中药及其活性成分防治间质性肺疾病研究进展
Research Progress on Traditional Chinese Medicine and Its Active Components in the Prevention and Treatment of Interstitial Lung Diseases
DOI: 10.12677/pi.2025.143023, PDF, HTML, XML,   
作者: 张力元, 岳 孟, 张媛媛*:中国药科大学中药学院,江苏 南京;中国药科大学江苏省中药评价与转化重点实验室,江苏 南京
关键词: 间质性肺疾病发病机制中药防治干预机制Interstitial Lung Disease Pathogenesis Prevention and Treatment of Traditional Chinese Medicine Mechanism of Intervention
摘要: 间质性肺疾病(interstitial lung disease, ILD)是一组以肺间质炎症和纤维化为主要表现的异质性疾病,临床患者常见呼吸困难、咳嗽、异常疲倦、乏力等症状。该病病因复杂,临床表现缺乏特异性,影像、病理改变复杂多样,且缺乏针对性的预防和治疗手段。本文就近5年ILD的主要发病机制以及中药及其活性成分对ILD干预机制的实验研究情况进行综述,为深入研究中药抗ILD的作用机制提供参考和依据。
Abstract: Interstitial lung disease (ILD) is a heterogeneous group of diseases with lung interstitial inflammation and fibrosis as the main manifestations, and clinical patients often have symptoms such as dyspnea, cough, abnormal tiredness, and fatigue. The etiology of the disease is complex, the clinical manifestations lack specificity, the imaging and pathological changes are complex and diverse, and there is a lack of targeted prevention and treatment methods. This article reviews the main pathogenesis of ILD and the experimental research on the intervention mechanism of traditional Chinese medicine and its active ingredients on ILD in the past five years, so as to provide a reference and basis for in-depth research on the mechanism of action of traditional Chinese medicine against ILD.
文章引用:张力元, 岳孟, 张媛媛. 中药及其活性成分防治间质性肺疾病研究进展[J]. 药物资讯, 2025, 14(3): 188-200. https://doi.org/10.12677/pi.2025.143023

1. 引言

间质性肺疾病(interstitial lung disease, ILD)是以弥漫性肺实质、肺泡炎症和间质纤维化为病理特征的一类肺病,包括间质性肺炎、特发性肺纤维化(idiopathic pulmonary fibrosis, IPF)、肺结节病等疾病,主要影响肺间质,常见临床表现为呼吸困难、咳嗽和异常疲倦或乏力、杵状指等,有些患者在诊断前症状可能已持续数月甚至数年[1]。全球范围内,IPF的患病率为每10万人7至1650例;系统性硬化症相关ILD (systemic sclerosis associated interstitial lung disease, SSc-ILD)和类风湿关节炎相关ILD (rheumatoid arthritis associated interstitial lung disease, RA-ILD)的患病率分别为26.1%~88.1%和0.6%~63.7% [2]。1990年至2019年间ILD和肺结节病(pulmonary sarcoidosis, PS)流行病学数据显示,虽然中国ILD和PS年龄标准化死亡率(age-standardized mortality rate, ASMR)呈下降趋势,但患病例数及年龄标准化患病率(age-standardized prevalence rate, ASPR)和死亡例数仍逐步增加,尤其是男性[3]

ILD通常不是恶性的,而是由已知的感染性致病原所引起,该疾病起病常隐匿,病程发展缓慢。机体对ILD的最初反应多为间质性肺炎,随后炎症蔓延到邻近间质组织和血管,导致促纤维化和抗纤维化生长因子间平衡被破坏以及细胞外基质(extracellular matrix, ECM)沉积,造成气体交换表面积损失和肺血管系统异常重塑,最终导致肺通气功能降低[1]。目前针对ILD的常见疗法为抗炎、抗纤维化、免疫调节、肺移植、支持性治疗等,主要采用尼达尼布、吡非尼酮、利妥昔单抗、泼尼松等药物[4] [5]。但这些治疗药物在使用中可能引起胃肠道反应、皮疹、代谢紊乱、骨质疏松等不良反应[6]-[8]。因此,寻找和开发有效的抗ILD药物对ILD患者意义重大。大量研究表明,中草药在减缓ILD进程方面具有独特优势,其作用温和且持久,长期使用毒副作用较小,耐受性较好,展现出良好的有效性和安全性。本文就近5年ILD的发病机制和中药及其活性成分防治ILD的研究进展予以综述,以期为治疗ILD的创新药物开发提供可能的线索和依据。

2. ILD发病机制

2.1. 炎症与免疫

炎症反应作为ILD的启动环节贯穿整个发病过程,是促使肺组织纤维化的先导因素。ILD病程中各种有害因素反复刺激,导致肺组织炎症始终存在,大量炎症介质和细胞因子持续释放,放大炎症级联反应,引起机体对受损肺组织的病理性修复,造成瘢痕和纤维化组织代替正常肺组织,最终导致肺气体交换功能障碍和肺纤维化[9]。此外,炎症可导致基质金属蛋白酶表达失调,导致ECM沉积,进而刺激平滑肌细胞增殖、成纤维细胞活化和胶原蛋白积累,导致正常肺结构进行性和不可逆的破坏[10]

研究表明,多种免疫细胞在ILD进程中起作用。在慢性炎症中,M1巨噬细胞由各种有害因素激活,并分泌TNF-α、IL-1、IL-6 和诱导型一氧化氮合酶(inducible nitric oxide synthase, iNOS)等促炎细胞因子,持续诱发组织炎症[11]。同时,促炎性M1巨噬细胞会缓慢转化为抗炎性(促纤维化)的M2表型,分泌TGF-β、成纤维细胞生长因子(fibroblast growth factor, FGF)、VEGF等生长因子,促进伤口愈合[12]。此外,巨噬细胞极化还有助于纤维化进程中的ECM沉积[13]

在ILD中,不同T细胞亚群可能发挥不同的作用。Th1细胞由于产生促炎因子IFN-γ而被广泛认为是抗纤维化的,而Th2细胞由于能够分泌IL-4、IL-5和IL-13而被认为是促纤维化的[14]-[16]。因此,研究人员试图用IFNγ-1b治疗IPF患者,但患者的生存率没有改善[17]。一项关于人IL-13抗体tralokinumab的类似实验也同样显示无效[18]。由此可见,Th1/Th2不平衡是IPF关键发病机制的观点可能需要更多研究来验证。此外,近年来研究发现,其他T细胞亚群,如Th17细胞、Th9细胞和调节性T细胞在IPF中同样发挥着重要作用,但仍需进一步实验来阐明其在ILD中的作用[12]

2.2. 氧化应激

在ILD中,氧化应激通过诱发炎症以及调控纤维化相关信号通路影响肺的正常结构与生理功能。ILD中的持续性肺损伤可产生ROS,而ROS可引起肺泡上皮细胞凋亡和基底膜损伤,破坏肺结构,影响肺泡气体交换。研究表明,肺泡II型上皮细胞(AT2)损伤产生ROS并引起氧化应激,诱导上皮细胞凋亡的同时激活细胞内信号通路,激活促纤维化因子的合成与释放,最终导致肺组织损伤和纤维化[19]。研究证实,NOX4在TGF-β诱导的ROS产生、成纤维细胞-肌成纤维细胞转化(fibroblast-myofibroblast transition, FMT)和肺纤维化中起关键作用[20]。此外,研究表明,H2O2是上皮间质转化(epithelial-mesenchymal transition, EMT)与FMT过程中TGF-β信号通路的中介,说明氧化应激能够调控纤维化进程中的EMT与FMT [21]

