[1]
|
Roehlen, N., Crouchet, E. and Baumert, T.F. (2020) Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells, 9, Article 875. https://doi.org/10.3390/cells9040875
|
[2]
|
Devarbhavi, H., Asrani, S.K., Arab, J.P., Nartey, Y.A., Pose, E. and Kamath, P.S. (2023) Global Burden of Liver Disease: 2023 Update. Journal of Hepatology, 79, 516-537. https://doi.org/10.1016/j.jhep.2023.03.017
|
[3]
|
Delgado, M.E., Cárdenas, B.I., Farran, N. and Fernandez, M. (2021) Metabolic Reprogramming of Liver Fibrosis. Cells, 10, Article 3604. https://doi.org/10.3390/cells10123604
|
[4]
|
Li, J., Zhai, X., Sun, X., Cao, S., Yuan, Q. and Wang, J. (2022) Metabolic Reprogramming of Pulmonary Fibrosis. Frontiers in Pharmacology, 13, Article 1031890. https://doi.org/10.3389/fphar.2022.1031890
|
[5]
|
Zhu, X., Jiang, L., Long, M., Wei, X., Hou, Y. and Du, Y. (2021) Metabolic Reprogramming and Renal Fibrosis. Frontiers in Medicine, 8, Article 746920. https://doi.org/10.3389/fmed.2021.746920
|
[6]
|
Park-Min, K. (2019) Metabolic Reprogramming in Osteoclasts. Seminars in Immunopathology, 41, 565-572. https://doi.org/10.1007/s00281-019-00757-0
|
[7]
|
Rosso, C., Kazankov, K., Younes, R., Esmaili, S., Marietti, M., Sacco, M., et al. (2019) Crosstalk between Adipose Tissue Insulin Resistance and Liver Macrophages in Non-Alcoholic Fatty Liver Disease. Journal of Hepatology, 71, 1012-1021. https://doi.org/10.1016/j.jhep.2019.06.031
|
[8]
|
江海燕, 钟芳芳, 张俊平. 肝巨噬细胞与肝纤维化研究进展[J]. 药学实践与服务, 2024, 42(4): 135-140.
|
[9]
|
王慜婷, 许丰, 张谢. 肝星状细胞调控肝纤维化的相关机制研究进展[J]. 中国现代医生, 2024, 62(31): 94-97.
|
[10]
|
Zhao, J., Zhang, S., Liu, Y., He, X., Qu, M., Xu, G., et al. (2020) Single-Cell RNA Sequencing Reveals the Heterogeneity of Liver-Resident Immune Cells in Human. Cell Discovery, 6, