicz, V., Lopez, G., Lucero, D., Faingold, C., et al. (2016) Atherogenic Lipoproteins in Subclinical Hypothyroidism and Their Relationship with Hepatic Lipase Activity: Response to Replacement Treatment with Levothyroxine. Thyroid, 26, 365-372. https://doi.org/10.1089/thy.2015.0140
|
[26]
|
Liu, L., Yu, Y., Zhao, M., Zheng, D., Zhang, X., Guan, Q., et al. (2017) Benefits of Levothyroxine Replacement Therapy on Nonalcoholic Fatty Liver Disease in Subclinical Hypothyroidism Patients. International Journal of Endocrinology, 2017, Article ID: 5753039. https://doi.org/10.1155/2017/5753039
|
[27]
|
Li, L., Song, Y., Shi, Y. and Sun, L. (2023) Thyroid Hormone Receptor-Β Agonists in NAFLD Therapy: Possibilities and Challenges. The Journal of Clinical Endocrinology & Metabolism, 108, 1602-1613. https://doi.org/10.1210/clinem/dgad072
|
[28]
|
Papaleontiou, M., Hawley, S.T. and Haymart, M.R. (2015) Effect of Thyrotropin Suppression Therapy on Bone in Thyroid Cancer Patients. The Oncologist, 21, 165-171. https://doi.org/10.1634/theoncologist.2015-0179
|
[29]
|
Lanni, A., Moreno, M., Lombardi, A., De Lange, P., Silvestri, E., Ragni, M., et al. (2005) 3,5‐Diiodo‐l‐thyronine Powerfully Reduces Adiposity in Rats by Increasing the Burning of Fats. The FASEB Journal, 19, 1552-1554. https://doi.org/10.1096/fj.05-3977fje
|
[30]
|
Mollica, M.P., Lionetti, L., Moreno, M., Lombardi, A., De Lange, P., Antonelli, A., et al. (2009) 3,5-Diiodo-l-thyronine, by Modulating Mitochondrial Functions, Reverses Hepatic Fat Accumulation in Rats Fed a High-Fat Diet. Journal of Hepatology, 51, 363-370. https://doi.org/10.1016/j.jhep.2009.03.023
|
[31]
|
Antonelli, A., Fallahi, P., Ferrari, S., Domenicantonio, A.D., Moreno, M., Lanni, A. and Goglia, F. (2011) 3,5-Diiodo-L-thyronine Increases Resting Metabolic Rate and Reduces Body Weight without Undesirable Side Effects. Journal of Biological Regulators and Homeostatic Agents, 25, 655-660.
|
[32]
|
Grasselli, E., Canesi, L., Portincasa, P., Voci, A., Vergani, L. and Demori, I. (2017) Models of Non-Alcoholic Fatty Liver Disease and Potential Translational Value: The Effects of 3,5-l-Diiodothyronine. Annals of Hepatology, 16, 707-719. https://doi.org/10.5604/01.3001.0010.2713
|
[33]
|
Zucchi, R. (2020) Thyroid Hormone Analogues: An Update. Thyroid, 30, 1099-1105. https://doi.org/10.1089/thy.2020.0071
|
[34]
|
Cioffi, F., Zambad, S.P., Chhipa, L., Senese, R., Busiello, R.A., Tuli, D., et al. (2010) TRC150094, a Novel Functional Analog of Iodothyronines, Reduces Adiposity by Increasing Energy Expenditure and Fatty Acid Oxidation in Rats Receiving a High‐Fat Diet. The FASEB Journal, 24, 3451-3461. https://doi.org/10.1096/fj.10-157115
|
[35]
|
Joshi, D., GJ, P., Ghosh, S., Mohanan, A., Joshi, S., Mohan, V., et al. (2022) TRC150094, a Novel Mitochondrial Modulator, Reduces Cardio-Metabolic Risk as an Add-On Treatment: A Phase-2, 24-Week, Multi-Center, Randomized, Double-Blind, Clinical Trial. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 15, 615-631. https://doi.org/10.2147/dmso.s330515
|
[36]
|
van der Valk, F., Hassing, C., Visser, M., Thakkar, P., Mohanan, A., Pathak, K., et al. (2014) The Effect of a Diiodothyronine Mimetic on Insulin Sensitivity in Male Cardiometabolic Patients: A Double-Blind Randomized Controlled Trial. PLOS ONE, 9, e86890. https://doi.org/10.1371/journal.pone.0086890
|
[37]
|
Keam, S.J. (2024) Resmetirom: First Approval. Drugs, 84, 729-735. https://doi.org/10.1007/s40265-024-02045-0
|
[38]
|
Harrison, S.A., Bashir, M.R., Guy, C.D., Zhou, R., Moylan, C.A., Frias, J.P., et al. (2019) Resmetirom (MGL-3196) for the Treatment of Non-Alcoholic Steatohepatitis: A Multicentre, Randomised, Double-Blind, Placebo-Controlled, Phase 2 Trial. The Lancet, 394, 2012-2024. https://doi.org/10.1016/s0140-6736(19)32517-6
