巨噬细胞极化在溃疡性结肠炎中的参与和作用
Involvement and Role of Macrophage Polarization in Ulcerative Colitis
DOI: 10.12677/pi.2025.143024, PDF, HTML, XML,   
作者: 胡 诺, 夏玉凤*:中国药科大学中药学院,江苏 南京
关键词: 巨噬细胞极化溃疡性结肠炎Macrophage Polarization Ulcerative Colitis
摘要: 作为先天免疫细胞,巨噬细胞广泛存在于所有组织中,并在发育、防御和抗炎等方面发挥着重要作用。溃疡性结肠炎的发生、发展受到巨噬细胞的显著影响。M1型巨噬细胞主要产生促炎因子,而M2型巨噬细胞主要参与抗炎过程和组织修复。肠道M1/M2巨噬细胞的极化失衡与溃疡性结肠炎密切相关。本文就巨噬细胞的起源、分类、功能及其在溃疡性结肠炎中的参与和作用进行综述,以期为基于巨噬细胞极化治疗溃疡性结肠炎的药物开发和应用提供参考。
Abstract: As innate immune cells, macrophages widely exist in all tissues and play an important role in development, defense and anti-inflammation. The occurrence and development of ulcerative colitis are significantly affected by macrophages. M1 macrophages mainly produce pro-inflammatory factors, while M2 macrophages are mainly involved in anti-inflammatory processes and tissue repair. The polarization imbalance of intestinal M1/M2 macrophages is closely related to ulcerative colitis. This article reviews the origin, classification, function of macrophages and their involvement and role in ulcerative colitis, hoping to provide references for the development and application of drugs based on macrophage polarization in the treatment of ulcerative colitis.
文章引用:胡诺, 夏玉凤. 巨噬细胞极化在溃疡性结肠炎中的参与和作用[J]. 药物资讯, 2025, 14(3): 201-210. https://doi.org/10.12677/pi.2025.143024

1. 引言

溃疡性结肠炎(UC)是一种影响结肠的慢性炎症性疾病,临床表现为持续性或复发性腹泻、黏液脓性血便伴腹痛,以及不同程度的全身症状。迄今为止,该病的发病机制尚未得到明确解释,可能涉及遗传易感性、上皮屏障缺陷、免疫反应调节异常、肠道菌群失调和外部环境等因素[1] [2]。尽管UC的发病率和患病率在北欧和北美等高发病率地区开始趋于稳定,但在南欧、亚洲和大部分发展中国家等低发病率地区,UC的发病率和患病率继续上升。UC发病高峰年龄在30岁至40岁之间,没有性别差异[3] [4]。溃疡性结肠炎患者的粘膜炎症始于直肠,可持续延伸至结肠近端,通过结肠镜检查和组织学检查结果进行诊断[5]。治疗的目的是诱导并维持缓解,缓解定义为症状消退和内镜下愈合。由于缺乏已知的预防性或根本治愈性干预措施,对于被诊断为UC的患者来说,终身治疗几乎是必不可少的[6]。目前UC的治疗方法包括5-氨基水杨酸药物、类固醇、生物制剂和免疫抑制剂[7]。由于各种不良反应、药物耐受性和高复发率等,这些药物未取得令人满意的结果。因此,迫切需要寻找新的治疗靶点,以减少抗炎药、激素和免疫抑制剂的使用,减少药物不良反应。

巨噬细胞是机体的先天免疫细胞,在体液免疫和细胞免疫中起着不可替代的作用。肠道巨噬细胞可以介导炎症反应,它们的过度激活会导致炎症调节失衡,将生理性炎症转化为病理性肠道损伤[8]。研究发现,与正常粘膜固有层相比,活动性UC患者局部结肠组织中肠粘膜巨噬细胞的数量显著增加并趋于被激活,提示肠道巨噬细胞参与UC的发生和发展[9]。肠道巨噬细胞会根据肠道局部微环境极化成不同的亚型。越来越多的研究发现,UC患者肠道巨噬细胞极化异常,提示肠道巨噬细胞极化可能在UC的发生发展中起核心作用[10] [11]。恢复肠道巨噬细胞两种亚型之间的平衡可能成为临床治疗UC的重要手段。

研究结肠炎与巨噬细胞之间的密切关系具有重要意义。同样,越来越多的研究报道了靶向巨噬细胞调节结肠炎的潜在分子,并显示出有希望的治疗效果。本文总结了巨噬细胞的特点及其在结肠炎中的作用和潜在机制的研究。

2. 巨噬细胞的特点

2.1. 巨噬细胞的起源

传统上,巨噬细胞被认为是线性单核吞噬细胞系统的一部分,并被认为完全来源于血液单核细胞[12]。随着新技术的发展,越来越多的证据表明,单核细胞并不是组织驻留巨噬细胞的唯一来源,大多数组织驻留巨噬细胞来自胚胎发育期间卵黄囊中的红细胞–髓系祖细胞,并通过局部增殖进行自我维持[13] [14]。更多的证据表明,肠道驻留的巨噬细胞来源于胚胎前体,这些前体在新生儿期经历连续的原位增殖,随后随着年龄的增长被源自外周血的巨噬细胞所取代[15] [16]。由于肠道巨噬细胞不断暴露于肠道病原体及其高能量的消耗,固有层巨噬细胞寿命短,需要骨髓来源的外周血单核细胞持续补充,随后在肠道中分化为成熟巨噬细胞[17]

2.2. 巨噬细胞的表型

巨噬细胞具有很强的可塑性。通常,有两种活化的巨噬细胞:经典激活的巨噬细胞(M1)和替代激活的巨噬细胞(M2)。此外,还存在一种非活化状态,称为M0状态[18]

M1型巨噬细胞可被肿瘤坏死因子α (TNF-α)和Toll样受体(TLR)的配体激活,例如脂多糖(LPS)或干扰素γ (IFN-γ)。过表达表面受体CD80和CD86,并分泌高水平的诱导型一氧化氮合酶(iNOS)和促炎细胞因子TNF-α、白细胞介素1β (IL-1β)、IL-6、IL-12和IL-23等[19] [20],在炎症的初始阶段发挥关键作用。