2.3. 上皮/内皮间质转化

ILD以肺泡间隔增厚、成纤维细胞增生、胶原沉积为特征,而EMT和内皮间质转化(endothelial to mesenchymal transition, EndMT)正是导致上述病理改变的主要原因。在EMT和EndMT中,上皮和内皮细胞失去细胞间黏附特性和极性,细胞骨架与外形发生变化,并向具有迁移、侵袭和产生ECM等特征的成纤维细胞转化。研究表明,肺纤维化病变中大约30%~50%的成纤维细胞来自肺上皮细胞[22]。学者通过追踪小鼠肺纤维化进程中成纤维细胞的来源,发现在小鼠成纤维细胞培养物中16.2%的细胞LacZ染色阳性的同时表达I型胶原蛋白,并具有典型的成纤维细胞形态。证实肺纤维化进程中有大量成纤维细胞来源于肺内皮细胞[23]。此外,在ILD早期,异常表达的TGF-β、NF-κB、ROS等物质均能激活EMT/EndMT关键转录因子,包括Snail、Slug、Zeb1等[24]。目前研究发现,许多抗纤维化药物均能抑制EMT和EndMT进程[25] [26],可见EMT和EndMT在ILD进程中的重要地位。

2.4. 细胞衰老

IPF被认为是一种衰老疾病,是最常见和最严重的ILD。研究表明,在肺泡上皮细胞中诱导细胞衰老程序激活会导致小鼠肺组织出现明显纤维化[27]。肺泡上皮祖细胞衰老被认为是肺纤维化病变的关键驱动因素,能够造成肺泡上皮祖细胞干性丧失并损伤肺泡的修复和再生,导致TGF-β和Wnt等信号通路激活,促进成纤维细胞分化和增殖为侵袭性肌成纤维细胞,导致ECM沉积,同时促进免疫细胞失调,进一步损害肺泡修复[27] [28]。此外,肺泡上皮祖细胞干性丧失还可通过衰老相关分泌表型(senescence-associated secretory phenotype, SASP)的旁分泌作用诱导肺泡生态位中健康祖细胞和非祖细胞衰老,进一步恶化纤维增生过程[29]

3. 中药及其活性成分防治ILD的研究进展

3.1. 中药活性成分防治ILD的研究

3.1.1. 醌类化合物对ILD的治疗作用

研究发现,丹参酮IIA通过激活Sestrin2/Nrf2信号通路抑制肌成纤维细胞活化[30]。此外,丹参酮IIA和葛根素联合疗法通过IL-6-JAK2-STAT3/STAT1信号通路极大提高了IPF小鼠存活率并减轻了肺病理变化[31]

虎杖活性成分大黄素通过调节c-MYC/miR-182-5p/ZEB2轴减轻博来霉素(Bleomycin, BLM)诱导的小鼠肺纤维化和EMT [32]

3.1.2. 萜类化合物对ILD的治疗作用

研究发现,特女贞苷通过改善ECM沉积和EMT进程有效减轻小鼠肺纤维化进程以及小鼠肺泡上皮细胞、肺成纤维细胞损伤,其作用机制可能与特女贞苷结合AMPK,介导PD-L1减少有关[33]

雷公藤的主要活性成分雷公藤甲素能够抑制纤维化基因表达,调节MMP家族的表达和活性,阻断TGF-β/Smad通路,降低基质交联和ECM刚度。此外,雷公藤甲素能够阻断生物应力转导途径整合素β1 (integrin-β1, ITGB1)/粘着斑激酶(focal adhesion kinase, FAK)/Yes相关蛋白(Yes-associated protein, YAP)信号传导,并通过整合素减弱纤维化ECM对成纤维细胞的促纤维化反馈[34]

岩白菜素可减轻小鼠肺纤维化,增强成纤维细胞凋亡,并通过调节TGF-β1/Smad信号通路抑制成纤维细胞活化和ECM产生。此外,岩白菜素还可通过调节mTOR信号通路促进肌成纤维细胞自噬[35]

3.1.3. 三萜及其苷类化合物对ILD的治疗作用

三七总皂苷中含有人参皂苷Rg1、三七皂苷R1、人参皂苷Re等20多种皂苷类成分,肺纤维化大鼠腹腔注射三七总皂苷28 d后发现,大鼠肺功能、肺泡炎症、纤维化以及EMT程度明显改善,其作用机制可能与三七总皂苷调节血管紧张素转换酶(angiotensin-converting enzyme, ACE)-血管紧张素(Angiotensin, Ang) II-血管紧张素1型受体(angiotensin type 1 receptor, AT1R)和ACE2-Ang(1-7)-Mas受体(MasR)轴之间的平衡有关[36]

人参皂苷Rb1通过抑制NLRP3炎性小体活化和NF-κB通路改善肺纤维化小鼠肺部炎症和纤维化,并扰乱巨噬细胞和成纤维细胞之间的串扰[37]。此外,人参皂苷Rb1的体内代谢物20(S)-原人参二醇可直接作用于肺糖酵解相关的代谢重编程过程和AMPK/STING通路以改善肺纤维化进程。肠道菌群和相关代谢物分析发现,20(S)-原人参二醇通过调节葡萄糖-6-磷酸脱氢酶(glucose-6-phosphate dehydrogenase, G6PD)和鞘氨醇激酶1 (sphingosine kinase 1, SPHK1)表达缓解肺纤维化病变[38]

研究表明,知母皂苷BⅡ阻碍了肺纤维化大鼠肺组织中异常胶原沉积、TGF-β/Smad信号激活和EMT,在恢复肺纤维化大鼠肺部结构和MMP-9/ TIMP1平衡中起重要作用[39]

泻根甜苷元能够调节MLE-12细胞和肺纤维化小鼠模型中AMPK表达,抑制TGF-β1/Smad2/3信号通路和氧化应激,调节Sirt1和NOX4的信号串扰,从而抑制肺纤维化中的EMT过程[40]

3.1.4. 黄酮类化合物对ILD的防治作用

研究发现,黄芪甲苷Ⅳ通过抑制RAS蛋白的GTP-GDP结构域,下调RAS/RAF/FOXO信号通路,阻止EMT和FMT激活,减少炎症因子水平和ECM沉积,在慢性阻塞性肺疾病(chronic obstructive pulmoriary disease, COPD)中表现出改善肺功能和抗肺纤维化作用[41]。此外,网络药理学结合实验验证表明,延缓细胞衰老可能是黄芪甲苷IV治疗肺纤维化的重要途径[42]

从萹蓄中分离得到的天然化合物胡桃苷能够预防并治疗肺纤维化小鼠炎症反应,减少肺组织纤维化,改善BLM诱导的小鼠肺损伤,其作用机制可能与胡桃苷抑制人肺成纤维细胞和小鼠上皮细胞中STING的表达有关[43]

3.1.5. 其他中药活性成分对ILD的治疗作用

研究发现,白藜芦醇能够恢复自噬溶酶体融合对RA-ILD中肺纤维化进展的调节作用,其作用机制涉及Akt/TMEM175通路[44]。丹酚酸B可显著阻止小鼠肺纤维化进程和细胞衰老,进一步降低肺成纤维细胞的活化。此外,丹酚酸B在体外通过减弱转录激活蛋白-1(activator protein-1, AP-1)介导的巨噬细胞和AT2细胞衰老,从而缓解肺纤维化病变[45]。从瑞香中提取的瑞香素可减轻矽肺病小鼠肺部炎症和纤维化。其作用机制与瑞香素靶向PI3K/Akt1,直接或间接调节下游NLRP3炎性小体和Smad2/3信号通路激活有关[46]

3.2. 中药复方治疗ILD的研究

3.2.1. 四妙丸对ILD的治疗作用

四妙丸由苍术、牛膝、黄柏、薏苡仁组成,数百年间被广泛用于治疗类风湿性关节炎。研究表明,四妙丸可显著降低RA-ILD大鼠肺组织中铁含量并调节铁死亡相关基因表达,通过调节细胞铁死亡治疗RA-ILD,同时抑制MAPK通路并减少下游促炎反应[47]。另一项研究表明,四妙丸通过调节TGF-β/Smad2/3通路,抑制肺间质炎性浸润及肺间质增生,减少肺间质胶原纤维沉积,调节EMT标志物水平,显著改善RA-ILD小鼠肺部纤维化病变[48]

3.2.2. 桔梗汤对ILD的治疗作用

桔梗汤出自《伤寒论》,含有桔梗和甘草2味药材。结合脂质组学、转录组学以及实验验证,发现桔梗汤处理通过抑制PI3K/Akt通路,减少磷脂酰肌醇(phosphatidylinositol, PI)及AT2细胞凋亡,在小鼠体内发挥抗肺纤维化作用[49]

3.2.3. 麦门冬汤对ILD的治疗作用

研究发现,麦门冬汤通过PI3K/Akt/FOXO3a通路,抑制M2巨噬细胞极化,下调TGF-β1和PDGF-RB等促纤维化因子以及成纤维细胞活化标志物,从而改善肺纤维化病变[50]

3.2.4. 补阳还五汤对ILD的治疗作用

补阳还五汤出自《医林改错》,由黄芪、当归、赤芍、地龙、川芎、红花、桃仁组成。PF大鼠灌胃补阳还五汤后发现,大鼠持续内质网应激(endoplasmic reticulum stress, ERS)下PERK/转录激活因子4 (activating transcription factor 4, ATF4)/C/EBP同源蛋白(C/EBP homologous protein, CHOP)通路的激活被抑制,AT2细胞凋亡减少[51]。另一项研究表明,补阳还五汤通过调节HMGB1/NF-κB信号通路减轻大鼠血瘀、血小板活化和炎症,改善大鼠肺功能、纤维化病变和胶原蛋白沉积[52]。此外,补阳还五汤原方增加北沙参、熟地黄、鸡血藤等药材后组成的参龙煎剂能够调节TGF-β1/Smad信号通路,有效抑制IPF中的FMT [53]

3.2.5. 养阴清肺汤对ILD的治疗作用

养阴清肺汤记载于中医古籍《重楼玉钥》,包括生地黄、麦冬、甘草等8味药。研究表明,养阴清肺汤及其活性成分芍药苷通过抑制由TLR4介导,巨噬细胞来源的MMP-12驱动的炎症信号传导改善肺纤维化病变[54]

3.2.6. 人参平肺散对ILD的治疗作用

人参平肺散由人参、天门冬、桑白皮等8味药材组成,是中医治疗“肺痹”的经典方剂,其中的山奈酚和木犀草素可抑制成纤维细胞增殖和肌成纤维细胞分化,通过激活AMPK/过氧化物酶体增殖物激活受体(peroxisome proliferators-activated receptor-γ, PPAR-γ)通路发挥协同作用[55]

3.2.7. 升陷汤对ILD的治疗作用

一种炎症性细胞程序性死亡,在炎症免疫反应中起关键作用,其特征是细胞焦亡、细胞凋亡和坏死性凋亡,可见于哮喘、矽肺病等呼吸系统疾病[56]。研究发现,升陷汤灌胃后IPF大鼠肺功能明显改善,血清炎症因子水平和肺组织纤维化程度显著降低。其潜在作用机制为升陷汤抑制细胞泛凋亡关键调节因子ZBP1的表达,进而抑制IPF进程中的细胞焦亡、凋亡以及坏死性凋亡[57]

3.2.8. 甘草干姜汤对ILD的治疗作用

研究表明,由甘草、干姜组成的甘草干姜汤灌胃能够消除炎症,调节免疫,抑制EMT进程和胶原蛋白沉积,从而抑制肺纤维化的发展。其作用机制涉及肺组织中PD-1表达和外周血中PD-1 CD4 T细胞含量降低以及IL-17A和TGF-β1表达下调[58]

3.2.9. 宣肺败毒方对ILD的治疗作用

宣肺败毒方是中国临床有效治疗COVID-19的“三药三方”之一,在治疗湿毒阻塞性肺综合征患者中发挥重要作用。研究表明,宣肺败毒方显著抑制成纤维细胞迁移和胶原沉积,并通过抑制IL-6/STAT3通路和相关巨噬细胞浸润减少小鼠肺部纤维化[59]。另有研究发现,宣肺败毒方灌胃后,IPF小鼠肺和肠道屏障完整性改善,其作用机制为宣肺败毒方通过IFN-γ/STAT1/STAT3轴调节肠–肺轴串扰改善小鼠IPF,其中嗜黏蛋白阿克曼氏菌(Akkermansia)是影响全身性IFN-γ下游STAT1/STAT3轴表达的必需细菌[60]

3.2.10. 芪麦肺络平汤对ILD的治疗作用

芪麦肺络平汤临床被用于改善恢复期COVID-19患者的痰瘀阻络证,已被纳入出院新冠肺炎患者的功能性疾病康复计划。实验表明,芪麦肺络平汤通过抑制线粒体复合物I抑制线粒体ROS产生以促进ATP产生,抑制ECM积累和TGF-β表达,从而减轻体内外肺纤维化模型中的氧化应激损伤,其中的甘草苷和异甘草素可能是芪麦肺络平汤抗肺纤维化的活性成分[61]

3.2.11. 金水缓纤方对ILD的治疗作用

金水缓纤方由人参、熟地黄、麦冬等10味药材组成。研究发现,金水缓纤方通过阻止ECM沉积显著改善大鼠肺纤维化病变,方中的橘皮素、异橙黄酮、贝母甲素通过抑制EGFR/PI3K/Akt信号通路抑制肺纤维化过程中的成纤维细胞活化,从而阻止ECM沉积[62]

3.2.12. 姜虎汤对ILD的治疗作用

研究表明,由虎杖和干姜组成的姜虎汤能够有效逆转ILD小鼠肺部炎症和纤维化病灶。对姜虎汤的主要成分进行质谱鉴定和分析发现,虎杖苷是姜虎汤有效缓解ILD小鼠肺组织纤维化和炎症损伤的活性成分。此外,AMPK被证实是姜虎汤改善ILD的上游核心调节蛋白,姜虎汤和虎杖苷可靶向AMPK/过氧化物酶体增殖物激活受体γ辅激活子1α (peroxisome proliferator activated receptor γ coactivator-1α, PGC1α)/PPAR-γ通路缓解ILD小鼠肺组织纤维化病变,并靶向AMPK/HMGB1/RAGE通路缓解ILD小鼠肺炎[63]

3.2.13. 其他中药复方对ILD的治疗作用

加味补肾益气汤中含有黄芪、淫羊藿、地黄、黄芩、芍药,研究发现,加味补肾益气汤能够降低α-SMA、I型胶原蛋白和TGF-β水平,逆转肺纤维化小鼠肺部炎症和纤维化胶原沉积。在鉴定出的12种潜在有效成分中,黄芩苷能有效改善TGF-β诱导的小鼠胚胎成纤维细胞(NIH/3T3)的增殖和活化。机制研究发现,黄芩苷可直接作用于PI3K和Akt1蛋白,通过PI3K/Akt信号通路令加味补肾益气汤发挥作用[64]

地黄、山茱萸、女贞子等10味药材组成的扶正通络方能够减轻大鼠IPF症状。转录组学分析显示,扶正通络方通过JAK2/STAT3信号通路抑制大鼠肺部炎症反应和纤维化进程。体外实验中发现,扶正通络方可促进自噬并抑制肺成纤维细胞活化[65]

体内外研究表明,清肺协定方(包括麻黄、桑白皮、僵蚕等9味药材)通过重新激活自噬和抑制线粒体损伤,抑制线粒体DNA (mitochondrial DNA, mtDNA)/cGAS/STING通路介导的炎症缓解肺纤维化发展[66]

由川芎、三七、人参构成的益气活血方能够抑制纤维化和肌成纤维细胞活化。网络药理学分析结果显示,HIF1A、STAT6、STAT3、过氧化物酶体增殖物激活受体A (recombinant peroxisome proliferator activated receptor alpha, PPARA)、DNA损伤诱导转录物3 (DNA Damage Inducible Transcript 3, DDIT3)和雄激素受体(androgen receptor, AR)基因是益气活血方的作用靶点。随后的体内实验证实,益气活血方通过抑制肺纤维化小鼠肺部STAT3的磷酸化改善小鼠肺纤维化病变[67]

人参、黄芪、绞股蓝、贝母组成的保津陈肺方能够显著缓解大鼠矽肺病中的肺功能下降、病理损伤、炎症反应和组织纤维化。网络药理学及分子对接结果显示,保津陈肺方对矽肺病的主要活性成分为甘草次酸和芍药苷。体外实验表明,甘草次酸和芍药苷可以抑制MAPK通路介导的炎症反应和EGFR/PI3K/Akt通路介导的成纤维细胞活化[68]

4. 总结与展望

ILD发病机制复杂,涉及炎症、氧化应激、EMT/EndMT、衰老等多个方面,且治疗效果往往不尽如人意。随着对中医药的深入研究,越来越多的研究开始探索中药治疗ILD的潜在价值。中医药以其整体观念和辨证论治的特点,为ILD的治疗提供了新的思路和方法。

近年来中药及其活性成分防治ILD的研究主要涉及的作用机制包括PI3K/Akt、TGF-β/Smad、AMPK、STAT等信号通路以及细胞程序性死亡、细胞衰老等。不同中药及其活性成分作用机制如表1所示。此外,表1说明,上述中药及其活性成分虽均能表现出一定抗ILD活性,但其作用机制不尽相同,进一步表明中药的多靶点作用特点及治疗潜力。

Table 1. Mechanism of action of traditional Chinese medicine and its active ingredients in the prevention and treatment of ILD

1. 中药及其活性成分防治ILD作用机制

作用机制

中药名称

PI3K/Akt相关信号通路

中药活性成分:瑞香素[46];中药复方:桔梗汤[49]、麦门冬汤[50]、金水缓纤方[62]、加味补肾益气汤[64]、保津陈肺方[68]

TGF-β/Smad信号通路

中药活性成分:雷公藤甲素[34]、岩白菜素[35]、知母皂苷BⅡ [39];中药复方:四妙丸[48]、参龙煎剂[53]

AMPK相关信号通路

中药活性成分:特女贞苷[33]、20 (S)-原人参二醇[38]、泻根甜苷元[40];中药复方:人参平肺散[55]、姜虎汤[63]

STAT相关信号通路

中药活性成分:丹参酮IIA [31];中药复方:宣肺败毒方[59] [60]、扶正通络方[65]、益气活血方[67]

STING相关信号通路

中药活性成分:20 (S)-原人参二醇[38]、胡桃苷[43];中药复方:清肺协定方[66]

细胞程序性死亡

中药复方:四妙丸[47]、升陷汤[57]、清肺协定方[66]

MAPK信号通路

中药复方:四妙丸[47]、保津陈肺方[68]

细胞衰老

中药活性成分:黄芪甲苷Ⅳ [42]、丹酚酸B [45]

线粒体损伤

中药复方:芪麦肺络平汤[61]、清肺协定方[66]

NF-κB相关信号通路

中药活性成分:人参皂苷Rb1 [37]、补阳还五汤[52]

MMP信号通路

中药复方:养阴清肺汤[54]

mTOR信号通路

中药活性成分:岩白菜素[35]

NLRP3炎症小体

中药活性成分:人参皂苷Rb1[37]

其他作用机制:Sestrin2/Nrf2信号通路; c-MYC/miR-182-5p/ZEB2轴; ITGB1/FAK/YAP信号通路;ACE-AngII-AT1R,ACE2-Ang(1-7)-MasR轴;G6PD、SPHK1;RAS/RAF/FOXO信号通路;Akt/TMEM175;PERK/ATF4/CHOP信号通路;TLR4;PD-1、 IL-17A、TGF-β

中药活性成分:丹参酮IIA [30]、大黄素[32]、 雷公藤甲素[34]、三七总皂苷[36]、20 (S)-原人参二醇[38]、 黄芪甲苷Ⅳ [41]、白藜芦醇[44];中药复方:补阳还五汤[51]、 养阴清肺汤[54]、甘草干姜汤[58]

根据中医传统理论,可将ILD所致肺病归属于“肺痹”的范畴,晚期可发展至“肺痿”,基本病机为气血凝滞,久而成痹,或邪气犯肺,耗伤肺气,肺燥津枯,气阴两亏,致使肺虚,导致肺叶痿弱不用而致病[69] [70]。因此,在治疗ILD时应以补肺养阴、化痰祛瘀、益气活血,扶正祛邪,通络通痹为主要治法。对上述中药复方中出现的74味中药(排除重复)对应频次进行统计,筛选出使用频次 ≥ 4的药材,共有5味,其中甘草和黄芪的频次最高。整体上,治疗ILD的中药复方中使用最多的为补气药、补阴药和清化热痰药。不同中药复方中中药材使用频次 ≥ 4的药材如表2所示。

