[1]
|
Ungaro, R., Mehandru, S., Allen, P.B., Peyrin-Biroulet, L. and Colombel, J. (2017) Ulcerative Colitis. The Lancet, 389, 1756-1770. https://doi.org/10.1016/s0140-6736(16)32126-2
|
[2]
|
Krugliak Cleveland, N., Torres, J. and Rubin, D.T. (2022) What Does Disease Progression Look Like in Ulcerative Colitis, and How Might It Be Prevented? Gastroenterology, 162, 1396-1408. https://doi.org/10.1053/j.gastro.2022.01.023
|
[3]
|
Cosnes, J., Gower-Rousseau, C., Seksik, P. and Cortot, A. (2011) Epidemiology and Natural History of Inflammatory Bowel Diseases. Gastroenterology, 140, 1785-1794.e4. https://doi.org/10.1053/j.gastro.2011.01.055
|
[4]
|
Loftus, E.V. (2004) Clinical Epidemiology of Inflammatory Bowel Disease: Incidence, Prevalence, and Environmental Influences. Gastroenterology, 126, 1504-1517. https://doi.org/10.1053/j.gastro.2004.01.063
|
[5]
|
Dignass, A., Eliakim, R., Magro, F., Maaser, C., Chowers, Y., Geboes, K., et al. (2012) Second European Evidence-Based Consensus on the Diagnosis and Management of Ulcerative Colitis Part 1: Definitions and Diagnosis. Journal of Crohn’s and Colitis, 6, 965-990. https://doi.org/10.1016/j.crohns.2012.09.003
|
[6]
|
Falvey, J.D., Hoskin, T., Meijer, B., Ashcroft, A., Walmsley, R., Day, A.S., et al. (2015) Disease Activity Assessment in IBD: Clinical Indices and Biomarkers Fail to Predict Endoscopic Remission. Inflammatory Bowel Diseases, 21, 824-831. https://doi.org/10.1097/mib.0000000000000341
|
[7]
|
Magro, F., Rodrigues, A., Vieira, A.I., Portela, F., Cremers, I., Cotter, J., et al. (2012) Review of the Disease Course among Adult Ulcerative Colitis Population-Based Longitudinal Cohorts. Inflammatory Bowel Diseases, 18, 573-583. https://doi.org/10.1002/ibd.21815
|
[8]
|
Bain, C.C. and Mowat, A.M. (2014) Macrophages in Intestinal Homeostasis and Inflammation. Immunological Reviews, 260, 102-117. https://doi.org/10.1111/imr.12192
|
[9]
|
Na, Y.R., Stakenborg, M., Seok, S.H. and Matteoli, G. (2019) Macrophages in Intestinal Inflammation and Resolution: A Potential Therapeutic Target in IBD. Nature Reviews Gastroenterology & Hepatology, 16, 531-543. https://doi.org/10.1038/s41575-019-0172-4
|
[10]
|
Ma, S., Zhang, J., Liu, H., Li, S. and Wang, Q. (2022) The Role of Tissue-Resident Macrophages in the Development and Treatment of Inflammatory Bowel Disease. Frontiers in Cell and Developmental Biology, 10, Article 896591. https://doi.org/10.3389/fcell.2022.896591
|
[11]
|
Qu, F., Xu, B., Kang, H., Wang, H., Ji, J., Pang, L., et al. (2025) The Role of Macrophage Polarization in Ulcerative Colitis and Its Treatment. Microbial Pathogenesis, 199, Article ID: 107227. https://doi.org/10.1016/j.micpath.2024.107227
|
[12]
|
van Furth, R., Cohn, Z.A., Hirsch, J.G., et al. (1972) The Mononuclear Phagocyte System: A New Classification of Macrophages, Monocytes, and Their Precursor Cells. Bulletin of the World Health Organization, 46, 845-852.
|
[13]
|
Gomez Perdiguero, E., Klapproth, K., Schulz, C., Busch, K., Azzoni, E., Crozet, L., et al. (2014) Tissue-Resident Macrophages Originate from Yolk-Sac-Derived Erythro-Myeloid Progenitors. Nature, 518, 547-551. https://doi.org/10.1038/nature13989
|
[14]
|
Gentek, R., Molawi, K. and Sieweke, M.H. (2014) Tissue Macrophage Identity and Self‐Renewal. Immunological Reviews, 262, 56-73. https://doi.org/10.1111/imr.12224
|
[15]
|
Locati, M., Curtale, G. and Mantovani, A. (2020) Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annual Review of Pathology: Mechanisms of Disease, 15, 123-147. https://doi.org/10.1146/annurev-pathmechdis-012418-012718
|
[16]
|
Bain, C.C., Bravo-Blas, A., Scott, C.L., Gomez Perdiguero, E., Geissmann, F., Henri, S., et al. (2014) Constant Replenishment from Circulating Monocytes Maintains the Macrophage Pool in the Intestine of Adult Mice. Nature Immunology, 15, 929-937. https://doi.org/10.1038/ni.2967
|
[17]
|
Delfini, M., Stakenborg, N., Viola, M.F. and Boeckxstaens, G. (2022) Macrophages in the Gut: Masters in Multitasking. Immunity, 55, 1530-1548. https://doi.org/10.1016/j.immuni.2022.08.005
|
[18]
|
Mosser, D.M. and Edwards, J.P. (2008) Exploring the Full Spectrum of Macrophage Activation. Nature Reviews Immunology, 8, 958-969. https://doi.org/10.1038/nri2448
|
[19]
|
Shapouri‐Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S., Mardani, F., et al. (2018) Macrophage Plasticity, Polarization, and Function in Health and Disease. Journal of Cellular Physiology, 233, 6425-6440. https://doi.org/10.1002/jcp.26429
|
[20]
|
Gordon, S. and Martinez, F.O. (2010) Alternative Activation of Macrophages: Mechanism and Functions. Immunity, 32, 593-604. https://doi.org/10.1016/j.immuni.2010.05.007
|
[21]
|
Gordon, S. (2003) Alternative Activation of Macrophages. Nature Reviews Immunology, 3, 23-35. https://doi.org/10.1038/nri978
|
[22]
|
Zhang, K., Guo, J., Yan, W. and Xu, L. (2023) Macrophage Polarization in Inflammatory Bowel Disease. Cell Communication and Signaling, 21, Article No. 367. https://doi.org/10.1186/s12964-023-01386-9
|
[23]
|
Heinsbroek, S.E.M. and Gordon, S. (2009) The Role of Macrophages in Inflammatory Bowel Diseases. Expert Reviews in Molecular Medicine, 11, e14. https://doi.org/10.1017/s1462399409001069
|
[24]
|
Chen, S., Saeed, A.F.U.H., Liu, Q., Jiang, Q., Xu, H., Xiao, G.G., et al. (2023) Macrophages in Immunoregulation and Therapeutics. Signal Transduction and Targeted Therapy, 8, Article No. 207. https://doi.org/10.1038/s41392-023-01452-1
|
[25]
|
Lendeckel, U., Venz, S. and Wolke, C. (2022) Macrophages: Shapes and Functions. ChemTexts, 8, Article No. 12. https://doi.org/10.1007/s40828-022-00163-4
|
[26]
|
Mosser, D.M., Hamidzadeh, K. and Goncalves, R. (2020) Macrophages and the Maintenance of Homeostasis. Cellular & Molecular Immunology, 18, 579-587. https://doi.org/10.1038/s41423-020-00541-3
|
[27]
|
