|
[1]
|
Rasche, L., Chavan, S.S., Stephens, O.W., Patel, P.H., Tytarenko, R., Ashby, C., et al. (2017) Spatial Genomic Heterogeneity in Multiple Myeloma Revealed by Multi-Region Sequencing. Nature Communications, 8, Article No. 268 [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Zeissig, M.N., Zannettino, A.C.W. and Vandyke, K. (2020) Tumour Dissemination in Multiple Myeloma Disease Progression and Relapse: A Potential Therapeutic Target in High-Risk Myeloma. Cancers, 12, Article 3643. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Gray, F.D. (1980) Internal Medicine. JAMA: The Journal of the American Medical Association, 243, 2190-2191. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhou, L., Yu, Q., Wei, G., Wang, L., Huang, Y., Hu, K., et al. (2021) Measuring the Global, Regional, and National Burden of Multiple Myeloma from 1990 to 2019. BMC Cancer, 21, Article No. 606. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wennmann, M., Ming, W., Bauer, F., Chmelik, J., Klein, A., Uhlenbrock, C., et al. (2023) Prediction of Bone Marrow Biopsy Results from MRI in Multiple Myeloma Patients Using Deep Learning and Radiomics. Investigative Radiology, 58, 754-765. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Waxman, A.J., Mick, R., Garfall, A.L., et al. (2015) Classifying Ultra-High Risk Smoldering Myeloma. Leukemia, 29, 751-753.
|
|
[7]
|
Rajkumar, S.V., Larson, D. and Kyle, R.A. (2011) Diagnosis of Smoldering Multiple Myeloma. New England Journal of Medicine, 365, 474-475. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Kastritis, E., Terpos, E., Moulopoulos, L., Spyropoulou-Vlachou, M., Kanellias, N., Eleftherakis-Papaiakovou, E., et al. (2012) Extensive Bone Marrow Infiltration and Abnormal Free Light Chain Ratio Identifies Patients with Asymptomatic Myeloma at High Risk for Progression to Symptomatic Disease. Leukemia, 27, 947-953. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Neben, K., Jauch, A., Hielscher, T., Hillengass, J., Lehners, N., Seckinger, A., et al. (2013) Progression in Smoldering Myeloma Is Independently Determined by the Chromosomal Abnormalities Del(17p), T(4;14), Gain 1q, Hyperdiploidy, and Tumor Load. Journal of Clinical Oncology, 31, 4325-4332. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
San Miguel, J., Mateos, M., Gonzalez, V., Dimopoulos, M.A., Kastritis, E., Hajek, R., et al. (2019) Updated Risk Stratification Model for Smoldering Multiple Myeloma (SMM) Incorporating the Revised IMWG Diagnostic Criteria. Journal of Clinical Oncology, 37, 8000-8000. [Google Scholar] [CrossRef]
|
|
[11]
|
Palumbo, A., Avet-Loiseau, H., Oliva, S., Lokhorst, H.M., Goldschmidt, H., Rosinol, L., et al. (2015) Revised International Staging System for Multiple Myeloma: A Report from International Myeloma Working Group. Journal of Clinical Oncology, 33, 2863-2869. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Weinhold, N., Salwender, H.J., Cairns, D.A., et al. (2021) Chromosome 1q21 Abnormalities Refine Outcome Prediction in Patients with Multiple Myeloma—A Meta-Analysis of 2,596 Trial Patients. Haematologica, 106, 2754-2758.
|
|
[13]
|
Mateos, M.-V., Kumar, S., Dimopoulos, M.A., et al. (2020) International Myeloma Working Group Risk Stratification Model for Smoldering Multiple Myeloma (SMM). Blood Cancer Journal, 10, Article 102.
