[1]
|
Sharma, J. and Polizos, G. (2020) Hollow Silica Particles: Recent Progress and Future Perspectives. Nanomaterials, 10, Article 1599. https://doi.org/10.3390/nano10081599
|
[2]
|
陈景华, 方应大为, 高畅, 等. 中空二氧化硅纳米球的制备与应用研究进展[J]. 包装学报, 2024, 16(1): 86-96.
|
[3]
|
Bao, Y., Shi, C., Wang, T., Li, X. and Ma, J. (2016) Recent Progress in Hollow Silica: Template Synthesis, Morphologies and Applications. Microporous and Mesoporous Materials, 227, 121-136. https://doi.org/10.1016/j.micromeso.2016.02.040
|
[4]
|
Li, Q. and Zhou, Y. (2023) Brief History, Preparation Method, and Biological Application of Mesoporous Silica Molecular Sieves: A Narrative Review. Molecules, 28, Article 2013. https://doi.org/10.3390/molecules28052013
|
[5]
|
马傲雪, 曾丹林, 黄刚, 等. 二氧化硅空心微球的制备及应用研究进展[J]. 化工新型材料, 2024, 52(8): 46-50.
|
[6]
|
赵志成, 汪洋, 刘佳, 等. 二氧化硅纳米空心微球的制备及其应用研究进展[J]. 现代技术陶瓷, 2024, 45(4): 293-312.
|
[7]
|
文素芬, 邹金住, 周学凡, 等. 微米级二氧化硅空心微球的制备及表征[J]. 粉末冶金材料科学与工程, 2022, 27(3): 336-344.
|
[8]
|
杨睿璐, 石健, 李春建. 空心二氧化硅纳米颗粒的高效绿色合成[J]. 南通大学学报(自然科学版), 2021, 20(2): 69-73.
|
[9]
|
王超, 张丽, 李明雨, 等. 中空二氧化硅微球的制备及其在吸附领域的应用研究[J]. 山东化工, 2023, 52(10): 102-103+106.
|
[10]
|
侯杰. 空心二氧化硅制备及其复合材料的催化和药物传递应用研究[D]: [博士学位论文]. 天津: 天津大学, 2018.
|
[11]
|
Hu, W., Gu, H., Wang, J., Li, Y. and Wang, Z. (2013) One-Step Synthesis of Silica Hollow Particles in a W/O Inverse Emulsion. Colloid and Polymer Science, 291, 2697-2704. https://doi.org/10.1007/s00396-013-3003-0
|
[12]
|
Wang, Q., Liu, Y. and Yan, H. (2007) Mechanism of a Self-Templating Synthesis of Monodispersed Hollow Silica Nanospheres with Tunable Size and Shell Thickness. Chemical Communications, No. 23, 2339-2341. https://doi.org/10.1039/b701572k
|
[13]
|
Ma, N., Zhang, Y., Yang, J. and Huang, Y. (2017) Facile Preparation of Hollow‐Structured Mesoporous Silica Spheres with Large and Ordered Mesochannels. International Journal of Applied Ceramic Technology, 14, 915-920. https://doi.org/10.1111/ijac.12728
|
[14]
|
吴蒙, 刘亚明, 孟家光. 中空二氧化硅微球的制备研究进展[J]. 有机硅材料, 2023, 37(6): 68-72.
|
[15]
|
Suhendi, A., Nandiyanto, A.B., Munir, M.M., Ogi, T. and Okuyama, K. (2013) Preparation of Agglomeration-Free Spherical Hollow Silica Particles Using an Electrospray Method with Colloidal Templating. Materials Letters, 106, 432-435. https://doi.org/10.1016/j.matlet.2013.05.056
|
[16]
|
顾文娟, 廖俊, 吴卫兵, 等. 中空二氧化硅微球的制备方法研究进展[J]. 有机硅材料, 2009, 23(4): 257-264.
|
[17]
|
Li, B., Gao, X., Li, X., Liu, Z. and He, N. (2017) Monolithic Organosilica Aerogel Consisting of Hollow Microspheres by a Simple Ambient Pressure Drying Process. Materials Letters, 199, 21-23. https://doi.org/10.1016/j.matlet.2017.03.138
|
[18]
|
罗静, 颜明飞, 李振坤, 等. 空心介孔二氧化硅纳米粒子的制备及其作为催化剂载体在水处理中的应用[J]. 化工技术与开发, 2018, 47(6): 19-21+34.