M2型巨噬细胞可被辅助型T细胞2 (Th2)相关细胞因子激活,如IL-4和IL-13。它们主要表达CD163和CD206等标志物。M2巨噬细胞可分泌许多抗炎物质,包括转化生长因子-β (TGF-β)、精氨酸酶-1 (Arg-1)、IL-4、IL-10、IL-13等,表现出很强的抗炎作用[21]。此外,M2型巨噬细胞还可以进一步分为M2a、M2b、M2c和M2d四种表型,每种表型都有其特定的功能和表面标志[22]

2.3. 巨噬细胞的功能

巨噬细胞在免疫应答中非常重要,它们是先天免疫系统的关键组成部分,扮演着多种角色。以下是巨噬细胞在免疫反应中的主要功能:

吞噬作用:巨噬细胞的最基本功能之一是吞噬细菌及其他有害生物。它们能够通过识别和结合病原体,然后将其包裹并消化,从而清除感染源。巨噬细胞还能吞噬衰老的细胞和细胞碎片,帮助清理受损组织,为修复过程提供条件[23]

免疫调节:巨噬细胞能够分泌多种细胞因子和趋化因子,这些物质能够吸引其他免疫细胞到达感染或损伤部位。通过这种方式,巨噬细胞不仅参与了先天免疫反应,也帮助启动特异性免疫反应,即适应性免疫[24]

抗炎和促炎作用:根据环境和需要,巨噬细胞可以极化为不同的亚型。例如,M1型巨噬细胞主要负责产生促炎因子,对抗感染;而M2型巨噬细胞则主要参与抗炎过程和组织修复。这种极化过程使得巨噬细胞能够在不同的免疫环境中发挥不同的作用[25]

信息转导:巨噬细胞不仅是免疫反应的执行者,还是信息的转导者。它们能够从受损的组织中获取信息,并将这些信息转化为适当的免疫反应。例如,它们可以感知感染的存在并相应调整其功能,以应对不同的病原体[26]

清除肿瘤细胞:近年来的研究表明,巨噬细胞还可以在抗肿瘤免疫中发挥作用。它们能够识别肿瘤特异性抗原并清除肿瘤细胞,对肿瘤细胞的直接杀伤,这一过程为癌症治疗提供了新的思路[27]

3. 巨噬细胞极化与UC发展的关系

在生理条件下,肠道中的巨噬细胞吞噬微生物并呈递抗原以激活T细胞。巨噬细胞的过度激活使生理性炎症转化为肠粘膜的病理损伤[28]。当肠道被病原体侵入时,肠道屏障的完整性会受到损害。此时巨噬细胞向M1极化,并释放大量的炎症因子和介质,如趋化因子(CXCL9, CXCL10)、细胞因子(TNF-α, IL-1β, IL-6, IL-18, IL-23)、一氧化氮和活性氧,产生强烈的促炎作用,同时促进Th1和Th17细胞参与免疫反应[29]-[31]。另一方面,促炎因子过度积累过多会使紧密连接蛋白降解,破坏上皮屏障并促进上皮细胞凋亡,导致过度炎症和免疫稳态失衡[10]。故M1巨噬细胞被过度激活会加剧肠道炎症反应,最终导致溃疡性结肠炎恶化。

在UC中,M2巨噬细胞对炎症消退和组织愈合至关重要。尽管结肠M1巨噬细胞的数量在结肠炎期间占主导地位,但一些M2巨噬细胞也会分泌抗炎因子,对抗炎症并促进伤口愈合[8]。随着疾病进展,巨噬细胞向M2表型倾斜,产生细胞因子和趋化因子(如IL-10、IL-4、IL-13、TGF-β、CCL17和CCL22)等,发挥抗炎作用,促进肠道粘膜屏障的修复[32] [33]。在药物等因素的作用下,炎症进入退化阶段,一方面促进Th2型免疫反应,另一方面促进吞噬受损的细胞[34]。此外,Th17细胞的分化和功能受到M2巨噬细胞产生的抗炎物质抑制,从而降低炎症反应[35]

4. 巨噬细胞极化机制

4.1. TLR4/NF-κB信号通路

TLR4是一种表达在巨噬细胞表面的先天免疫受体,能有效识别病原体相关分子模式,是LPS的主要受体[36]。LPS与TLR4结合,通过骨髓分化因子88 (MyD88)依赖性途径或干扰素调节因子3 (IRF3)激活核因子-κB (NF-κB),从而促进炎症因子的表达[37]。多种药物已被证明可通过抑制TLR4/NF-κB信号通路来抑制M1巨噬细胞极化。例如,银杏内酯是一种独特的银杏叶成分,能显著抑制LPS和IFN-γ诱导的巨噬细胞活化和极化,降低NF-κB信号通路,抑制M1巨噬细胞极化从而改善实验性结肠炎[38]。同样,菊苣酸亦可以抑制结肠中的巨噬细胞向M1表型的极化,并下调TLR4/NF-κB信号通路,从而改善DSS诱导的小鼠UC [39]。此外,来自三七的20(S)-Protopanaxadiol皂苷可抑制HMGB1的表达和易位,干预高迁移率族蛋白B1 (HMGB1)的TLR4结合域,中断巨噬细胞中TLR4/NF-κB/NLRP3炎性小体通路的激活,减轻实验性结肠炎中的炎症损伤[40]。这些发现充分表明TLR4/NF-κB信号通路在M1巨噬细胞极化中的关键作用。

4.2. JAK/STAT信号通路

Janus (JAK)激酶是一种非受体酪氨酸激酶,在与细胞因子受体结合后参与信号转导。哺乳动物包含 JAK家族的四个成员:JAK1、JAK2、JAK3和Tyk2。信号转导和转录激活因子(STAT)是一组能够与DNA结合的转录因子[41]。JAK/STAT通路主要介导细胞因子受体的信号转导[42]。IFN-γ与其受体结合并激活JAK,诱导STAT1磷酸化。IFN-γ还可以促进M1巨噬细胞的代谢转换,从而导致巨噬细胞极化为M1型[43]。传统草药黄芪甲苷IV(AS-IV)可缓解DSS诱导的结肠炎小鼠的症状,并促进M1相关基因及其标志物的下调,及M2相关基因及其标志物的上调。进一步的分子结构模型证实AS-IV与STAT1口袋结合,通过下调STAT1的磷酸化调节巨噬细胞极化[44]