|
|
[14]
|
Aerts, H.J.W.L. (2016) The Potential of Radiomic-Based Phenotyping in Precision Medicine. JAMA Oncology, 2, 1636-1642. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kyle, R.A. and Rajkumar, S.V. (2004) Multiple Myeloma. New England Journal of Medicine, 351, 1860-1873. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Baffour, F.I., Glazebrook, K.N., Kumar, S.K. and Broski, S.M. (2020) Role of Imaging in Multiple Myeloma. American Journal of Hematology, 95, 966-977. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hillengass, J., Moulopoulos, L.A., Delorme, S., Koutoulidis, V., Mosebach, J., Hielscher, T., et al. (2017) Whole-Body Computed Tomography versus Conventional Skeletal Survey in Patients with Multiple Myeloma: A Study of the International Myeloma Working Group. Blood Cancer Journal, 7, e599-e599. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Rajkumar, S.V., Dimopoulos, M.A., Palumbo, A., Blade, J., Merlini, G., Mateos, M., et al. (2014) International Myeloma Working Group Updated Criteria for the Diagnosis of Multiple Myeloma. The Lancet Oncology, 15, e538-e548. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Mahnken, A.H., Wildberger, J.E., Gehbauer, G., Schmitz-Rode, T., Blaum, M., Fabry, U., et al. (2002) Multidetector CT of the Spine in Multiple Myeloma: Comparison with MR Imaging and Radiography. American Journal of Roentgenology, 178, 1429-1436. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Bredella, M.A., Steinbach, L., Caputo, G., Segall, G. and Hawkins, R. (2005) Value of FDG PET in the Assessment of Patients with Multiple Myeloma. American Journal of Roentgenology, 184, 1199-1204. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Cavo, M., Terpos, E., Nanni, C., Moreau, P., Lentzsch, S., Zweegman, S., et al. (2017) Role of 18F-FDG PET/CT in the Diagnosis and Management of Multiple Myeloma and Other Plasma Cell Disorders: A Consensus Statement by the International Myeloma Working Group. The Lancet Oncology, 18, e206-e217. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Bartel, T.B., Haessler, J., Brown, T.L.Y., Shaughnessy, J.D., van Rhee, F., Anaissie, E., et al. (2009) F18-Fluorodeoxyglucose Positron Emission Tomography in the Context of Other Imaging Techniques and Prognostic Factors in Multiple Myeloma. Blood, 114, 2068-2076. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Caldarella, C., Treglia, G., Isgrò, M.A., Treglia, I. and Giordano, A. (2012) The Role of Fluorine-18-Fluorodeoxyglucose Positron Emission Tomography in Evaluating the Response to Treatment in Patients with Multiple Myeloma. International Journal of Molecular Imaging, 2012, Article 175803. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Baur-Melnyk, A., Buhmann, S., Dürr, H.R. and Reiser, M. (2005) Role of MRI for the Diagnosis and Prognosis of Multiple Myeloma. European Journal of Radiology, 55, 56-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Moulopoulos, L.A., Gika, D., Anagnostopoulos, A., Delasalle, K., Weber, D., Alexanian, R., et al. (2005) Prognostic Significance of Magnetic Resonance Imaging of Bone Marrow in Previously Untreated Patients with Multiple Myeloma. Annals of Oncology, 16, 1824-1828. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Dutoit, J.C. and Verstraete, K.L. (2016) MRI in Multiple Myeloma: A Pictorial Review of Diagnostic and Post-Treatment Findings. Insights into Imaging, 7, 553-569. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Broski, S.M., Goenka, A.H., Kemp, B.J. and Johnson, G.B. (2018) Clinical PET/MRI: 2018 Update. American Journal of Roentgenology, 211, 295-313. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Kogan, F., Broski, S.M., Yoon, D. and Gold, G.E. (2018) Applications of PET‐MRI in Musculoskeletal Disease. Journal of Magnetic Resonance Imaging, 48, 27-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
方兴宇. 全身弥散加权成像定量分析在多发性骨髓瘤中的应用[D]: [博士学位论文]. 北京: 中国医学科学院北京协和医学院, 2020.
|
|
[30]
|
Wu, G., Jochems, A., Refaee, T., Ibrahim, A., Yan, C., Sanduleanu, S., et al. (2021) Structural and Functional Radiomics for Lung Cancer. European Journal of Nuclear Medicine and Molecular Imaging, 48, 3961-3974. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Bera, K., Braman, N., Gupta, A., Velcheti, V. and Madabhushi, A. (2021) Predicting Cancer Outcomes with Radiomics and Artificial Intelligence in Radiology. Nature Reviews Clinical Oncology, 19, 132-146. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Gidwani, M., Chang, K., Patel, J.B., Hoebel, K.V., Ahmed, S.R., Singh, P., et al. (2023) Inconsistent Partitioning and Unproductive Feature Associations Yield Idealized Radiomic Models. Radiology, 307, e220715. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Hatt, M., Krizsan, A.K., Rahmim, A., et al. (2023) Joint EANM/SNMMI Guideline on Radiomics in Nuclear Medicine: Jointly Supported by the EANM Physics Committee and the SNMMI Physics, Instrumentation and Data Sciences Council. European Journal of Nuclear Medicine and Molecular Imaging, 50, 352-375.