Table 2. Medicinal materials with a frequency of use greater than or equal to 4 for the prevention and treatment of ILD in traditional Chinese medicine compounds

2. 中药复方中防治ILD使用频次 ≥ 4的药材

中药名称

频次

分类

甘草

9

补气药

黄芪

7

补气药

麦冬

5

补阴药

人参

5

补气药

贝母

4

清化热痰药

近年来的研究成果显示,中医药在改善ILD患者临床症状和生存质量方面取得了一定成效。一些研究表明,相较于单独使用西药,联合中药能够更好地治疗ILD。例如,相较于单独使用吡非尼酮治疗的70%总有效率,黄芳等[71]自拟的保肺膏结合吡非尼酮治疗特发性间质性肺炎患者能够更明显缓解患者中医症状,提高肺功能,改善患者炎症反应及血气指标,将治疗总有效率提高至96.67%。扶正化瘀方在治疗IPF方面与吡非尼酮具有协同增效作用,能够将治疗总有效率从单独使用吡非尼酮治疗的77.5%提高至92.5%,其机制可能与抑制炎症因子、纤维化相关细胞因子、调节CD4+ T淋巴细胞亚群分化方向有关,TGF-β/Smad信号通路可能在其中发挥了关键作用[72]。祛风通络方联合硫酸羟氯喹治疗能够显著提高临床RA-ILD治疗总有效率,并在改善咳嗽、呼吸困难、肺功能下降等ILD临床症状方面比硫酸羟氯喹治疗组具有更明显优势。此外,祛风通络方联合硫酸羟氯喹治疗的药物不良反应发生率相较于硫酸羟氯喹治疗组降低了10.72% [73]。由此可见,相较于西医疗法,中西医联合治疗能够协同增效,明显提高临床治疗ILD的效果,同时还能显著降低单独服用糖皮质激素、免疫调节药等药物引发的不良反应发生率。然而,尽管中西医联合治疗ILD在临床实践中取得了一定疗效,但目前仍缺乏大规模、高质量的循证医学证据来支持其疗效,需要收集更多的有效数据。此外,中西医联合治疗方案需要同时掌握中医和西医的复合型人才,因此,加强相关人才培养是提高ILD临床疗效的一种有力途径。

上述研究表明,目前中药及其活性成分如何对ILD发挥作用得到了研究者们的广泛关注。然而,中药所存在的成分复杂、靶点繁多、作用机制不明确等问题仍需要大量基础研究和大规模临床实验进行验证。近年来,网络药理学、分子对接、组学、高通量筛选等技术已被广泛应用于分析筛选中药及其活性成分治疗疾病的靶点,这些方法有望在探索中药治疗ILD的具体机制方面发挥积极作用。目前尚缺乏针对ILD且作用时间持久,长期使用不良反应较小的药物,中药因其多靶点、多成分、多途径的优势在防治ILD方面已显示出一定的疗效,具有广阔的临床应用前景,值得进一步深入研究并开发相关药物。