STAT6是M2极化的核心调节因子,在IL-4和IL-13信号传导中起关键作用。与受体结合后,IL-4和IL-13激活相关的JAK激酶,导致STAT6磷酸化和激活。然后,激活的STAT6转位到细胞核中,促进与M2巨噬细胞相关的基因的表达,这些基因在抗炎反应中起着至关重要的作用[45] [46]。姜黄素通过分泌IL-4和IL-13上调STAT6表达,从而诱导M0和M1巨噬细胞极化为M2 [47]。鸢尾素通过促进JAK2和整合素αVβ5之间的结合增强JAK2-STAT6通路的激活来促进M2巨噬细胞分化[48]

此外,STAT3对巨噬细胞极化也很重要。研究表明,IL-6/STAT3和JAK3/STAT3信号通路可导致巨噬细胞从M2表型极化为M1表型[49]。细胞因子信号传导抑制因子(SOCS)蛋白是被STAT蛋白激活的靶基因产物,可以负向调节JAK/STAT通路,从而影响M1/M2极化[50]。Yu等人[51]进一步表明,STAT3磷酸化增加可以通过上调SOCS3的表达来抑制STAT1的表达,从而抑制巨噬细胞M1极化。洋蓟素可以降低巨噬细胞中STAT3和p65的表达以及STAT3p65的磷酸化水平,从而抑制巨噬细胞向M1极化来减轻实验性UC [52]。果糖基芒果苷(FM)是一种潜在的STAT3抑制剂,可有效抑制M1巨噬细胞极化,通过STAT3/M1/Th17轴改善硫酸葡聚糖钠诱导的小鼠结肠炎,对适应性免疫反应发挥显着抑制作用[53]。白头翁汤(BTW)是一种中医处方,数百年来一直用于治疗UC,BTW可有效降低了结肠炎小鼠的症状和组织病理学评分,减少IL-6、IL-1β和TNF-α的产生,抑制IL-6/STAT3通路的激活,显著改善急性结肠炎小鼠的炎症症状[54]。综上所述,M1巨噬细胞极化与STAT1的磷酸化和STAT3降低密切相关,而M2极化主要取决于STAT6的表达增加。

4.3. PPARγ信号通路

过氧化物酶体增殖物激活受体γ (PPARγ)是细胞分化的重要转录因子,具有调节糖脂代谢、抗炎、减少氧化应激等多种功能[55]。受亲脂性小分子调节的PPARγ在巨噬细胞极化过程中起重要作用,PPARγ可通过促进巨噬细胞极化为M2表型和抑制极化为M1表型来控制巨噬细胞极化的方向[56]。据报道,巨噬细胞PPARγ激活可以保护小鼠免受实验性结肠炎的侵害,而巨噬细胞特异性PPARγ缺乏症会使结肠炎恶化[57]。木犀草素可通过激活腺苷酸活化蛋白激酶(AMPK)-PPARγ信号通路有效改善小鼠UC,且抑制巨噬细胞M1极化和促进M2极化[58]。另外,PPARγ的激活可降低RAW264.7细胞中M1极化标志物表达和STAT-1磷酸化,增加M2极化标志物表达和STAT-6磷酸化[59]。槲皮素是香莲丸的主要成分,UC患者单核细胞中STAT1/PPARγ信号传导不平衡,而槲皮素可通过倾斜STAT1/PPARγ的平衡来调节巨噬细胞替代激活,以恢复M1/M2巨噬细胞的平衡并减轻结肠炎的严重程度[60]。肠道微生物代谢物吲哚-3-丙酸(IPA)具有良好的抗炎和抗氧化作用,并在多种疾病模型中发挥作用。IPA可抑制巨噬细胞的糖酵解并通过激活PPAR-γ上调脂质代谢酶促进巨噬细胞M2极化并增强脂肪酸氧化[61]。Xu等人[62]发现泛素特异性肽酶25 (USP25)可通过减少STAT6的特异性泛素化来抑制STAT6/PPAR-γ信号传导,从而促进IL-4诱导的M2巨噬细胞。因此,调节PPARγ的表达水平是改变巨噬细胞极化方向的有效策略。

4.4. MAPK信号通路

丝裂原活化蛋白激酶(MAPK)亚家族包括JNK、ERK和p38MAPK,与实验性DSS诱导的结肠炎相关的研究表明,该通路与肠道组织的炎症和细胞凋亡有关[63]。前列腺素E2 (PGE2)是一种细胞生长和调节因子,靶向PGE2可以抑制炎症的发展,PGE2可抑制M1巨噬细胞极化,并通过非经典NF-κB途径TLR4/p38MAPK/Cox2减弱肠道对DSS或TNBS的易感性[64]。青蒿素(ART)是一种从中草药中提取的倍半萜类化合物,具有良好的免疫调节作用。在DSS诱导的结肠炎中,细胞外信号调节激酶(ERK)通路被激活,M1巨噬细胞占据主导地位。给药青蒿素后,M1巨噬细胞相关细胞因子下调,表型逆转为M2巨噬细胞,而ERK通路的激活受到抑制[65]。著名的中药方剂乌梅丸(WMW)已被用于治疗腹泻,这是结肠炎的主要症状之一。研究表明WMW可以抑制DSS诱导的结肠炎小鼠结肠巨噬细胞的M1极化并促进M2极化,主要是通过抑制p38MAPK和信号通路的激活,进一步激活STAT6信号通路,从而改善小鼠结肠炎[66]。这些研究表明,MAPK通路的激活参与巨噬细胞极化过程,促进巨噬细胞的M1极化并抑制M2极化,从而加重UC。