Zhang, C., Yang, M. and Ericsson, A.C. (2021) Function of Macrophages in Disease: Current Understanding on Molecular Mechanisms. Frontiers in Immunology, 12, Article 620510. https://doi.org/10.3389/fimmu.2021.620510
|
[28]
|
Zhang, M., Li, X., Zhang, Q., Yang, J. and Liu, G. (2023) Roles of Macrophages on Ulcerative Colitis and Colitis-Associated Colorectal Cancer. Frontiers in Immunology, 14, Article 1103617. https://doi.org/10.3389/fimmu.2023.1103617
|
[29]
|
Han, X., Ding, S., Jiang, H. and Liu, G. (2021) Roles of Macrophages in the Development and Treatment of Gut Inflammation. Frontiers in Cell and Developmental Biology, 9, Article 625423. https://doi.org/10.3389/fcell.2021.625423
|
[30]
|
Friedrich, M., Pohin, M. and Powrie, F. (2019) Cytokine Networks in the Pathophysiology of Inflammatory Bowel Disease. Immunity, 50, 992-1006. https://doi.org/10.1016/j.immuni.2019.03.017
|
[31]
|
Nakase, H., Sato, N., Mizuno, N. and Ikawa, Y. (2022) The Influence of Cytokines on the Complex Pathology of Ulcerative Colitis. Autoimmunity Reviews, 21, 103017. https://doi.org/10.1016/j.autrev.2021.103017
|
[32]
|
Yang, X., Wang, Q., Shao, F., Zhuang, Z., Wei, Y., Zhang, Y., et al. (2024) Cell Volume Regulation Modulates Macrophage-Related Inflammatory Responses via JAK/STAT Signaling Pathways. Acta Biomaterialia, 186, 286-299. https://doi.org/10.1016/j.actbio.2024.07.046
|
[33]
|
Arranz, A., Doxaki, C., Vergadi, E., Martinez de la Torre, Y., Vaporidi, K., Lagoudaki, E.D., et al. (2012) Akt1 and Akt2 Protein Kinases Differentially Contribute to Macrophage Polarization. Proceedings of the National Academy of Sciences of the United States of America, 109, 9517-9522. https://doi.org/10.1073/pnas.1119038109
|
[34]
|
Pan, K., Li, Q., Guo, Z. and Li, Z. (2025) Healing Action of Interleukin-4 (IL-4) in Acute and Chronic Inflammatory Conditions: Mechanisms and Therapeutic Strategies. Pharmacology & Therapeutics, 265, Article ID: 108760. https://doi.org/10.1016/j.pharmthera.2024.108760
|
[35]
|
Liu, T., Zhang, L., Joo, D. and Sun, S. (2017) NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2, Article No. 1702. https://doi.org/10.1038/sigtrans.2017.23
|
[36]
|
Ciesielska, A., Matyjek, M. and Kwiatkowska, K. (2020) TLR4 and CD14 Trafficking and Its Influence on LPS-Induced Pro-Inflammatory Signaling. Cellular and Molecular Life Sciences, 78, 1233-1261. https://doi.org/10.1007/s00018-020-03656-y
|
[37]
|
Chen, X., Tang, L., Fu, Y., Wang, Y., Han, Z. and Meng, J. (2017) Paralemmin-3 Contributes to Lipopolysaccharide-Induced Inflammatory Response and Is Involved in Lipopolysaccharide-Toll-Like Receptor-4 Signaling in Alveolar Macrophages. International Journal of Molecular Medicine, 40, 1921-1931. https://doi.org/10.3892/ijmm.2017.3161
|
[38]
|
Zhang, H., Cao, N., Yang, Z., Fang, X., Yang, X., Li, H., et al. (2020) Bilobalide Alleviated Dextran Sulfate Sodium-Induced Experimental Colitis by Inhibiting M1 Macrophage Polarization through the NF-κB Signaling Pathway. Frontiers in Pharmacology, 11, Article 718. https://doi.org/10.3389/fphar.2020.00718