NOTES

*通讯作者。

参考文献

[1] Wijsenbeek, M., Suzuki, A. and Maher, T.M. (2022) Interstitial Lung Diseases. The Lancet, 400, 769-786.
https://doi.org/10.1016/s0140-6736(22)01052-2
[2] Shah Gupta, R., Koteci, A., Morgan, A., George, P.M. and Quint, J.K. (2023) Incidence and Prevalence of Interstitial Lung Diseases Worldwide: A Systematic Literature Review. BMJ Open Respiratory Research, 10, e001291.
https://doi.org/10.1136/bmjresp-2022-001291
[3] 陈相, 李耀浙, 傅扬扬, 等. 1990-2019年中国间质性肺疾病和肺结节病的疾病负担分析[J]. 疾病监测, 2023, 38(4): 473-480.
[4] Maher, T.M. (2024) Interstitial Lung Disease. Journal of the American Medical Association, 331, 1655.
https://doi.org/10.1001/jama.2024.3669
[5] 刘丽云, 杨晓东, 赵娜. 间质性肺疾病的治疗研究进展[J]. 微量元素与健康研究, 2022, 39(5): 77-79.
[6] He, M., Yang, T., Zhou, J., Wang, R. and Li, X. (2024) A Real-World Study of Antifibrotic Drugs-Related Adverse Events Based on the United States Food and Drug Administration Adverse Event Reporting System and Vigi-Access Databases. Frontiers in Pharmacology, 15, Article 1310286.
https://doi.org/10.3389/fphar.2024.1310286
[7] Chow, T.G., Franzblau, L.E. and Khan, D.A. (2022) Adverse Reactions to Biologic Medications Used in Allergy and Immunology Diseases. Current Allergy and Asthma Reports, 22, 195-207.
https://doi.org/10.1007/s11882-022-01048-9
[8] Wang, H., Zhou, J., Guo, X., Li, Y., Duan, L., SI, X., et al. (2020) Use of Glucocorticoids in the Management of Immunotherapy-Related Adverse Effects. Thoracic Cancer, 11, 3047-3052.
https://doi.org/10.1111/1759-7714.13589
[9] Fathimath Muneesa, M., Shaikh, S.B., Jeena, T.M. and Bhandary, Y.P. (2021) Inflammatory Mediators in Various Molecular Pathways Involved in the Development of Pulmonary Fibrosis. International Immunopharmacology, 96, Article 107608.
https://doi.org/10.1016/j.intimp.2021.107608
[10] Savin, I.A., Zenkova, M.A. and Sen’kova, A.V. (2022) Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant in Vivo Models, Prognostic and Therapeutic Approaches. International Journal of Molecular Sciences, 23, Article 14959.
https://doi.org/10.3390/ijms232314959
[11] Kadomoto, S., Izumi, K. and Mizokami, A. (2021) Macrophage Polarity and Disease Control. International Journal of Molecular Sciences, 23, Article 144.
https://doi.org/10.3390/ijms23010144
[12] Heukels, P., Moor, C.C., von der Thüsen, J.H., Wijsenbeek, M.S. and Kool, M. (2019) Inflammation and Immunity in IPF Pathogenesis and Treatment. Respiratory Medicine, 147, 79-91.
https://doi.org/10.1016/j.rmed.2018.12.015
[13] Yang, G., Yang, Y., Liu, Y. and Liu, X. (2023) Regulation of Alveolar Macrophage Death in Pulmonary Fibrosis: A Review. Apoptosis, 28, 1505-1519.
https://doi.org/10.1007/s10495-023-01888-4
[14] Wynn, T.A. (2004) Fibrotic Disease and the TH1/TH2 Paradigm. Nature Reviews Immunology, 4, 583-594.
https://doi.org/10.1038/nri1412
[15] Saito, A., Okazaki, H., Sugawara, I., Yamamoto, K. and Takizawa, H. (2003) Potential Action of IL-4 and IL-13 as Fibrogenic Factors on Lung Fibroblasts in Vitro. International Archives of Allergy and Immunology, 132, 168-176.
https://doi.org/10.1159/000073718
[16] Walker, J.A. and McKenzie, A.N.J. (2017) TH2 Cell Development and Function. Nature Reviews Immunology, 18, 121-133.
https://doi.org/10.1038/nri.2017.118
[17] King, T.E., Albera, C., Bradford, W.Z., Costabel, U., Hormel, P., Lancaster, L., et al. (2009) Effect of Interferon Gamma-1b on Survival in Patients with Idiopathic Pulmonary Fibrosis (INSPIRE): A Multi-Centre, Randomized, Placebo-Controlled Trial. The Lancet, 374, 222-228.
https://doi.org/10.1016/s0140-6736(09)60551-1
[18] Parker, J.M., Glaspole, I.N., Lancaster, L.H., Haddad, T.J., She, D., Roseti, S.L., et al. (2018) A Phase 2 Randomized Controlled Study of Tralokinumab in Subjects with Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 197, 94-103.
https://doi.org/10.1164/rccm.201704-0784oc
[19] Ballester, B., Milara, J. and Cortijo, J. (2019) Idiopathic Pulmonary Fibrosis and Lung Cancer: Mechanisms and Molecular Targets. International Journal of Molecular Sciences, 20, Article 593.
https://doi.org/10.3390/ijms20030593
[20] Stock, C.J.W., Michaeloudes, C., Leoni, P., Durham, A.L., Mumby, S., Wells, A.U., et al. (2019) Bromodomain and Extra-Terminal (BET) Protein Inhibition Restores Redox Balance and Inhibits Myofibroblast Activation. BioMed Research International, 2019, 1-11.
https://doi.org/10.1155/2019/1484736
[21] Otoupalova, E., Smith, S., Cheng, G. and Thannickal, V.J. (2020) Oxidative Stress in Pulmonary Fibrosis. Comprehensive Physiology, 10, 509-547.
https://doi.org/10.1002/j.2040-4603.2020.tb00120.x
[22] Degryse, A.L., Tanjore, H., Xu, X.C., Polosukhin, V.V., Jones, B.R., McMahon, F.B., et al. (2010) Repetitive Intratracheal Bleomycin Models Several Features of Idiopathic Pulmonary Fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology, 299, L442-L452.
https://doi.org/10.1152/ajplung.00026.2010
[23] Hashimoto, N., Phan, S.H., Imaizumi, K., Matsuo, M., Nakashima, H., Kawabe, T., et al. (2010) Endothelial-Mesenchymal Transition in Bleomycin-Induced Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 43, 161-172.
https://doi.org/10.1165/rcmb.2009-0031oc
[24] Phan, T.H.G., Paliogiannis, P., Nasrallah, G.K., Giordo, R., Eid, A.H., Fois, A.G., et al. (2020) Emerging Cellular and Molecular Determinants of Idiopathic Pulmonary Fibrosis. Cellular and Molecular Life Sciences, 78, 2031-2057.
https://doi.org/10.1007/s00018-020-03693-7
[25] 张丽冰, 赵娜, 农骐郢. 抑制肺上皮间质转化的抗纤维化药物研究进展[J]. 中华劳动卫生职业病杂志, 2023, 41(1): 72-77.
[26] Yun, E., Kook, Y., Yoo, K.H., Kim, K.I., Lee, M., Kim, J., et al. (2020) Endothelial to Mesenchymal Transition in Pulmonary Vascular Diseases. Biomedicines, 8, Article 639.
https://doi.org/10.3390/biomedicines8120639
[27] Yao, C., Guan, X., Carraro, G., Parimon, T., Liu, X., Huang, G., et al. (2021) Senescence of Alveolar Type 2 Cells Drives Progressive Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 203, 707-717.
https://doi.org/10.1164/rccm.202004-1274oc
[28] Lv, X., Liu, C., Liu, S., Li, Y., Wang, W., Li, K., et al. (2022) The Cell Cycle Inhibitor P21 Promotes the Development of Pulmonary Fibrosis by Suppressing Lung Alveolar Regeneration. Acta Pharmaceutica Sinica B, 12, 735-746.
https://doi.org/10.1016/j.apsb.2021.07.015