4.5. PI3K/AKT信号通路

磷脂酰肌醇-3-激酶(PI3K)/丝氨酸/苏氨酸激酶B(AKT)信号通路参与多种生理过程,是许多疾病发展的重要信号途径。PI3K磷酸化磷脂酰肌醇二磷酸(PIP2)以产生PIP3,然后PIP3募集下游信号蛋白,包括AKT。激活的AKT能磷酸化许多底物,雷帕霉素靶蛋白信号(mTOR)是AKT最常见的下游效应因子之一[67] [68]。桔梗素D (PLD)是在桔梗中发现的一种皂苷,PLD在DSS诱导的结肠炎中显示出减轻炎症、改善肠道损伤和维持肠道完整性的潜力。PLD可以增强RAW264.7细胞中PI3K/AKT信号通路的激活,并且抑制结肠中M1标志物的表达和促进M2标志物的表达。然而,当巨噬细胞耗尽时,PLD的上述作用降低,表明巨噬细胞在PLD对DSS诱导的结肠炎的改善作用中起关键作用[69]。青花萼素A (GLA)是一种二萜类化合物,有研究者对急性UC患者进行了网络药理学和外周血分析后,发现GLA可以通过抑制PI3K/AKT/mTOR信号传导降低炎性细胞因子的表达,改善DSS诱导的结肠炎小鼠症状[70]。传统中草药配方当归补血汤(DBD)以其补气和促进造血的能力而闻名。研究表明,在DSS诱导的结肠炎小鼠模型中,DBD减弱了肠道炎症并减轻了结肠病理损伤,这与DBD对PI3K/AKT通路的抑制有关[71]

4.6. 其他机制

除了上述通路外,巨噬细胞极化的潜在机制中还包括多种其他信号和靶标。Notch信号通路在多种疾病中具有重要作用,有研究表明抑制Notch1受体表达可增强M2巨噬细胞的极化。此外,Notch4会降低STAT1激活并增加STAT3激活[72] [73]。金纳米簇不仅促进IL-4处理的腹膜巨噬细胞的M2分化,而且还通过核因子E2相关因子2 (Nrf2)信号通路在促炎环境中重编程巨噬细胞从M1到M2的极化[74]。姜黄素亦可通过血红素加氧酶-1 (HO-1)/Nrf2信号通路的抗氧化应激作用增加M2型巨噬细胞来改善UC [75]。Wnt信号通路介导肠道粘膜修复,而M2巨噬细胞与Wnt配体表达有关。有研究者发现STAT6依赖性巨噬细胞M2极化是通过激活Wnt信号通路进行的,并且可促进TNBS处理的小鼠的结肠粘膜修复[76]。银椴苷是一种存在于植物中的类黄酮成分,它可促进缺氧诱导因子-1α (HIF-1α)的蛋白酶体降解并下调巨噬细胞中HIF-1α依赖性糖酵解酶的mRNA表达,通过重编程葡萄糖代谢途径调节巨噬细胞极化[77]。黄芩汤(HQD)是伤寒论中记载的中药方剂,在临床上已被用于治疗复杂的胃肠道疾病。游离脂肪酸受体4 (FFAR4)参与破坏脂肪酸代谢。此外,脂肪酸合成直接导致M1巨噬细胞极化的炎症[78] [79]。研究表明HQD可以通过激活FFAR4-AMPK-PPARα通路调节脂肪酸代谢介导M2巨噬细胞极化,改善DSS诱导的UC [80]。以上多种信号通路在调节巨噬细胞极化方面也发挥着重要作用。

5. 小结与展望

UC的治疗仍然是一个难题,近年来巨噬细胞的起源、分类、特点及其功能在生理学和病理学中的研究取得了极大的进步。巨噬细胞在UC中起重要作用,肠道M1/M2巨噬细胞极化失衡与UC密切相关。因此,基于巨噬细胞的极化稳态治疗UC变得越来越重要。药物可基于多种通路调节巨噬细胞极化,但影响巨噬细胞极化更深入的机制尚未完全阐明,需要更多基础实验和临床研究的支持。希望未来能开展更多的药物的基础研究,为基于巨噬细胞极化治疗UC的药物的开发和应用提供更多的参考方向。

