[1]
|
Wijsenbeek, M., Suzuki, A. and Maher, T.M. (2022) Interstitial Lung Diseases. The Lancet, 400, 769-786. https://doi.org/10.1016/s0140-6736(22)01052-2
|
[2]
|
Shah Gupta, R., Koteci, A., Morgan, A., George, P.M. and Quint, J.K. (2023) Incidence and Prevalence of Interstitial Lung Diseases Worldwide: A Systematic Literature Review. BMJ Open Respiratory Research, 10, e001291. https://doi.org/10.1136/bmjresp-2022-001291
|
[3]
|
陈相, 李耀浙, 傅扬扬, 等. 1990-2019年中国间质性肺疾病和肺结节病的疾病负担分析[J]. 疾病监测, 2023, 38(4): 473-480.
|
[4]
|
Maher, T.M. (2024) Interstitial Lung Disease. Journal of the American Medical Association, 331, 1655. https://doi.org/10.1001/jama.2024.3669
|
[5]
|
刘丽云, 杨晓东, 赵娜. 间质性肺疾病的治疗研究进展[J]. 微量元素与健康研究, 2022, 39(5): 77-79.
|
[6]
|
He, M., Yang, T., Zhou, J., Wang, R. and Li, X. (2024) A Real-World Study of Antifibrotic Drugs-Related Adverse Events Based on the United States Food and Drug Administration Adverse Event Reporting System and Vigi-Access Databases. Frontiers in Pharmacology, 15, Article 1310286. https://doi.org/10.3389/fphar.2024.1310286
|
[7]
|
Chow, T.G., Franzblau, L.E. and Khan, D.A. (2022) Adverse Reactions to Biologic Medications Used in Allergy and Immunology Diseases. Current Allergy and Asthma Reports, 22, 195-207. https://doi.org/10.1007/s11882-022-01048-9
|
[8]
|
Wang, H., Zhou, J., Guo, X., Li, Y., Duan, L., SI, X., et al. (2020) Use of Glucocorticoids in the Management of Immunotherapy-Related Adverse Effects. Thoracic Cancer, 11, 3047-3052. https://doi.org/10.1111/1759-7714.13589
|
[9]
|
Fathimath Muneesa, M., Shaikh, S.B., Jeena, T.M. and Bhandary, Y.P. (2021) Inflammatory Mediators in Various Molecular Pathways Involved in the Development of Pulmonary Fibrosis. International Immunopharmacology, 96, Article 107608. https://doi.org/10.1016/j.intimp.2021.107608
|
[10]
|
Savin, I.A., Zenkova, M.A. and Sen’kova, A.V. (2022) Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant in Vivo Models, Prognostic and Therapeutic Approaches. International Journal of Molecular Sciences, 23, Article 14959. https://doi.org/10.3390/ijms232314959
|
[11]
|
Kadomoto, S., Izumi, K. and Mizokami, A. (2021) Macrophage Polarity and Disease Control. International Journal of Molecular Sciences, 23, Article 144. https://doi.org/10.3390/ijms23010144
|
[12]
|
Heukels, P., Moor, C.C., von der Thüsen, J.H., Wijsenbeek, M.S. and Kool, M. (2019) Inflammation and Immunity in IPF Pathogenesis and Treatment. Respiratory Medicine, 147, 79-91. https://doi.org/10.1016/j.rmed.2018.12.015
|
[13]
|
Yang, G., Yang, Y., Liu, Y. and Liu, X. (2023) Regulation of Alveolar Macrophage Death in Pulmonary Fibrosis: A Review. Apoptosis, 28, 1505-1519. https://doi.org/10.1007/s10495-023-01888-4
|
[14]
|
Wynn, T.A. (2004) Fibrotic Disease and the TH1/TH2 Paradigm. Nature Reviews Immunology, 4, 583-594. https://doi.org/10.1038/nri1412
|
[15]
|
Saito, A., Okazaki, H., Sugawara, I., Yamamoto, K. and Takizawa, H. (2003) Potential Action of IL-4 and IL-13 as Fibrogenic Factors on Lung Fibroblasts in Vitro. International Archives of Allergy and Immunology, 132, 168-176. https://doi.org/10.1159/000073718
|
[16]
|
Walker, J.A. and McKenzie, A.N.J. (2017) TH2 Cell Development and Function. Nature Reviews Immunology, 18, 121-133. https://doi.org/10.1038/nri.2017.118
|
[17]
|
King, T.E., Albera, C., Bradford, W.Z., Costabel, U., Hormel, P., Lancaster, L., et al. (2009) Effect of Interferon Gamma-1b on Survival in Patients with Idiopathic Pulmonary Fibrosis (INSPIRE): A Multi-Centre, Randomized, Placebo-Controlled Trial. The Lancet, 374, 222-228. https://doi.org/10.1016/s0140-6736(09)60551-1
|
[18]
|
Parker, J.M., Glaspole, I.N., Lancaster, L.H., Haddad, T.J., She, D., Roseti, S.L., et al. (2018) A Phase 2 Randomized Controlled Study of Tralokinumab in Subjects with Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 197, 94-103. https://doi.org/10.1164/rccm.201704-0784oc
|
[19]
|
Ballester, B., Milara, J. and Cortijo, J. (2019) Idiopathic Pulmonary Fibrosis and Lung Cancer: Mechanisms and Molecular Targets. International Journal of Molecular Sciences, 20, Article 593. https://doi.org/10.3390/ijms20030593
|
[20]
|
Stock, C.J.W., Michaeloudes, C., Leoni, P., Durham, A.L., Mumby, S., Wells, A.U., et al. (2019) Bromodomain and Extra-Terminal (BET) Protein Inhibition Restores Redox Balance and Inhibits Myofibroblast Activation. BioMed Research International, 2019, 1-11. https://doi.org/10.1155/2019/1484736
|
[21]
|
Otoupalova, E., Smith, S., Cheng, G. and Thannickal, V.J. (2020) Oxidative Stress in Pulmonary Fibrosis. Comprehensive Physiology, 10, 509-547. https://doi.org/10.1002/j.2040-4603.2020.tb00120.x
|
[22]
|
Degryse, A.L., Tanjore, H., Xu, X.C., Polosukhin, V.V., Jones, B.R., McMahon, F.B., et al. (2010) Repetitive Intratracheal Bleomycin Models Several Features of Idiopathic Pulmonary Fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology, 299, L442-L452. https://doi.org/10.1152/ajplung.00026.2010
|
[23]
|
Hashimoto, N., Phan, S.H., Imaizumi, K., Matsuo, M., Nakashima, H., Kawabe, T., et al. (2010) Endothelial-Mesenchymal Transition in Bleomycin-Induced Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 43, 161-172. https://doi.org/10.1165/rcmb.2009-0031oc
|
[24]
|
Phan, T.H.G., Paliogiannis, P., Nasrallah, G.K., Giordo, R., Eid, A.H., Fois, A.G., et al. (2020) Emerging Cellular and Molecular Determinants of Idiopathic Pulmonary Fibrosis. Cellular and Molecular Life Sciences, 78, 2031-2057. https://doi.org/10.1007/s00018-020-03693-7
|
[25]
|
张丽冰, 赵娜, 农骐郢. 抑制肺上皮间质转化的抗纤维化药物研究进展[J]. 中华劳动卫生职业病杂志, 2023, 41(1): 72-77.
|
[26]
|
Yun, E., Kook, Y., Yoo, K.H., Kim, K.I., Lee, M., Kim, J., et al. (2020) Endothelial to Mesenchymal Transition in Pulmonary Vascular Diseases. Biomedicines, 8, Article 639. https://doi.org/10.3390/biomedicines8120639
|
[27]
|
Yao, C., Guan, X., Carraro, G., Parimon, T., Liu, X., Huang, G., et al. (2021) Senescence of Alveolar Type 2 Cells Drives Progressive Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 203, 707-717. https://doi.org/10.1164/rccm.202004-1274oc
|
[28]
|
Lv, X., Liu, C., Liu, S., Li, Y., Wang, W., Li, K., et al. (2022) The Cell Cycle Inhibitor P21 Promotes the Development of Pulmonary Fibrosis by Suppressing Lung Alveolar Regeneration. Acta Pharmaceutica Sinica B, 12, 735-746. https://doi.org/10.1016/j.apsb.2021.07.015
|
[29]
|