[29] Zhou, S., Zhu, J., Zhou, P. and Gu, Y. (2022) Alveolar Type 2 Epithelial Cell Senescence and Radiation-Induced Pulmonary Fibrosis. Frontiers in Cell and Developmental Biology, 10, Article 999600.
https://doi.org/10.3389/fcell.2022.999600
[30] Li, H., Wu, M., Guo, C., Zhai, R. and Chen, J. (2022) Tanshinone IIA Regulates Keap1/Nrf2 Signal Pathway by Activating Sestrin2 to Restrain Pulmonary Fibrosis. The American Journal of Chinese Medicine, 50, 2125-2151.
https://doi.org/10.1142/s0192415x22500914
[31] Xue, Z., Zhao, F., Sang, X., Qiao, Y., Shao, R., Wang, Y., et al. (2021) Combination Therapy of Tanshinone IIA and Puerarin for Pulmonary Fibrosis via Targeting IL6-JAK2-STAT3/STAT1 Signaling Pathways. Phytotherapy Research, 35, 5883-5898.
https://doi.org/10.1002/ptr.7253
[32] Yang, J., Jiang, G., Ni, K., Fan, L., Tong, W. and Yang, J. (2022) Emodin Inhibiting Epithelial-Mesenchymal Transition in Pulmonary Fibrosis through the c-MYC/miR-182-5p/ZEB2 Axis. Phytotherapy Research, 37, 926-934.
https://doi.org/10.1002/ptr.7680
[33] Wu, Y., Shi, W., Li, H., Liu, C., Shimizu, K., Li, R., et al. (2024) Specneuzhenide Improves Bleomycin-Induced Pulmonary Fibrosis in Mice via AMPK-Dependent Reduction of Pd-l1. Phytomedicine, 128, Article 155318.
https://doi.org/10.1016/j.phymed.2023.155318
[34] Lin, W., Song, Y., Li, T., Yan, J., Zhang, R., Han, L., et al. (2023) Triptolide Attenuates Pulmonary Fibrosis by Inhibiting Fibrotic Extracellular Matrix Remodeling Mediated by MMPS/lox/integrin. Biomedicine & Pharmacotherapy, 166, Article 115394.
https://doi.org/10.1016/j.biopha.2023.115394
[35] Li, X., Wang, Y., Liang, J., Bi, Z., Ruan, H., Cui, Y., et al. (2021) Bergenin Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice via Inhibiting TGF-β1 Signaling Pathway. Phytotherapy Research, 35, 5808-5822.
https://doi.org/10.1002/ptr.7239
[36] Li, H., Wang, Y., Chen, T., Gao, Y., Song, L., Yang, Y., et al. (2024) Panax Notoginseng Saponin Alleviates Pulmonary Fibrosis in Rats by Modulating the Renin-Angiotensin System. Journal of Ethnopharmacology, 318, Article 116979.
https://doi.org/10.1016/j.jep.2023.116979
[37] Liu, J., Fan, G., Tao, N., Feng, F., Meng, C. and Sun, T. (2022) Ginsenoside Rb1 Alleviates Bleomycin-Induced Pulmonary Inflammation and Fibrosis by Suppressing Central Nucleotide-Binding Oligomerization, Leucine-Rich Repeat, and Pyrin Domains-Containing Protein Three Inflammasome Activation and the NF-κB Pathway. Drug Design, Development and Therapy, 16, 1793-1809.
https://doi.org/10.2147/dddt.s361748
[38] Ruan, Y., Ren, G., Wang, M., Lv, W., Shimizu, K. and Zhang, C. (2024) The Dual Role of 20(s)-Protopanaxadiol in Alleviating Pulmonary Fibrosis through the Gut-Lung Axis. Phytomedicine, 129, Article 155699.
https://doi.org/10.1016/j.phymed.2024.155699
[39] Ding, D., Shen, X., Yu, L., Zheng, Y., Liu, Y., Wang, W., et al. (2023) Timosaponin BII Inhibits TGF-β Mediated Epithelial-Mesenchymal Transition through Smad-Dependent Pathway during Pulmonary Fibrosis. Phytotherapy Research, 37, 2787-2799.
https://doi.org/10.1002/ptr.7774
[40] Ding, Y., Wang, L., Liu, B., Ren, G., Okubo, R., Yu, J., et al. (2022) Bryodulcosigenin Attenuates Bleomycin-Induced Pulmonary Fibrosis via Inhibiting AMPK-Mediated Mesenchymal Epithelial Transition and Oxidative Stress. Phytotherapy Research, 36, 3911-3923.
https://doi.org/10.1002/ptr.7535
[41] Zhang, M., Wang, W., Liu, K., Jia, C., Hou, Y. and Bai, G. (2023) Astragaloside IV Protects against Lung Injury and Pulmonary Fibrosis in COPD by Targeting GTP-GDP Domain of RAS and Downregulating the RAS/RAF/FoxO Signaling Pathway. Phytomedicine, 120, Article 155066.
https://doi.org/10.1016/j.phymed.2023.155066
[42] Yuan, S., Zuo, B., Zhou, S., Wang, M., Tan, K., Chen, Z., et al. (2023) Integrating Network Pharmacology and Experimental Validation to Explore the Pharmacological Mechanism of Astragaloside IV in Treating Bleomycin-Induced Pulmonary Fibrosis. Drug Design, Development and Therapy, 17, 1289-1302.
https://doi.org/10.2147/dddt.s404710
[43] Sun, S., Han, R., Hou, S., Yi, H., Chi, S. and Zhang, A. (2020) Juglanin Alleviates Bleomycin-Induced Lung Injury by Suppressing Inflammation and Fibrosis via Targeting Sting Signaling. Biomedicine & Pharmacotherapy, 127, Article 110119.
https://doi.org/10.1016/j.biopha.2020.110119
[44] Liu, N., Fan, X., Shao, Y., Chen, S., Wang, T., Yao, T., et al. (2024) Resveratrol Attenuates Inflammation and Fibrosis in Rheumatoid Arthritis-Associated Interstitial Lung Disease via the AKT/TMEM175 Pathway. Journal of Translational Medicine, 22, Article No. 457.
https://doi.org/10.1186/s12967-024-05228-1
[45] Li, Y., Chen, R., Wu, J., Xue, X., Liu, T., Peng, G., et al. (2023) Salvianolic Acid B Protects against Pulmonary Fibrosis by Attenuating Stimulating Protein 1-Mediated Macrophage and Alveolar Type 2 Cell Senescence. Phytotherapy Research, 38, 620-635.
https://doi.org/10.1002/ptr.8070
[46] Yang, T., Pan, Q., Yue, R., Liu, G. and Zhou, Y. (2024) Daphnetin Alleviates Silica-Induced Pulmonary Inflammation and Fibrosis by Regulating the PI3K/AKT1 Signaling Pathway in Mice. International Immunopharmacology, 133, Article 112004.
https://doi.org/10.1016/j.intimp.2024.112004
[47] Chen, Y., Liu, H., Han, R., Lin, J., Yang, J., Guo, M., et al. (2024) Analyzing How Simiao Wan Regulates Ferroptosis to Prevent RA-ILD Using Metabolomics and Cyberpharmacology. Phytomedicine, 133, Article 155912.
https://doi.org/10.1016/j.phymed.2024.155912
[48] Ba, X., Wang, H., Huang, Y., Yan, J., Han, L., Lin, W., et al. (2023) Simiao Pill Attenuates Collagen-Induced Arthritis and Bleomycin-Induced Pulmonary Fibrosis in Mice by Suppressing the JAK2/STAT3 and TGF-β/Smad2/3 Signalling Pathway. Journal of Ethnopharmacology, 309, Article 116274.
https://doi.org/10.1016/j.jep.2023.116274
[49] Xu, Y., Wang, X., Han, D., Wang, J., Luo, Z., Jin, T., et al. (2022) Revealing the Mechanism of Jiegeng Decoction Attenuates Bleomycin-Induced Pulmonary Fibrosis via Pi3k/Akt Signaling Pathway Based on Lipidomics and Transcriptomics. Phytomedicine, 102, Article 154207.
https://doi.org/10.1016/j.phymed.2022.154207
[50] Shuangshuang, H., Mengmeng, S., Lan, Z., Fang, Z. and Yu, L. (2024) Maimendong Decoction Regulates M2 Macrophage Polarization to Suppress Pulmonary Fibrosis via PI3K/Akt/FoxO3a Signalling Pathway-Mediated Fibroblast Activation. Journal of Ethnopharmacology, 319, Article 117308.