|
[39]
|
Yang, S., Li, Y., Zheng, X., Zheng, X., Lin, Y., Guo, S., et al. (2024) Effects of Folate-Chicory Acid Liposome on Macrophage Polarization and TLR4/NF-κB Signaling Pathway in Ulcerative Colitis Mouse. Phytomedicine, 128, Article ID: 155415. https://doi.org/10.1016/j.phymed.2024.155415
|
[40]
|
Chen, J., Lu, P., Liu, J., Yang, L., Li, Y., Chen, Y., et al. (2023) 20(s)‐ Protopanaxadiol Saponins Isolated from Panax notoginseng Target the Binding of hmgb1 to tlr4 against Inflammation in Experimental Ulcerative Colitis. Phytotherapy Research, 37, 4690-4705. https://doi.org/10.1002/ptr.7938
|
[41]
|
Huang, I., Chung, W., Wu, P. and Chen, C. (2022) JAK-STAT Signaling Pathway in the Pathogenesis of Atopic Dermatitis: An Updated Review. Frontiers in Immunology, 13, Article 1068260. https://doi.org/10.3389/fimmu.2022.1068260
|
[42]
|
Xin, P., Xu, X., Deng, C., Liu, S., Wang, Y., Zhou, X., et al. (2020) The Role of JAK/STAT Signaling Pathway and Its Inhibitors in Diseases. International Immunopharmacology, 80, Article ID: 106210. https://doi.org/10.1016/j.intimp.2020.106210
|
[43]
|
Wang, F., Zhang, S., Jeon, R., Vuckovic, I., Jiang, X., Lerman, A., et al. (2018) Interferon γ Induces Reversible Metabolic Reprogramming of M1 Macrophages to Sustain Cell Viability and Pro-Inflammatory Activity. eBioMedicine, 30, 303-316. https://doi.org/10.1016/j.ebiom.2018.02.009
|
[44]
|
Tian, L., Zhao, J., Kang, J., Guo, S., Zhang, N., Shang, L., et al. (2021) Astragaloside IV Alleviates the Experimental DSS-Induced Colitis by Remodeling Macrophage Polarization through STAT Signaling. Frontiers in Immunology, 12, Article 740565. https://doi.org/10.3389/fimmu.2021.740565
|
[45]
|
Wang, X., Chen, S., Lu, R., Sun, Y., Song, T., Nie, Z., et al. (2022) Adipose-Derived Stem Cell-Secreted Exosomes Enhance Angiogenesis by Promoting Macrophage M2 Polarization in Type 2 Diabetic Mice with Limb Ischemia via the JAK/STAT6 Pathway. Heliyon, 8, e11495. https://doi.org/10.1016/j.heliyon.2022.e11495
|
[46]
|
Shao, T., Leung, P.S.C., Zhang, W., Tsuneyama, K., Ridgway, W.M., Young, H.A., et al. (2022) Treatment with a JAK1/2 Inhibitor Ameliorates Murine Autoimmune Cholangitis Induced by IFN Overexpression. Cellular & Molecular Immunology, 19, 1130-1140. https://doi.org/10.1038/s41423-022-00904-y
|
[47]
|
Gao, S., Zhou, J., Liu, N., Wang, L., Gao, Q., Wu, Y., et al. (2015) Curcumin Induces M2 Macrophage Polarization by Secretion IL-4 and/or IL-13. Journal of Molecular and Cellular Cardiology, 85, 131-139. https://doi.org/10.1016/j.yjmcc.2015.04.025
|
[48]
|
Tu, Y., Liu, J., Kong, D., Guo, X., Li, J., Long, Z., et al. (2023) Irisin Drives Macrophage Anti-Inflammatory Differentiation via JAK2-STAT6-Dependent Activation of PPARγ and Nrf2 Signaling. Free Radical Biology and Medicine, 201, 98-110. https://doi.org/10.1016/j.freeradbiomed.2023.03.014