Zhou, S., Zhu, J., Zhou, P. and Gu, Y. (2022) Alveolar Type 2 Epithelial Cell Senescence and Radiation-Induced Pulmonary Fibrosis. Frontiers in Cell and Developmental Biology, 10, Article 999600. https://doi.org/10.3389/fcell.2022.999600
|
[30]
|
Li, H., Wu, M., Guo, C., Zhai, R. and Chen, J. (2022) Tanshinone IIA Regulates Keap1/Nrf2 Signal Pathway by Activating Sestrin2 to Restrain Pulmonary Fibrosis. The American Journal of Chinese Medicine, 50, 2125-2151. https://doi.org/10.1142/s0192415x22500914
|
[31]
|
Xue, Z., Zhao, F., Sang, X., Qiao, Y., Shao, R., Wang, Y., et al. (2021) Combination Therapy of Tanshinone IIA and Puerarin for Pulmonary Fibrosis via Targeting IL6-JAK2-STAT3/STAT1 Signaling Pathways. Phytotherapy Research, 35, 5883-5898. https://doi.org/10.1002/ptr.7253
|
[32]
|
Yang, J., Jiang, G., Ni, K., Fan, L., Tong, W. and Yang, J. (2022) Emodin Inhibiting Epithelial-Mesenchymal Transition in Pulmonary Fibrosis through the c-MYC/miR-182-5p/ZEB2 Axis. Phytotherapy Research, 37, 926-934. https://doi.org/10.1002/ptr.7680
|
[33]
|
Wu, Y., Shi, W., Li, H., Liu, C., Shimizu, K., Li, R., et al. (2024) Specneuzhenide Improves Bleomycin-Induced Pulmonary Fibrosis in Mice via AMPK-Dependent Reduction of Pd-l1. Phytomedicine, 128, Article 155318. https://doi.org/10.1016/j.phymed.2023.155318
|
[34]
|
Lin, W., Song, Y., Li, T., Yan, J., Zhang, R., Han, L., et al. (2023) Triptolide Attenuates Pulmonary Fibrosis by Inhibiting Fibrotic Extracellular Matrix Remodeling Mediated by MMPS/lox/integrin. Biomedicine & Pharmacotherapy, 166, Article 115394. https://doi.org/10.1016/j.biopha.2023.115394
|
[35]
|
Li, X., Wang, Y., Liang, J., Bi, Z., Ruan, H., Cui, Y., et al. (2021) Bergenin Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice via Inhibiting TGF-β1 Signaling Pathway. Phytotherapy Research, 35, 5808-5822. https://doi.org/10.1002/ptr.7239
|
[36]
|
Li, H., Wang, Y., Chen, T., Gao, Y., Song, L., Yang, Y., et al. (2024) Panax Notoginseng Saponin Alleviates Pulmonary Fibrosis in Rats by Modulating the Renin-Angiotensin System. Journal of Ethnopharmacology, 318, Article 116979. https://doi.org/10.1016/j.jep.2023.116979
|
[37]
|
Liu, J., Fan, G., Tao, N., Feng, F., Meng, C. and Sun, T. (2022) Ginsenoside Rb1 Alleviates Bleomycin-Induced Pulmonary Inflammation and Fibrosis by Suppressing Central Nucleotide-Binding Oligomerization, Leucine-Rich Repeat, and Pyrin Domains-Containing Protein Three Inflammasome Activation and the NF-κB Pathway. Drug Design, Development and Therapy, 16, 1793-1809. https://doi.org/10.2147/dddt.s361748
|
[38]
|
Ruan, Y., Ren, G., Wang, M., Lv, W., Shimizu, K. and Zhang, C. (2024) The Dual Role of 20(s)-Protopanaxadiol in Alleviating Pulmonary Fibrosis through the Gut-Lung Axis. Phytomedicine, 129, Article 155699. https://doi.org/10.1016/j.phymed.2024.155699
|
[39]
|
Ding, D., Shen, X., Yu, L., Zheng, Y., Liu, Y., Wang, W., et al. (2023) Timosaponin BII Inhibits TGF-β Mediated Epithelial-Mesenchymal Transition through Smad-Dependent Pathway during Pulmonary Fibrosis. Phytotherapy Research, 37, 2787-2799. https://doi.org/10.1002/ptr.7774
|
[40]
|