|
[39]
|
Harrison, S.A., Bedossa, P., Guy, C.D., Schattenberg, J.M., Loomba, R., Taub, R., et al. (2024) A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis. New England Journal of Medicine, 390, 497-509. https://doi.org/10.1056/nejmoa2309000
|
[40]
|
Runfola, M., Sestito, S., Bellusci, L., La Pietra, V., D’Amore, V.M., Kowalik, M.A., et al. (2020) Design, Synthesis and Biological Evaluation of Novel Trβ Selective Agonists Sustained by Adme-Toxicity Analysis. European Journal of Medicinal Chemistry, 188, Article ID: 112006. https://doi.org/10.1016/j.ejmech.2019.112006
|
[41]
|
Caddeo, A., Kowalik, M.A., Serra, M., Runfola, M., Bacci, A., Rapposelli, S., et al. (2021) TG68, a Novel Thyroid Hormone Receptor-β Agonist for the Treatment of NAFLD. International Journal of Molecular Sciences, 22, Article No. 13105. https://doi.org/10.3390/ijms222313105
|
[42]
|
Caddeo, A., Serra, M., Sedda, F., Bacci, A., Manera, C., Rapposelli, S., et al. (2023) Potential Use of TG68—A Novel Thyromimetic—For the Treatment of Non-Alcoholic Fatty Liver (NAFLD)-Associated Hepatocarcinogenesis. Frontiers in Oncology, 13, Article ID: 1127517. https://doi.org/10.3389/fonc.2023.1127517
|
[43]
|
Erion, M.D., Cable, E.E., Ito, B.R., Jiang, H., Fujitaki, J.M., Finn, P.D., et al. (2007) Targeting Thyroid Hormone Receptor-Β Agonists to the Liver Reduces Cholesterol and Triglycerides and Improves the Therapeutic Index. Proceedings of the National Academy of Sciences, 104, 15490-15495. https://doi.org/10.1073/pnas.0702759104
|
[44]
|
Cable, E.E., Finn, P.D., Stebbins, J.W., Hou, J., Ito, B.R., van Poelje, P.D., et al. (2009) Reduction of Hepatic Steatosis in Rats and Mice after Treatment with a Liver-Targeted Thyroid Hormone Receptor Agonist. Hepatology, 49, 407-417. https://doi.org/10.1002/hep.22572
|
[45]
|
Loomba, R., Neutel, J., Mohseni, R., Bernard, D., Severance, R., Dao, M., et al. (2019) LBP-20-VK2809, a Novel Liver-Directed Thyroid Receptor Beta Agonist, Significantly Reduces Liver Fat with Both Low and High Doses in Patients with Non-Alcoholic Fatty Liver Disease: A Phase 2 Randomized, Placebo-Controlled Trial. Journal of Hepatology, 70, e150-e151. https://doi.org/10.1016/s0618-8278(19)30266-x
|
[46]
|
Berkenstam, A., Kristensen, J., Mellström, K., Carlsson, B., Malm, J., Rehnmark, S., et al. (2008) The Thyroid Hormone Mimetic Compound KB2115 Lowers Plasma LDL Cholesterol and Stimulates Bile Acid Synthesis without Cardiac Effects in Humans. Proceedings of the National Academy of Sciences, 105, 663-667. https://doi.org/10.1073/pnas.0705286104
|
[47]
|
Grover, G.J., Egan, D.M., Sleph, P.G., Beehler, B.C., Chiellini, G., Nguyen, N., et al. (2004) Effects of the Thyroid Hormone Receptor Agonist GC-1 on Metabolic Rate and Cholesterol in Rats and Primates: Selective Actions Relative to 3,5,3’-triiodo-l-thyronine. Endocrinology, 145, 1656-1661. https://doi.org/10.1210/en.2003-0973
|
[48]
|
Vatner, D.F., Weismann, D., Beddow, S.A., Kumashiro, N., Erion, D.M., Liao, X., et al. (2013) Thyroid Hormone Receptor-Β Agonists Prevent Hepatic Steatosis in Fat-Fed Rats but Impair Insulin Sensitivity via Discrete Pathways. American Journal of Physiology-Endocrinology and Metabolism, 305, E89-E100. https://doi.org/10.1152/ajpendo.00573.2012
|
[49]
|
Sjouke, B., Langslet, G., Ceska, R., Nicholls, S.J., Nissen, S.E., Öhlander, M., et al. (2014) Eprotirome in Patients with Familial Hypercholesterolaemia (the AKKA Trial): A Randomised, Double-Blind, Placebo-Controlled Phase 3 Study. The Lancet Diabetes & Endocrinology, 2, 455-463. https://doi.org/10.1016/s2213-8587(14)70006-3
|