|
|
[34]
|
Wei, J., Jiang, H., Zhou, Y., Tian, J., Furtado, F.S. and Catalano, O.A. (2023) Radiomics: A Radiological Evidence-Based Artificial Intelligence Technique to Facilitate Personalized Precision Medicine in Hepatocellular Carcinoma. Digestive and Liver Disease, 55, 833-847. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Cui, Y., Zhang, J., Li, Z., Wei, K., Lei, Y., Ren, J., et al. (2022) A CT-Based Deep Learning Radiomics Nomogram for Predicting the Response to Neoadjuvant Chemotherapy in Patients with Locally Advanced Gastric Cancer: A Multicenter Cohort Study. eClinicalMedicine, 46, Article 101348. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Dai, J., Wang, H., Xu, Y., Chen, X. and Tian, R. (2023) Clinical Application of AI-Based PET Images in Oncological Patients. Seminars in Cancer Biology, 91, 124-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Faber, J., Kügler, D., Bahrami, E., Heinz, L., Timmann, D., Ernst, T.M., et al. (2022) CerebNet: A Fast and Reliable Deep-Learning Pipeline for Detailed Cerebellum Sub-Segmentation. NeuroImage, 264, Article 119703. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Wang, R., Dai, W., Gong, J., Huang, M., Hu, T., Li, H., et al. (2022) Development of a Novel Combined Nomogram Model Integrating Deep Learning-Pathomics, Radiomics and Immunoscore to Predict Postoperative Outcome of Colorectal Cancer Lung Metastasis Patients. Journal of Hematology & Oncology, 15, Article No. 11. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Geras, K.J., Mann, R.M. and Moy, L. (2019) Artificial Intelligence for Mammography and Digital Breast Tomosynthesis: Current Concepts and Future Perspectives. Radiology, 293, 246-259. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Ziegelmayer, S., Reischl, S., Harder, F., Makowski, M., Braren, R. and Gawlitza, J. (2021) Feature Robustness and Diagnostic Capabilities of Convolutional Neural Networks against Radiomics Features in Computed Tomography Imaging. Investigative Radiology, 57, 171-177. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Han, S., Oh, J.S., Kim, Y., Seo, S.Y., Lee, G.D., Park, M., et al. (2022) Fully Automatic Quantitative Measurement of 18F-FDG PET/CT in Thymic Epithelial Tumors Using a Convolutional Neural Network. Clinical Nuclear Medicine, 47, 590-598. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
van der Voort, S.R., Incekara, F., Wijnenga, M.M.J., Kapsas, G., Gahrmann, R., Schouten, J.W., et al. (2023) Combined Molecular Subtyping, Grading, and Segmentation of Glioma Using Multi-Task Deep Learning. Neuro-Oncology, 25, 279-289. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Pang, S., Field, M., Dowling, J., Vinod, S., Holloway, L. and Sowmya, A. (2022) Training Radiomics-Based CNNs for Clinical Outcome Prediction: Challenges, Strategies and Findings. Artificial Intelligence in Medicine, 123, Article 102230. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Sexauer, R., Yang, S., Weikert, T., Poletti, J., Bremerich, J., Roth, J.A., et al. (2022) Automated Detection, Segmentation, and Classification of Pleural Effusion from Computed Tomography Scans Using Machine Learning. Investigative Radiology, 57, 552-559. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Guiot, J., Vaidyanathan, A., Deprez, L., et al. (2021) A Review in Radiomics: Making Personalized Medicine a Reality via Routine Imaging. Medicinal Research Reviews, 42, 426-440.
|
|
[46]
|
Lee, S.B., Cho, Y.J., Hong, Y., Jeong, D., Lee, J., Kim, S., et al. (2021) Deep Learning-Based Image Conversion Improves the Reproducibility of Computed Tomography Radiomics Features. A Phantom Study. Investigative Radiology, 57, 308-317. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Zhang, S., Liu, M., Li, S., Cui, J., Zhang, G. and Wang, X. (2023) An MRI-Based Radiomics Nomogram for Differentiating Spinal Metastases from Multiple Myeloma. Cancer Imaging, 23, Article No. 72. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Wu, Z., Wang, H., Zheng, Y., Fei, H., Dong, C., Wang, Z., et al. (2023) Lumbar MR-Based Radiomics Nomogram for Detecting Minimal Residual Disease in Patients with Multiple Myeloma. European Radiology, 33, 5594-5605. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Wu, Z., Bian, T., Dong, C., Duan, S., Fei, H., Hao, D., et al. (2022) Spinal MRI-Based Radiomics Analysis to Predict Treatment Response in Multiple Myeloma. Journal of Computer Assisted Tomography, 46, 447-454. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Qiu, X., Lei, H., Xie, H. and Lei, B. (2022) Segmentation of Multiple Myeloma Cells Using Feature Selection Pyramid Network and Semantic Cascade Mask RCNN. 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), Kolkata, 28-31 March 2022, 1-4. [Google Scholar] [CrossRef]
|
|
[51]
|
Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. Proceedings of the Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, 5-9 October 2015, 234-241.
|
|
[52]
|
Chen, L., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A.L. (2018) Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848. [Google Scholar] [CrossRef] [PubMed]
|