Ding, Y., Wang, L., Liu, B., Ren, G., Okubo, R., Yu, J., et al. (2022) Bryodulcosigenin Attenuates Bleomycin-Induced Pulmonary Fibrosis via Inhibiting AMPK-Mediated Mesenchymal Epithelial Transition and Oxidative Stress. Phytotherapy Research, 36, 3911-3923. https://doi.org/10.1002/ptr.7535
|
[41]
|
Zhang, M., Wang, W., Liu, K., Jia, C., Hou, Y. and Bai, G. (2023) Astragaloside IV Protects against Lung Injury and Pulmonary Fibrosis in COPD by Targeting GTP-GDP Domain of RAS and Downregulating the RAS/RAF/FoxO Signaling Pathway. Phytomedicine, 120, Article 155066. https://doi.org/10.1016/j.phymed.2023.155066
|
[42]
|
Yuan, S., Zuo, B., Zhou, S., Wang, M., Tan, K., Chen, Z., et al. (2023) Integrating Network Pharmacology and Experimental Validation to Explore the Pharmacological Mechanism of Astragaloside IV in Treating Bleomycin-Induced Pulmonary Fibrosis. Drug Design, Development and Therapy, 17, 1289-1302. https://doi.org/10.2147/dddt.s404710
|
[43]
|
Sun, S., Han, R., Hou, S., Yi, H., Chi, S. and Zhang, A. (2020) Juglanin Alleviates Bleomycin-Induced Lung Injury by Suppressing Inflammation and Fibrosis via Targeting Sting Signaling. Biomedicine & Pharmacotherapy, 127, Article 110119. https://doi.org/10.1016/j.biopha.2020.110119
|
[44]
|
Liu, N., Fan, X., Shao, Y., Chen, S., Wang, T., Yao, T., et al. (2024) Resveratrol Attenuates Inflammation and Fibrosis in Rheumatoid Arthritis-Associated Interstitial Lung Disease via the AKT/TMEM175 Pathway. Journal of Translational Medicine, 22, Article No. 457. https://doi.org/10.1186/s12967-024-05228-1
|
[45]
|
Li, Y., Chen, R., Wu, J., Xue, X., Liu, T., Peng, G., et al. (2023) Salvianolic Acid B Protects against Pulmonary Fibrosis by Attenuating Stimulating Protein 1-Mediated Macrophage and Alveolar Type 2 Cell Senescence. Phytotherapy Research, 38, 620-635. https://doi.org/10.1002/ptr.8070
|
[46]
|
Yang, T., Pan, Q., Yue, R., Liu, G. and Zhou, Y. (2024) Daphnetin Alleviates Silica-Induced Pulmonary Inflammation and Fibrosis by Regulating the PI3K/AKT1 Signaling Pathway in Mice. International Immunopharmacology, 133, Article 112004. https://doi.org/10.1016/j.intimp.2024.112004
|
[47]
|
Chen, Y., Liu, H., Han, R., Lin, J., Yang, J., Guo, M., et al. (2024) Analyzing How Simiao Wan Regulates Ferroptosis to Prevent RA-ILD Using Metabolomics and Cyberpharmacology. Phytomedicine, 133, Article 155912. https://doi.org/10.1016/j.phymed.2024.155912
|
[48]
|
Ba, X., Wang, H., Huang, Y., Yan, J., Han, L., Lin, W., et al. (2023) Simiao Pill Attenuates Collagen-Induced Arthritis and Bleomycin-Induced Pulmonary Fibrosis in Mice by Suppressing the JAK2/STAT3 and TGF-β/Smad2/3 Signalling Pathway. Journal of Ethnopharmacology, 309, Article 116274. https://doi.org/10.1016/j.jep.2023.116274
|
[49]
|
Xu, Y., Wang, X., Han, D., Wang, J., Luo, Z., Jin, T., et al. (2022) Revealing the Mechanism of Jiegeng Decoction Attenuates Bleomycin-Induced Pulmonary Fibrosis via Pi3k/Akt Signaling Pathway Based on Lipidomics and Transcriptomics. Phytomedicine, 102, Article 154207. https://doi.org/10.1016/j.phymed.2022.154207
|
[50]
|
Shuangshuang, H., Mengmeng, S., Lan, Z., Fang, Z. and Yu, L. (2024) Maimendong Decoction Regulates M2 Macrophage Polarization to Suppress Pulmonary Fibrosis via PI3K/Akt/FoxO3a Signalling Pathway-Mediated Fibroblast Activation. Journal of Ethnopharmacology, 319, Article 117308. https://doi.org/10.1016/j.jep.2023.117308