|
[19]
|
Chen, J., Chen, J., Zhang, X., Gao, J. and Yang, Q. (2016) Efficient and Stable Ps-SO3H/SiO2 Hollow Nanospheres with Tunable Surface Properties for Acid Catalyzed Reactions. Applied Catalysis A: General, 516, 1-8. https://doi.org/10.1016/j.apcata.2016.02.008
|
[20]
|
Chen, B., Quan, G., Wang, Z., Chen, J., Wu, L., Xu, Y., et al. (2013) Hollow Mesoporous Silicas as a Drug Solution Delivery System for Insoluble Drugs. Powder Technology, 240, 48-53. https://doi.org/10.1016/j.powtec.2012.07.008
|
[21]
|
Mei, X., Chen, D., Li, N., Xu, Q., Ge, J., Li, H., et al. (2012) Hollow Mesoporous Silica Nanoparticles Conjugated with pH-Sensitive Amphiphilic Diblock Polymer for Controlled Drug Release. Microporous and Mesoporous Materials, 152, 16-24. https://doi.org/10.1016/j.micromeso.2011.12.015
|
[22]
|
Wang, J., Wang, Z., Chen, J. and Yun, J. (2008) Direct Encapsulation of Water-Soluble Drug into Silica Microcapsules for Sustained Release Applications. Materials Research Bulletin, 43, 3374-3381. https://doi.org/10.1016/j.materresbull.2008.02.011
|
[23]
|
Zhang, D., Shu, Q., Zhang, Y., Nui, H., Hu, X., Guan, P., et al. (2025) Hollow Silica Microspheres/Graphene and Silica@titanium Dioxide Core-Shell Microspheres/Graphene as Enhanced Lithium-Ion Battery Anodes. Journal of Applied Electrochemistry, 55, 35-51. https://doi.org/10.1007/s10800-024-02154-4
|
[24]
|
Sasidharan, M., Liu, D., Gunawardhana, N., Yoshio, M. and Nakashima, K. (2011) Synthesis, Characterization and Application for Lithium-Ion Rechargeable Batteries of Hollow Silica Nanospheres. Journal of Materials Chemistry, 21, 13881-13888. https://doi.org/10.1039/c1jm10864f
|
[25]
|
代晓雪, 史超云, 赵云浩, 等. 二氧化硅空心球/碳锂离子电池负极材料[J]. 山东化工, 2024, 53(15): 24-27+31.
|
[26]
|
Kang, M., Lee, J. and Bae, J.Y. (2023) Facile Mesoporous Hollow Silica Synthesis for Formaldehyde Adsorption. International Journal of Molecular Sciences, 24, Article 4208. https://doi.org/10.3390/ijms24044208
|
[27]
|
吕博, 陈连喜. 磷酸功能化空心二氧化硅的制备及其对Cd2+的吸附[J]. 材料导报, 2022, 36(9): 42-48.
|
[28]
|
霍宇平, 杨旭东, 李忠平, 等. 二氧化硅中空微球的制备及吸附染料研究[J]. 硅酸盐通报, 2019, 38(12): 3780-3787.
|
[29]
|
Kim, S., Kim, M., Lee, W.Y. and Hyeon, T. (2002) Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions. Journal of the American Chemical Society, 124, 7642-7643. https://doi.org/10.1021/ja026032z
|
[30]
|
吴兴萍. 中空结构MFe2O4(M=Fe、Cu)/SiO2复合材料的Fenton催化性能研究[D]: [硕士学位论文]. 扬州: 扬州大学, 2019.
|
[31]
|
王志琰. 纳米磁性二氧化硅空心球的制备及其在载药方面的应用[D]: [硕士学位论文]. 北京: 北京化工大学, 2010.
|
[32]
|
李洁, 张佳, 付明琴, 等. 介孔SiO2负载有机基二元定型复合相变储能材料的性能研究[J]. 材料导报, 2021, 35(S2): 483-487.
|
[33]
|
程金瑜, 刘朋威, 何铠君, 等. 纳米多孔二氧化硅微球在染料罗丹明B吸附中的应用[J]. 染整技术, 2021, 43(8): 36-41.
|
[34]
|
Najafi, M., Yousefi, Y. and Rafati, A.A. (2012) Synthesis, Characterization and Adsorption Studies of Several Heavy Metal Ions on Amino-Functionalized Silica Nano Hollow Sphere and Silica Gel. Separation and Purification Technology, 85, 193-205. https://doi.org/10.1016/j.seppur.2011.10.011
|
[35]
|
Ernawati, L., Ogi, T., Balgis, R., Okuyama, K., Stucki, M., Hess, S.C., et al. (2016) Hollow Silica as an Optically Transparent and Thermally Insulating Polymer Additive. Langmuir, 32, 338-345. https://doi.org/10.1021/acs.langmuir.5b04063
|
[36]
|
Pálvölgyi, P.S., Nelo, M., Pitkänen, O., Peräntie, J., Liimatainen, H., Myllymäki, S., et al. (2020) Ultra-Low Permittivity Porous Silica-Cellulose Nanocomposite Substrates for 6G Telecommunication. Nanotechnology, 31, Article 435203. https://doi.org/10.1088/1361-6528/aba4cc
|