NOTES

*通讯作者。

参考文献

[1] Ungaro, R., Mehandru, S., Allen, P.B., Peyrin-Biroulet, L. and Colombel, J. (2017) Ulcerative Colitis. The Lancet, 389, 1756-1770.
https://doi.org/10.1016/s0140-6736(16)32126-2
[2] Krugliak Cleveland, N., Torres, J. and Rubin, D.T. (2022) What Does Disease Progression Look Like in Ulcerative Colitis, and How Might It Be Prevented? Gastroenterology, 162, 1396-1408.
https://doi.org/10.1053/j.gastro.2022.01.023
[3] Cosnes, J., Gower-Rousseau, C., Seksik, P. and Cortot, A. (2011) Epidemiology and Natural History of Inflammatory Bowel Diseases. Gastroenterology, 140, 1785-1794.e4.
https://doi.org/10.1053/j.gastro.2011.01.055
[4] Loftus, E.V. (2004) Clinical Epidemiology of Inflammatory Bowel Disease: Incidence, Prevalence, and Environmental Influences. Gastroenterology, 126, 1504-1517.
https://doi.org/10.1053/j.gastro.2004.01.063
[5] Dignass, A., Eliakim, R., Magro, F., Maaser, C., Chowers, Y., Geboes, K., et al. (2012) Second European Evidence-Based Consensus on the Diagnosis and Management of Ulcerative Colitis Part 1: Definitions and Diagnosis. Journal of Crohns and Colitis, 6, 965-990.
https://doi.org/10.1016/j.crohns.2012.09.003
[6] Falvey, J.D., Hoskin, T., Meijer, B., Ashcroft, A., Walmsley, R., Day, A.S., et al. (2015) Disease Activity Assessment in IBD: Clinical Indices and Biomarkers Fail to Predict Endoscopic Remission. Inflammatory Bowel Diseases, 21, 824-831.
https://doi.org/10.1097/mib.0000000000000341
[7] Magro, F., Rodrigues, A., Vieira, A.I., Portela, F., Cremers, I., Cotter, J., et al. (2012) Review of the Disease Course among Adult Ulcerative Colitis Population-Based Longitudinal Cohorts. Inflammatory Bowel Diseases, 18, 573-583.
https://doi.org/10.1002/ibd.21815
[8] Bain, C.C. and Mowat, A.M. (2014) Macrophages in Intestinal Homeostasis and Inflammation. Immunological Reviews, 260, 102-117.
https://doi.org/10.1111/imr.12192
[9] Na, Y.R., Stakenborg, M., Seok, S.H. and Matteoli, G. (2019) Macrophages in Intestinal Inflammation and Resolution: A Potential Therapeutic Target in IBD. Nature Reviews Gastroenterology & Hepatology, 16, 531-543.
https://doi.org/10.1038/s41575-019-0172-4
[10] Ma, S., Zhang, J., Liu, H., Li, S. and Wang, Q. (2022) The Role of Tissue-Resident Macrophages in the Development and Treatment of Inflammatory Bowel Disease. Frontiers in Cell and Developmental Biology, 10, Article 896591.
https://doi.org/10.3389/fcell.2022.896591
[11] Qu, F., Xu, B., Kang, H., Wang, H., Ji, J., Pang, L., et al. (2025) The Role of Macrophage Polarization in Ulcerative Colitis and Its Treatment. Microbial Pathogenesis, 199, Article ID: 107227.
https://doi.org/10.1016/j.micpath.2024.107227
[12] van Furth, R., Cohn, Z.A., Hirsch, J.G., et al. (1972) The Mononuclear Phagocyte System: A New Classification of Macrophages, Monocytes, and Their Precursor Cells. Bulletin of the World Health Organization, 46, 845-852.
[13] Gomez Perdiguero, E., Klapproth, K., Schulz, C., Busch, K., Azzoni, E., Crozet, L., et al. (2014) Tissue-Resident Macrophages Originate from Yolk-Sac-Derived Erythro-Myeloid Progenitors. Nature, 518, 547-551.
https://doi.org/10.1038/nature13989
[14] Gentek, R., Molawi, K. and Sieweke, M.H. (2014) Tissue Macrophage Identity and Self‐Renewal. Immunological Reviews, 262, 56-73.
https://doi.org/10.1111/imr.12224
[15] Locati, M., Curtale, G. and Mantovani, A. (2020) Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annual Review of Pathology: Mechanisms of Disease, 15, 123-147.
https://doi.org/10.1146/annurev-pathmechdis-012418-012718
[16] Bain, C.C., Bravo-Blas, A., Scott, C.L., Gomez Perdiguero, E., Geissmann, F., Henri, S., et al. (2014) Constant Replenishment from Circulating Monocytes Maintains the Macrophage Pool in the Intestine of Adult Mice. Nature Immunology, 15, 929-937.
https://doi.org/10.1038/ni.2967
[17] Delfini, M., Stakenborg, N., Viola, M.F. and Boeckxstaens, G. (2022) Macrophages in the Gut: Masters in Multitasking. Immunity, 55, 1530-1548.
https://doi.org/10.1016/j.immuni.2022.08.005
[18] Mosser, D.M. and Edwards, J.P. (2008) Exploring the Full Spectrum of Macrophage Activation. Nature Reviews Immunology, 8, 958-969.
https://doi.org/10.1038/nri2448
[19] Shapouri‐Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S., Mardani, F., et al. (2018) Macrophage Plasticity, Polarization, and Function in Health and Disease. Journal of Cellular Physiology, 233, 6425-6440.
https://doi.org/10.1002/jcp.26429
[20] Gordon, S. and Martinez, F.O. (2010) Alternative Activation of Macrophages: Mechanism and Functions. Immunity, 32, 593-604.
https://doi.org/10.1016/j.immuni.2010.05.007
[21] Gordon, S. (2003) Alternative Activation of Macrophages. Nature Reviews Immunology, 3, 23-35.
https://doi.org/10.1038/nri978
[22] Zhang, K., Guo, J., Yan, W. and Xu, L. (2023) Macrophage Polarization in Inflammatory Bowel Disease. Cell Communication and Signaling, 21, Article No. 367.
https://doi.org/10.1186/s12964-023-01386-9
[23] Heinsbroek, S.E.M. and Gordon, S. (2009) The Role of Macrophages in Inflammatory Bowel Diseases. Expert Reviews in Molecular Medicine, 11, e14.