|
[51]
|
Zhou, P., Wu, X., Chen, K., Du, J. and Wang, F. (2024) Buyang Huanwu Decoction Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Rats by Attenuating the Apoptosis of Alveolar Type II Epithelial Cells Mediated by Endoplasmic Reticulum Stress. Journal of Ethnopharmacology, 319, Article 117300. https://doi.org/10.1016/j.jep.2023.117300
|
[52]
|
Feng, Y., Dai, L., Zhang, Y., Sun, S., Cong, S., Ling, S., et al. (2024) Buyang Huanwu Decoction Alleviates Blood Stasis, Platelet Activation, and Inflammation and Regulates the Hmgb1/NF-κB Pathway in Rats with Pulmonary Fibrosis. Journal of Ethnopharmacology, 319, Article 117088. https://doi.org/10.1016/j.jep.2023.117088
|
[53]
|
Pan, J., Li, Y., Wu, X., Pan, X., Liu, C., Zhang, H., et al. (2024) The Mechanism of Shenlong Jianji Treatment of Idiopathic Pulmonary Fibrosis Inhibits Fibroblast-to-Myofibroblast Transformation via the TGF-β1/Smads Signaling Pathway. Journal of Ethnopharmacology, 322, Article 117507. https://doi.org/10.1016/j.jep.2023.117507
|
[54]
|
Li, T., Mao, N., Xie, Z., Wang, J., Jin, F., Li, Y., et al. (2024) Paeoniflorin Mitigates MMP-12 Inflammation in Silicosis via Yang-Yin-Qing-Fei Decoction in Murine Models. Phytomedicine, 129, Article 155616. https://doi.org/10.1016/j.phymed.2024.155616
|
[55]
|
Yan, L., Jiang, M. and Fan, X. (2023) Research into the Anti-Pulmonary Fibrosis Mechanism of Renshen Pingfei Formula Based on Network Pharmacology, Metabolomics, and Verification of AMPK/PPAR-Γ Pathway of Active Ingredients. Journal of Ethnopharmacology, 317, Article 116773. https://doi.org/10.1016/j.jep.2023.116773
|
[56]
|
Samir, P., Malireddi, R.K.S. and Kanneganti, T. (2020) The Panoptosome: A Deadly Protein Complex Driving Pyroptosis, Apoptosis, and Necroptosis (Panoptosis). Frontiers in Cellular and Infection Microbiology, 10, Article 238. https://doi.org/10.3389/fcimb.2020.00238
|
[57]
|
Liang, Y., Yan, Y., Liu, N., Wang, J. and Fang, C. (2024) Shengxian Decoction Improves Lung Function in Rats with Bleomycin-Induced Idiopathic Pulmonary Fibrosis through the Inhibition of Panoptosis. Journal of Ethnopharmacology, 329, Article 118153. https://doi.org/10.1016/j.jep.2024.118153
|
[58]
|
Wang, D., Gong, L., Li, Z., Chen, H., Xu, M., Rong, R., et al. (2021) Antifibrotic Effect of Gancao Ganjiang Decoction Is Mediated by PD-1/TGF-β1/IL-17A Pathway in Bleomycin-Induced Idiopathic Pulmonary Fibrosis. Journal of Ethnopharmacology, 281, Article 114522. https://doi.org/10.1016/j.jep.2021.114522
|
[59]
|
Wang, Y., Sang, X., Shao, R., Qin, H., Chen, X., Xue, Z., et al. (2022) Xuanfei Baidu Decoction Protects against Macrophages Induced Inflammation and Pulmonary Fibrosis via Inhibiting IL-6/STAT3 Signaling Pathway. Journal of Ethnopharmacology, 283, Article 114701. https://doi.org/10.1016/j.jep.2021.114701
|
[60]
|
Jia, M., Liu, Y., Liu, J., Meng, J., Cao, J., Miao, L., et al. (2024) Xuanfei Baidu Decoction Ameliorates Bleomycin-Elicited Idiopathic Pulmonary Fibrosis in Mice by Regulating the Lung-Gut Crosstalk via Ifnγ/STAT1/STAT3 Axis. Phytomedicine, 135, Article 155997. https://doi.org/10.1016/j.phymed.2024.155997