|
[49]
|
Quero, L., Tiaden, A.N., Hanser, E., Roux, J., Laski, A., Hall, J., et al. (2020) miR-221-3p Drives the Shift of M2-Macrophages to a Pro-Inflammatory Function by Suppressing JAK3/STAT3 Activation. Frontiers in Immunology, 10, Article 3087. https://doi.org/10.3389/fimmu.2019.03087
|
[50]
|
Liau, N.P.D., Laktyushin, A., Lucet, I.S., Murphy, J.M., Yao, S., Whitlock, E., et al. (2018) The Molecular Basis of JAK/STAT Inhibition by SOCS1. Nature Communications, 9, Article No. 1558. https://doi.org/10.1038/s41467-018-04013-1
|
[51]
|
Yu, T., Zuo, Y., Cai, R., Huang, X., Wu, S., Zhang, C., et al. (2016) SENP1 Regulates IFN-γ-Stat1 Signaling through STAT3-SOCS3 Negative Feedback Loop. Journal of Molecular Cell Biology, 9, 144-153. https://doi.org/10.1093/jmcb/mjw042
|
[52]
|
Chen, S., Tang, S., Zhang, C. and Li, Y. (2023) Cynarin Ameliorates Dextran Sulfate Sodium-Induced Acute Colitis in Mice through the STAT3/NF-κB Pathway. Immunopharmacology and Immunotoxicology, 46, 107-116. https://doi.org/10.1080/08923973.2023.2281281
|
[53]
|
Xu, P., Qian, Y., Xu, G., Chu, J. and He, B. (2025) Fructosyl-Mangiferin Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice via the STAT3/M1/Th17 Axis. Phytomedicine, 139, Article ID: 156475. https://doi.org/10.1016/j.phymed.2025.156475
|
[54]
|
Chen, X.Q., Lv, X.Y. and Liu, S.J. (2021) Baitouweng Decoction Alleviates Dextran Sulfate Sodium-Induced Ulcerative Colitis by Regulating Intestinal Microbiota and the IL-6/STAT3 Signaling Pathway. Journal of Ethnopharmacology, 265, Article ID: 113357. https://doi.org/10.1016/j.jep.2020.113357
|
[55]
|
Marion-Letellier, R., Savoye, G. and Ghosh, S. (2016) Fatty Acids, Eicosanoids and PPAR Gamma. European Journal of Pharmacology, 785, 44-49. https://doi.org/10.1016/j.ejphar.2015.11.004
|
[56]
|
Evans, R.M. and Mangelsdorf, D.J. (2014) Nuclear Receptors, RXR, and the Big Bang. Cell, 157, 255-266. https://doi.org/10.1016/j.cell.2014.03.012
|
[57]
|
Hontecillas, R., Horne, W.T., Climent, M., Guri, A.J., Evans, C., Zhang, Y., et al. (2011) Immunoregulatory Mechanisms of Macrophage PPAR-γ in Mice with Experimental Inflammatory Bowel Disease. Mucosal Immunology, 4, 304-313. https://doi.org/10.1038/mi.2010.75
|
[58]
|
Yang, S., Duan, H., Zeng, J., Yan, Z., Niu, T., Ma, X., et al. (2025) Luteolin Modulates Macrophage Phenotypic Switching via the AMPK-PPARγ Pathway to Alleviate Ulcerative Colitis in Mice. Journal of Ethnopharmacology, 339, Article ID: 119157. https://doi.org/10.1016/j.jep.2024.119157
|
[59]
|
Xue, L. and Wu, Y. (2024) Activation of PPARγ Regulates M1/M2 Macrophage Polarization and Attenuates Dextran Sulfate Sodium Salt‐Induced Inflammatory Bowel Disease via the STAT‐1/STAT‐6 Pathway. The Kaohsiung Journal of Medical Sciences, 41, e12927. https://doi.org/10.1002/kjm2.12927
|
[60]
|