https://doi.org/10.1016/j.jep.2023.117308
[51] Zhou, P., Wu, X., Chen, K., Du, J. and Wang, F. (2024) Buyang Huanwu Decoction Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Rats by Attenuating the Apoptosis of Alveolar Type II Epithelial Cells Mediated by Endoplasmic Reticulum Stress. Journal of Ethnopharmacology, 319, Article 117300.
https://doi.org/10.1016/j.jep.2023.117300
[52] Feng, Y., Dai, L., Zhang, Y., Sun, S., Cong, S., Ling, S., et al. (2024) Buyang Huanwu Decoction Alleviates Blood Stasis, Platelet Activation, and Inflammation and Regulates the Hmgb1/NF-κB Pathway in Rats with Pulmonary Fibrosis. Journal of Ethnopharmacology, 319, Article 117088.
https://doi.org/10.1016/j.jep.2023.117088
[53] Pan, J., Li, Y., Wu, X., Pan, X., Liu, C., Zhang, H., et al. (2024) The Mechanism of Shenlong Jianji Treatment of Idiopathic Pulmonary Fibrosis Inhibits Fibroblast-to-Myofibroblast Transformation via the TGF-β1/Smads Signaling Pathway. Journal of Ethnopharmacology, 322, Article 117507.
https://doi.org/10.1016/j.jep.2023.117507
[54] Li, T., Mao, N., Xie, Z., Wang, J., Jin, F., Li, Y., et al. (2024) Paeoniflorin Mitigates MMP-12 Inflammation in Silicosis via Yang-Yin-Qing-Fei Decoction in Murine Models. Phytomedicine, 129, Article 155616.
https://doi.org/10.1016/j.phymed.2024.155616
[55] Yan, L., Jiang, M. and Fan, X. (2023) Research into the Anti-Pulmonary Fibrosis Mechanism of Renshen Pingfei Formula Based on Network Pharmacology, Metabolomics, and Verification of AMPK/PPAR-Γ Pathway of Active Ingredients. Journal of Ethnopharmacology, 317, Article 116773.
https://doi.org/10.1016/j.jep.2023.116773
[56] Samir, P., Malireddi, R.K.S. and Kanneganti, T. (2020) The Panoptosome: A Deadly Protein Complex Driving Pyroptosis, Apoptosis, and Necroptosis (Panoptosis). Frontiers in Cellular and Infection Microbiology, 10, Article 238.
https://doi.org/10.3389/fcimb.2020.00238
[57] Liang, Y., Yan, Y., Liu, N., Wang, J. and Fang, C. (2024) Shengxian Decoction Improves Lung Function in Rats with Bleomycin-Induced Idiopathic Pulmonary Fibrosis through the Inhibition of Panoptosis. Journal of Ethnopharmacology, 329, Article 118153.
https://doi.org/10.1016/j.jep.2024.118153
[58] Wang, D., Gong, L., Li, Z., Chen, H., Xu, M., Rong, R., et al. (2021) Antifibrotic Effect of Gancao Ganjiang Decoction Is Mediated by PD-1/TGF-β1/IL-17A Pathway in Bleomycin-Induced Idiopathic Pulmonary Fibrosis. Journal of Ethnopharmacology, 281, Article 114522.
https://doi.org/10.1016/j.jep.2021.114522
[59] Wang, Y., Sang, X., Shao, R., Qin, H., Chen, X., Xue, Z., et al. (2022) Xuanfei Baidu Decoction Protects against Macrophages Induced Inflammation and Pulmonary Fibrosis via Inhibiting IL-6/STAT3 Signaling Pathway. Journal of Ethnopharmacology, 283, Article 114701.
https://doi.org/10.1016/j.jep.2021.114701
[60] Jia, M., Liu, Y., Liu, J., Meng, J., Cao, J., Miao, L., et al. (2024) Xuanfei Baidu Decoction Ameliorates Bleomycin-Elicited Idiopathic Pulmonary Fibrosis in Mice by Regulating the Lung-Gut Crosstalk via Ifnγ/STAT1/STAT3 Axis. Phytomedicine, 135, Article 155997.
https://doi.org/10.1016/j.phymed.2024.155997
[61] Ding, L., Yang, Y., Wang, Z., Su, H., Li, Y., Ma, J., et al. (2023) Qimai Feiluoping Decoction Inhibits Mitochondrial Complex I-Mediated Oxidative Stress to Ameliorate Bleomycin-Induced Pulmonary Fibrosis. Phytomedicine, 112, Article 154707.
https://doi.org/10.1016/j.phymed.2023.154707
[62] Shao, D., Liu, X., Wu, J., Zhang, A., Bai, Y., Zhao, P., et al. (2022) Identification of the Active Compounds and Functional Mechanisms of Jinshui Huanxian Formula in Pulmonary Fibrosis by Integrating Serum Pharmacochemistry with Network Pharmacology. Phytomedicine, 102, Article 154177.
https://doi.org/10.1016/j.phymed.2022.154177
[63] Zhang, Z., Deng, X., Gu, W., Jiao, Y., Su, C., Liu, H., et al. (2024) Jianghu Decoction and Its Active Component Polydatin Inhibit Inflammation and Fibrotic Lesions in the Lungs of ILD Mice via the AMPK Signaling Pathway. Journal of Ethnopharmacology, 318, Article 117003.
https://doi.org/10.1016/j.jep.2023.117003
[64] Shi, H., Deng, L., Zhou, Y., Yu, H., Huang, X., Chen, M., et al. (2023) Network Pharmacology and Experiments in Vivo and in Vitro Reveal That the Jia-Wei-Bu-Shen-Yi-Qi Formula (JWBSYQF) and Its Active Ingredient Baicalein Ameliorate BLM-Induced Lung Fibrosis in Mice via PI3K/Akt Signaling Pathway. Journal of Ethnopharmacology, 315, Article 116691.
https://doi.org/10.1016/j.jep.2023.116691
[65] Zhang, X., Su, J., Lin, J., Liu, L., Wu, J., Yuan, W., et al. (2023) Fu-Zheng-Tong-Luo Formula Promotes Autophagy and Alleviates Idiopathic Pulmonary Fibrosis by Controlling the Janus Kinase 2/Signal Transducer and Activator of Transcription 3 Pathway. Journal of Ethnopharmacology, 314, Article 116633.
https://doi.org/10.1016/j.jep.2023.116633
[66] Wang, Y., He, X., Wang, H., Hu, W. and Sun, L. (2024) Qingfei Xieding Prescription Ameliorates Mitochondrial DNA-Initiated Inflammation in Bleomycin-Induced Pulmonary Fibrosis through Activating Autophagy. Journal of Ethnopharmacology, 325, Article 117820.
https://doi.org/10.1016/j.jep.2024.117820
[67] Li, H., Zhao, C., Muhetaer, G., Guo, L., Yao, K., Zhang, G., et al. (2022) Integrated RNA-Sequencing and Network Pharmacology Approach Reveals the Protection of Yiqi Huoxue Formula against Idiopathic Pulmonary Fibrosis by Interfering with Core Transcription Factors. Phytomedicine, 104, Article 154301.
https://doi.org/10.1016/j.phymed.2022.154301
[68] Li, K., Liu, X., Hou, R., Zhao, H., Zhao, P., Tian, Y., et al. (2023) Uncovering Mechanisms of Baojin Chenfei Formula Treatment for Silicosis by Inhibiting Inflammation and Fibrosis Based on Serum Pharmacochemistry and Network Analysis. Ecotoxicology and Environmental Safety, 260, Article 115082.
https://doi.org/10.1016/j.ecoenv.2023.115082
[69] 吕园园, 张念志. 张念志教授以肺痹论治结缔组织病相关间质性肺病经验[J]. 甘肃中医药大学学报, 2024, 41(2): 39-43.
[70] 章金曦. 以咳嗽为主的间质性肺疾病患者临床特征和中医证候研究[D]: [硕士学位论文]. 北京: 北京中医药大学, 2023.
[71] 黄芳, 高卫星, 陈美玲, 等. 自拟保肺膏联合吡非尼酮治疗特发性间质性肺炎的临床观察[J]. 医学理论与实践, 2025, 38(1): 69-72.
[72] 李莉, 申燕华, 苑兴华, 等. 扶正化瘀方联合吡非尼酮治疗特发性肺纤维化的临床疗效研究[J]. 上海中医药大学学报, 2024, 38(1): 52-60.
[73] 宋攀, 周俭, 欧慧萍. 祛风通络方辅助硫酸羟氯喹治疗类风湿关节炎合并间质性肺炎临床效果及安全性的研究[J]. 西北药学杂志, 2025, 40(1): 177-183.