|
[61]
|
Ding, L., Yang, Y., Wang, Z., Su, H., Li, Y., Ma, J., et al. (2023) Qimai Feiluoping Decoction Inhibits Mitochondrial Complex I-Mediated Oxidative Stress to Ameliorate Bleomycin-Induced Pulmonary Fibrosis. Phytomedicine, 112, Article 154707. https://doi.org/10.1016/j.phymed.2023.154707
|
[62]
|
Shao, D., Liu, X., Wu, J., Zhang, A., Bai, Y., Zhao, P., et al. (2022) Identification of the Active Compounds and Functional Mechanisms of Jinshui Huanxian Formula in Pulmonary Fibrosis by Integrating Serum Pharmacochemistry with Network Pharmacology. Phytomedicine, 102, Article 154177. https://doi.org/10.1016/j.phymed.2022.154177
|
[63]
|
Zhang, Z., Deng, X., Gu, W., Jiao, Y., Su, C., Liu, H., et al. (2024) Jianghu Decoction and Its Active Component Polydatin Inhibit Inflammation and Fibrotic Lesions in the Lungs of ILD Mice via the AMPK Signaling Pathway. Journal of Ethnopharmacology, 318, Article 117003. https://doi.org/10.1016/j.jep.2023.117003
|
[64]
|
Shi, H., Deng, L., Zhou, Y., Yu, H., Huang, X., Chen, M., et al. (2023) Network Pharmacology and Experiments in Vivo and in Vitro Reveal That the Jia-Wei-Bu-Shen-Yi-Qi Formula (JWBSYQF) and Its Active Ingredient Baicalein Ameliorate BLM-Induced Lung Fibrosis in Mice via PI3K/Akt Signaling Pathway. Journal of Ethnopharmacology, 315, Article 116691. https://doi.org/10.1016/j.jep.2023.116691
|
[65]
|
Zhang, X., Su, J., Lin, J., Liu, L., Wu, J., Yuan, W., et al. (2023) Fu-Zheng-Tong-Luo Formula Promotes Autophagy and Alleviates Idiopathic Pulmonary Fibrosis by Controlling the Janus Kinase 2/Signal Transducer and Activator of Transcription 3 Pathway. Journal of Ethnopharmacology, 314, Article 116633. https://doi.org/10.1016/j.jep.2023.116633
|
[66]
|
Wang, Y., He, X., Wang, H., Hu, W. and Sun, L. (2024) Qingfei Xieding Prescription Ameliorates Mitochondrial DNA-Initiated Inflammation in Bleomycin-Induced Pulmonary Fibrosis through Activating Autophagy. Journal of Ethnopharmacology, 325, Article 117820. https://doi.org/10.1016/j.jep.2024.117820
|
[67]
|
Li, H., Zhao, C., Muhetaer, G., Guo, L., Yao, K., Zhang, G., et al. (2022) Integrated RNA-Sequencing and Network Pharmacology Approach Reveals the Protection of Yiqi Huoxue Formula against Idiopathic Pulmonary Fibrosis by Interfering with Core Transcription Factors. Phytomedicine, 104, Article 154301. https://doi.org/10.1016/j.phymed.2022.154301
|
[68]
|
Li, K., Liu, X., Hou, R., Zhao, H., Zhao, P., Tian, Y., et al. (2023) Uncovering Mechanisms of Baojin Chenfei Formula Treatment for Silicosis by Inhibiting Inflammation and Fibrosis Based on Serum Pharmacochemistry and Network Analysis. Ecotoxicology and Environmental Safety, 260, Article 115082. https://doi.org/10.1016/j.ecoenv.2023.115082
|
[69]
|
吕园园, 张念志. 张念志教授以肺痹论治结缔组织病相关间质性肺病经验[J]. 甘肃中医药大学学报, 2024, 41(2): 39-43.
|
[70]
|
章金曦. 以咳嗽为主的间质性肺疾病患者临床特征和中医证候研究[D]: [硕士学位论文]. 北京: 北京中医药大学, 2023.
|
[71]
|
黄芳, 高卫星, 陈美玲, 等. 自拟保肺膏联合吡非尼酮治疗特发性间质性肺炎的临床观察[J]. 医学理论与实践, 2025, 38(1): 69-72.
|
[72]
|
李莉, 申燕华, 苑兴华, 等. 扶正化瘀方联合吡非尼酮治疗特发性肺纤维化的临床疗效研究[J]. 上海中医药大学学报, 2024, 38(1): 52-60.
|
[73]
|
宋攀, 周俭, 欧慧萍. 祛风通络方辅助硫酸羟氯喹治疗类风湿关节炎合并间质性肺炎临床效果及安全性的研究[J]. 西北药学杂志, 2025, 40(1): 177-183.
|