https://doi.org/10.1017/s1462399409001069
[24] Chen, S., Saeed, A.F.U.H., Liu, Q., Jiang, Q., Xu, H., Xiao, G.G., et al. (2023) Macrophages in Immunoregulation and Therapeutics. Signal Transduction and Targeted Therapy, 8, Article No. 207.
https://doi.org/10.1038/s41392-023-01452-1
[25] Lendeckel, U., Venz, S. and Wolke, C. (2022) Macrophages: Shapes and Functions. ChemTexts, 8, Article No. 12.
https://doi.org/10.1007/s40828-022-00163-4
[26] Mosser, D.M., Hamidzadeh, K. and Goncalves, R. (2020) Macrophages and the Maintenance of Homeostasis. Cellular & Molecular Immunology, 18, 579-587.
https://doi.org/10.1038/s41423-020-00541-3
[27] Zhang, C., Yang, M. and Ericsson, A.C. (2021) Function of Macrophages in Disease: Current Understanding on Molecular Mechanisms. Frontiers in Immunology, 12, Article 620510.
https://doi.org/10.3389/fimmu.2021.620510
[28] Zhang, M., Li, X., Zhang, Q., Yang, J. and Liu, G. (2023) Roles of Macrophages on Ulcerative Colitis and Colitis-Associated Colorectal Cancer. Frontiers in Immunology, 14, Article 1103617.
https://doi.org/10.3389/fimmu.2023.1103617
[29] Han, X., Ding, S., Jiang, H. and Liu, G. (2021) Roles of Macrophages in the Development and Treatment of Gut Inflammation. Frontiers in Cell and Developmental Biology, 9, Article 625423.
https://doi.org/10.3389/fcell.2021.625423
[30] Friedrich, M., Pohin, M. and Powrie, F. (2019) Cytokine Networks in the Pathophysiology of Inflammatory Bowel Disease. Immunity, 50, 992-1006.
https://doi.org/10.1016/j.immuni.2019.03.017
[31] Nakase, H., Sato, N., Mizuno, N. and Ikawa, Y. (2022) The Influence of Cytokines on the Complex Pathology of Ulcerative Colitis. Autoimmunity Reviews, 21, 103017.
https://doi.org/10.1016/j.autrev.2021.103017
[32] Yang, X., Wang, Q., Shao, F., Zhuang, Z., Wei, Y., Zhang, Y., et al. (2024) Cell Volume Regulation Modulates Macrophage-Related Inflammatory Responses via JAK/STAT Signaling Pathways. Acta Biomaterialia, 186, 286-299.
https://doi.org/10.1016/j.actbio.2024.07.046
[33] Arranz, A., Doxaki, C., Vergadi, E., Martinez de la Torre, Y., Vaporidi, K., Lagoudaki, E.D., et al. (2012) Akt1 and Akt2 Protein Kinases Differentially Contribute to Macrophage Polarization. Proceedings of the National Academy of Sciences of the United States of America, 109, 9517-9522.
https://doi.org/10.1073/pnas.1119038109
[34] Pan, K., Li, Q., Guo, Z. and Li, Z. (2025) Healing Action of Interleukin-4 (IL-4) in Acute and Chronic Inflammatory Conditions: Mechanisms and Therapeutic Strategies. Pharmacology & Therapeutics, 265, Article ID: 108760.
https://doi.org/10.1016/j.pharmthera.2024.108760
[35] Liu, T., Zhang, L., Joo, D. and Sun, S. (2017) NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2, Article No. 1702.
https://doi.org/10.1038/sigtrans.2017.23
[36] Ciesielska, A., Matyjek, M. and Kwiatkowska, K. (2020) TLR4 and CD14 Trafficking and Its Influence on LPS-Induced Pro-Inflammatory Signaling. Cellular and Molecular Life Sciences, 78, 1233-1261.
https://doi.org/10.1007/s00018-020-03656-y
[37] Chen, X., Tang, L., Fu, Y., Wang, Y., Han, Z. and Meng, J. (2017) Paralemmin-3 Contributes to Lipopolysaccharide-Induced Inflammatory Response and Is Involved in Lipopolysaccharide-Toll-Like Receptor-4 Signaling in Alveolar Macrophages. International Journal of Molecular Medicine, 40, 1921-1931.
https://doi.org/10.3892/ijmm.2017.3161
[38] Zhang, H., Cao, N., Yang, Z., Fang, X., Yang, X., Li, H., et al. (2020) Bilobalide Alleviated Dextran Sulfate Sodium-Induced Experimental Colitis by Inhibiting M1 Macrophage Polarization through the NF-κB Signaling Pathway. Frontiers in Pharmacology, 11, Article 718.
https://doi.org/10.3389/fphar.2020.00718
[39] Yang, S., Li, Y., Zheng, X., Zheng, X., Lin, Y., Guo, S., et al. (2024) Effects of Folate-Chicory Acid Liposome on Macrophage Polarization and TLR4/NF-κB Signaling Pathway in Ulcerative Colitis Mouse. Phytomedicine, 128, Article ID: 155415.
https://doi.org/10.1016/j.phymed.2024.155415
[40] Chen, J., Lu, P., Liu, J., Yang, L., Li, Y., Chen, Y., et al. (2023) 20(s)‐ Protopanaxadiol Saponins Isolated from Panax notoginseng Target the Binding of hmgb1 to tlr4 against Inflammation in Experimental Ulcerative Colitis. Phytotherapy Research, 37, 4690-4705.
https://doi.org/10.1002/ptr.7938
[41] Huang, I., Chung, W., Wu, P. and Chen, C. (2022) JAK-STAT Signaling Pathway in the Pathogenesis of Atopic Dermatitis: An Updated Review. Frontiers in Immunology, 13, Article 1068260.
https://doi.org/10.3389/fimmu.2022.1068260
[42] Xin, P., Xu, X., Deng, C., Liu, S., Wang, Y., Zhou, X., et al. (2020) The Role of JAK/STAT Signaling Pathway and Its Inhibitors in Diseases. International Immunopharmacology, 80, Article ID: 106210.
https://doi.org/10.1016/j.intimp.2020.106210
[43] Wang, F., Zhang, S., Jeon, R., Vuckovic, I., Jiang, X., Lerman, A., et al. (2018) Interferon γ Induces Reversible Metabolic Reprogramming of M1 Macrophages to Sustain Cell Viability and Pro-Inflammatory Activity. eBioMedicine, 30, 303-316.