Zhou, H., Yang, C., Li, J., He, Y., Huang, Y., Qin, R., et al. (2023) Quercetin Serves as the Major Component of Xiang-Lian Pill to Ameliorate Ulcerative Colitis via Tipping the Balance of STAT1/PPARγ and Dictating the Alternative Activation of Macrophage. Journal of Ethnopharmacology, 313, Article ID: 116557. https://doi.org/10.1016/j.jep.2023.116557
|
[61]
|
Li, J., Zou, P., Xiao, R. and Wang, Y. (2025) Indole-3-propionic Acid Alleviates DSS-Induced Colitis in Mice through Macrophage Glycolipid Metabolism. International Immunopharmacology, 152, Article ID: 114388. https://doi.org/10.1016/j.intimp.2025.114388
|
[62]
|
Xu, Y., Liu, J., Wang, J., Wang, J., Lan, P. and Wang, T. (2025) USP25 Stabilizes STAT6 to Promote Il-4-Induced Macrophage M2 Polarization and Fibrosis. International Journal of Biological Sciences, 21, 475-489. https://doi.org/10.7150/ijbs.99345
|
[63]
|
Gao, W., Wang, C., Yu, L., Sheng, T., Wu, Z., Wang, X., et al. (2019) Chlorogenic Acid Attenuates Dextran Sodium Sulfate-Induced Ulcerative Colitis in Mice through MAPK/ERK/JNK Pathway. BioMed Research International, 2019, Article ID: 6769789. https://doi.org/10.1155/2019/6769789
|
[64]
|
Gao, L., Yu, Q., Zhang, H., Wang, Z., Zhang, T., Xiang, J., et al. (2021) A Resident Stromal Cell Population Actively Restrains Innate Immune Response in the Propagation Phase of Colitis Pathogenesis in Mice. Science Translational Medicine, 13, eabb5071. https://doi.org/10.1126/scitranslmed.abb5071
|
[65]
|
Huai, M., Zeng, J. and Ge, W. (2021) Artemisinin Ameliorates Intestinal Inflammation by Skewing Macrophages to the M2 Phenotype and Inhibiting Epithelial-Mesenchymal Transition. International Immunopharmacology, 91, Article ID: 107284. https://doi.org/10.1016/j.intimp.2020.107284
|
[66]
|
Yan, S., Wei, H., Jia, R., Zhen, M., Bao, S., Wang, W., et al. (2022) Wu-Mei-Wan Ameliorates Murine Ulcerative Colitis by Regulating Macrophage Polarization. Frontiers in Pharmacology, 13, Article 859167. https://doi.org/10.3389/fphar.2022.859167
|
[67]
|
Zhou, X., Cordon-Barris, L., Zurashvili, T. and Bayascas, J.R. (2014) Fine-Tuning the Intensity of the PKB/AKT Signal Enables Diverse Physiological Responses. Cell Cycle, 13, 3164-3168. https://doi.org/10.4161/15384101.2014.962954
|
[68]
|
Byles, V., Covarrubias, A.J., Ben-Sahra, I., Lamming, D.W., Sabatini, D.M., Manning, B.D., et al. (2013) The TSC-mTOR Pathway Regulates Macrophage Polarization. Nature Communications, 4, Article No. 2834. https://doi.org/10.1038/ncomms3834
|
[69]
|
Guo, R., Meng, Q., Wang, B. and Li, F. (2021) Anti-Inflammatory Effects of Platycodin D on Dextran Sulfate Sodium (DSS) Induced Colitis and E. Coli Lipopolysaccharide (LPS) Induced Inflammation. International Immunopharmacology, 94, Article ID: 107474. https://doi.org/10.1016/j.intimp.2021.107474
|
[70]
|
Zhou, T., Ye, Y., Chen, W., Wang, Y., Ding, L., Liu, Y., et al. (2025) Glaucocalyxin a Alleviates Ulcerative Colitis by Inhibiting PI3K/AKT/mTOR Signaling. Scientific Reports, 15, Article No. 6556. https://doi.org/10.1038/s41598-025-91358-5