https://doi.org/10.1016/j.ebiom.2018.02.009
[44] Tian, L., Zhao, J., Kang, J., Guo, S., Zhang, N., Shang, L., et al. (2021) Astragaloside IV Alleviates the Experimental DSS-Induced Colitis by Remodeling Macrophage Polarization through STAT Signaling. Frontiers in Immunology, 12, Article 740565.
https://doi.org/10.3389/fimmu.2021.740565
[45] Wang, X., Chen, S., Lu, R., Sun, Y., Song, T., Nie, Z., et al. (2022) Adipose-Derived Stem Cell-Secreted Exosomes Enhance Angiogenesis by Promoting Macrophage M2 Polarization in Type 2 Diabetic Mice with Limb Ischemia via the JAK/STAT6 Pathway. Heliyon, 8, e11495.
https://doi.org/10.1016/j.heliyon.2022.e11495
[46] Shao, T., Leung, P.S.C., Zhang, W., Tsuneyama, K., Ridgway, W.M., Young, H.A., et al. (2022) Treatment with a JAK1/2 Inhibitor Ameliorates Murine Autoimmune Cholangitis Induced by IFN Overexpression. Cellular & Molecular Immunology, 19, 1130-1140.
https://doi.org/10.1038/s41423-022-00904-y
[47] Gao, S., Zhou, J., Liu, N., Wang, L., Gao, Q., Wu, Y., et al. (2015) Curcumin Induces M2 Macrophage Polarization by Secretion IL-4 and/or IL-13. Journal of Molecular and Cellular Cardiology, 85, 131-139.
https://doi.org/10.1016/j.yjmcc.2015.04.025
[48] Tu, Y., Liu, J., Kong, D., Guo, X., Li, J., Long, Z., et al. (2023) Irisin Drives Macrophage Anti-Inflammatory Differentiation via JAK2-STAT6-Dependent Activation of PPARγ and Nrf2 Signaling. Free Radical Biology and Medicine, 201, 98-110.
https://doi.org/10.1016/j.freeradbiomed.2023.03.014
[49] Quero, L., Tiaden, A.N., Hanser, E., Roux, J., Laski, A., Hall, J., et al. (2020) miR-221-3p Drives the Shift of M2-Macrophages to a Pro-Inflammatory Function by Suppressing JAK3/STAT3 Activation. Frontiers in Immunology, 10, Article 3087.
https://doi.org/10.3389/fimmu.2019.03087
[50] Liau, N.P.D., Laktyushin, A., Lucet, I.S., Murphy, J.M., Yao, S., Whitlock, E., et al. (2018) The Molecular Basis of JAK/STAT Inhibition by SOCS1. Nature Communications, 9, Article No. 1558.
https://doi.org/10.1038/s41467-018-04013-1
[51] Yu, T., Zuo, Y., Cai, R., Huang, X., Wu, S., Zhang, C., et al. (2016) SENP1 Regulates IFN-γ-Stat1 Signaling through STAT3-SOCS3 Negative Feedback Loop. Journal of Molecular Cell Biology, 9, 144-153.
https://doi.org/10.1093/jmcb/mjw042
[52] Chen, S., Tang, S., Zhang, C. and Li, Y. (2023) Cynarin Ameliorates Dextran Sulfate Sodium-Induced Acute Colitis in Mice through the STAT3/NF-κB Pathway. Immunopharmacology and Immunotoxicology, 46, 107-116.
https://doi.org/10.1080/08923973.2023.2281281
[53] Xu, P., Qian, Y., Xu, G., Chu, J. and He, B. (2025) Fructosyl-Mangiferin Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice via the STAT3/M1/Th17 Axis. Phytomedicine, 139, Article ID: 156475.
https://doi.org/10.1016/j.phymed.2025.156475
[54] Chen, X.Q., Lv, X.Y. and Liu, S.J. (2021) Baitouweng Decoction Alleviates Dextran Sulfate Sodium-Induced Ulcerative Colitis by Regulating Intestinal Microbiota and the IL-6/STAT3 Signaling Pathway. Journal of Ethnopharmacology, 265, Article ID: 113357.
https://doi.org/10.1016/j.jep.2020.113357
[55] Marion-Letellier, R., Savoye, G. and Ghosh, S. (2016) Fatty Acids, Eicosanoids and PPAR Gamma. European Journal of Pharmacology, 785, 44-49.
https://doi.org/10.1016/j.ejphar.2015.11.004
[56] Evans, R.M. and Mangelsdorf, D.J. (2014) Nuclear Receptors, RXR, and the Big Bang. Cell, 157, 255-266.
https://doi.org/10.1016/j.cell.2014.03.012
[57] Hontecillas, R., Horne, W.T., Climent, M., Guri, A.J., Evans, C., Zhang, Y., et al. (2011) Immunoregulatory Mechanisms of Macrophage PPAR-γ in Mice with Experimental Inflammatory Bowel Disease. Mucosal Immunology, 4, 304-313.
https://doi.org/10.1038/mi.2010.75
[58] Yang, S., Duan, H., Zeng, J., Yan, Z., Niu, T., Ma, X., et al. (2025) Luteolin Modulates Macrophage Phenotypic Switching via the AMPK-PPARγ Pathway to Alleviate Ulcerative Colitis in Mice. Journal of Ethnopharmacology, 339, Article ID: 119157.
https://doi.org/10.1016/j.jep.2024.119157
[59] Xue, L. and Wu, Y. (2024) Activation of PPARγ Regulates M1/M2 Macrophage Polarization and Attenuates Dextran Sulfate Sodium Salt‐Induced Inflammatory Bowel Disease via the STAT‐1/STAT‐6 Pathway. The Kaohsiung Journal of Medical Sciences, 41, e12927.
https://doi.org/10.1002/kjm2.12927
[60] Zhou, H., Yang, C., Li, J., He, Y., Huang, Y., Qin, R., et al. (2023) Quercetin Serves as the Major Component of Xiang-Lian Pill to Ameliorate Ulcerative Colitis via Tipping the Balance of STAT1/PPARγ and Dictating the Alternative Activation of Macrophage. Journal of Ethnopharmacology, 313, Article ID: 116557.
https://doi.org/10.1016/j.jep.2023.116557
[61] Li, J., Zou, P., Xiao, R. and Wang, Y. (2025) Indole-3-propionic Acid Alleviates DSS-Induced Colitis in Mice through Macrophage Glycolipid Metabolism. International Immunopharmacology, 152, Article ID: 114388.
https://doi.org/10.1016/j.intimp.2025.114388
[62] Xu, Y., Liu, J., Wang, J., Wang, J., Lan, P. and Wang, T. (2025) USP25 Stabilizes STAT6 to Promote Il-4-Induced Macrophage M2 Polarization and Fibrosis. International Journal of Biological Sciences, 21, 475-489.