|
[71]
|
Liu, W., Ma, S., Li, J., Fan, B., Du, Y., Xu, Z., et al. (2025) Explore the Key Targets and Mechanism of Danggui Buxue Decoction against Ulcerative Colitis: Network Pharmacology and Experimental Validation. Journal of Ethnopharmacology, 344, Article ID: 119580. https://doi.org/10.1016/j.jep.2025.119580
|
[72]
|
Kerneur, C., Cano, C.E. and Olive, D. (2022) Major Pathways Involved in Macrophage Polarization in Cancer. Frontiers in Immunology, 13, Article 1026954. https://doi.org/10.3389/fimmu.2022.1026954
|
[73]
|
López-López, S., Romero de Ávila, M.J., Hernández de León, N.C., Ruiz-Marcos, F., Baladrón, V., Nueda, M.L., et al. (2021) NOTCH4 Exhibits Anti-Inflammatory Activity in Activated Macrophages by Interfering with Interferon-γ and TLR4 Signaling. Frontiers in Immunology, 12, Article 734966. https://doi.org/10.3389/fimmu.2021.734966
|
[74]
|
Lu, C., Xue, L., Luo, K., Liu, Y., Lai, J., Yao, X., et al. (2023) Colon-Accumulated Gold Nanoclusters Alleviate Intestinal Inflammation and Prevent Secondary Colorectal Carcinogenesis via NRF2-Dependent Macrophage Reprogramming. ACS Nano, 17, 18421-18432. https://doi.org/10.1021/acsnano.3c06025
|
[75]
|
Han, X., Luo, R., Qi, S., Wang, Y., Dai, L., Nie, W., et al. (2023) “Dual Sensitive Supramolecular Curcumin Nanoparticles” in “Advanced Yeast Particles” Mediate Macrophage Reprogramming, ROS Scavenging and Inflammation Resolution for Ulcerative Colitis Treatment. Journal of Nanobiotechnology, 21, Article No. 321. https://doi.org/10.1186/s12951-023-01976-2
|
[76]
|
Cosín-Roger, J., Ortiz-Masiá, D., Calatayud, S., Hernández, C., Esplugues, J.V. and Barrachina, M.D. (2016) The Activation of Wnt Signaling by a STAT6-Dependent Macrophage Phenotype Promotes Mucosal Repair in Murine IBD. Mucosal Immunology, 9, 986-998. https://doi.org/10.1038/mi.2015.123
|
[77]
|
Zhuang, H., Lv, Q., Zhong, C., Cui, Y., He, L., Zhang, C., et al. (2021) Tiliroside Ameliorates Ulcerative Colitis by Restoring the M1/M2 Macrophage Balance via the HIF-1α/Glycolysis Pathway. Frontiers in Immunology, 12, Article 649463. https://doi.org/10.3389/fimmu.2021.649463
|
[78]
|
Kimura, I., Ichimura, A., Ohue-Kitano, R. and Igarashi, M. (2020) Free Fatty Acid Receptors in Health and Disease. Physiological Reviews, 100, 171-210. https://doi.org/10.1152/physrev.00041.2018
|
[79]
|
Sun, J., Xu, X. and Jin, L. (2022) Effects of Metabolism on Macrophage Polarization under Different Disease Backgrounds. Frontiers in Immunology, 13, Article 880286. https://doi.org/10.3389/fimmu.2022.880286
|
[80]
|
Li, M., Wu, Y., Qiu, J., Lei, J., Li, M., Xu, N., et al. (2023) Huangqin Decoction Ameliorates Ulcerative Colitis by Regulating Fatty Acid Metabolism to Mediate Macrophage Polarization via Activating FFAR4-AMPK-PPARα Pathway. Journal of Ethnopharmacology, 311, Article ID: 116430. https://doi.org/10.1016/j.jep.2023.116430
|