https://doi.org/10.7150/ijbs.99345
[63] Gao, W., Wang, C., Yu, L., Sheng, T., Wu, Z., Wang, X., et al. (2019) Chlorogenic Acid Attenuates Dextran Sodium Sulfate-Induced Ulcerative Colitis in Mice through MAPK/ERK/JNK Pathway. BioMed Research International, 2019, Article ID: 6769789.
https://doi.org/10.1155/2019/6769789
[64] Gao, L., Yu, Q., Zhang, H., Wang, Z., Zhang, T., Xiang, J., et al. (2021) A Resident Stromal Cell Population Actively Restrains Innate Immune Response in the Propagation Phase of Colitis Pathogenesis in Mice. Science Translational Medicine, 13, eabb5071.
https://doi.org/10.1126/scitranslmed.abb5071
[65] Huai, M., Zeng, J. and Ge, W. (2021) Artemisinin Ameliorates Intestinal Inflammation by Skewing Macrophages to the M2 Phenotype and Inhibiting Epithelial-Mesenchymal Transition. International Immunopharmacology, 91, Article ID: 107284.
https://doi.org/10.1016/j.intimp.2020.107284
[66] Yan, S., Wei, H., Jia, R., Zhen, M., Bao, S., Wang, W., et al. (2022) Wu-Mei-Wan Ameliorates Murine Ulcerative Colitis by Regulating Macrophage Polarization. Frontiers in Pharmacology, 13, Article 859167.
https://doi.org/10.3389/fphar.2022.859167
[67] Zhou, X., Cordon-Barris, L., Zurashvili, T. and Bayascas, J.R. (2014) Fine-Tuning the Intensity of the PKB/AKT Signal Enables Diverse Physiological Responses. Cell Cycle, 13, 3164-3168.
https://doi.org/10.4161/15384101.2014.962954
[68] Byles, V., Covarrubias, A.J., Ben-Sahra, I., Lamming, D.W., Sabatini, D.M., Manning, B.D., et al. (2013) The TSC-mTOR Pathway Regulates Macrophage Polarization. Nature Communications, 4, Article No. 2834.
https://doi.org/10.1038/ncomms3834
[69] Guo, R., Meng, Q., Wang, B. and Li, F. (2021) Anti-Inflammatory Effects of Platycodin D on Dextran Sulfate Sodium (DSS) Induced Colitis and E. Coli Lipopolysaccharide (LPS) Induced Inflammation. International Immunopharmacology, 94, Article ID: 107474.
https://doi.org/10.1016/j.intimp.2021.107474
[70] Zhou, T., Ye, Y., Chen, W., Wang, Y., Ding, L., Liu, Y., et al. (2025) Glaucocalyxin a Alleviates Ulcerative Colitis by Inhibiting PI3K/AKT/mTOR Signaling. Scientific Reports, 15, Article No. 6556.
https://doi.org/10.1038/s41598-025-91358-5
[71] Liu, W., Ma, S., Li, J., Fan, B., Du, Y., Xu, Z., et al. (2025) Explore the Key Targets and Mechanism of Danggui Buxue Decoction against Ulcerative Colitis: Network Pharmacology and Experimental Validation. Journal of Ethnopharmacology, 344, Article ID: 119580.
https://doi.org/10.1016/j.jep.2025.119580
[72] Kerneur, C., Cano, C.E. and Olive, D. (2022) Major Pathways Involved in Macrophage Polarization in Cancer. Frontiers in Immunology, 13, Article 1026954.
https://doi.org/10.3389/fimmu.2022.1026954
[73] López-López, S., Romero de Ávila, M.J., Hernández de León, N.C., Ruiz-Marcos, F., Baladrón, V., Nueda, M.L., et al. (2021) NOTCH4 Exhibits Anti-Inflammatory Activity in Activated Macrophages by Interfering with Interferon-γ and TLR4 Signaling. Frontiers in Immunology, 12, Article 734966.
https://doi.org/10.3389/fimmu.2021.734966
[74] Lu, C., Xue, L., Luo, K., Liu, Y., Lai, J., Yao, X., et al. (2023) Colon-Accumulated Gold Nanoclusters Alleviate Intestinal Inflammation and Prevent Secondary Colorectal Carcinogenesis via NRF2-Dependent Macrophage Reprogramming. ACS Nano, 17, 18421-18432.
https://doi.org/10.1021/acsnano.3c06025
[75] Han, X., Luo, R., Qi, S., Wang, Y., Dai, L., Nie, W., et al. (2023) “Dual Sensitive Supramolecular Curcumin Nanoparticles” in “Advanced Yeast Particles” Mediate Macrophage Reprogramming, ROS Scavenging and Inflammation Resolution for Ulcerative Colitis Treatment. Journal of Nanobiotechnology, 21, Article No. 321.
https://doi.org/10.1186/s12951-023-01976-2
[76] Cosín-Roger, J., Ortiz-Masiá, D., Calatayud, S., Hernández, C., Esplugues, J.V. and Barrachina, M.D. (2016) The Activation of Wnt Signaling by a STAT6-Dependent Macrophage Phenotype Promotes Mucosal Repair in Murine IBD. Mucosal Immunology, 9, 986-998.
https://doi.org/10.1038/mi.2015.123
[77] Zhuang, H., Lv, Q., Zhong, C., Cui, Y., He, L., Zhang, C., et al. (2021) Tiliroside Ameliorates Ulcerative Colitis by Restoring the M1/M2 Macrophage Balance via the HIF-1α/Glycolysis Pathway. Frontiers in Immunology, 12, Article 649463.
https://doi.org/10.3389/fimmu.2021.649463
[78] Kimura, I., Ichimura, A., Ohue-Kitano, R. and Igarashi, M. (2020) Free Fatty Acid Receptors in Health and Disease. Physiological Reviews, 100, 171-210.
https://doi.org/10.1152/physrev.00041.2018
[79] Sun, J., Xu, X. and Jin, L. (2022) Effects of Metabolism on Macrophage Polarization under Different Disease Backgrounds. Frontiers in Immunology, 13, Article 880286.
https://doi.org/10.3389/fimmu.2022.880286
[80] Li, M., Wu, Y., Qiu, J., Lei, J., Li, M., Xu, N., et al. (2023) Huangqin Decoction Ameliorates Ulcerative Colitis by Regulating Fatty Acid Metabolism to Mediate Macrophage Polarization via Activating FFAR4-AMPK-PPARα Pathway. Journal of Ethnopharmacology, 311, Article ID: 116430.
https://doi.org/10.1016/j.jep.2023.116430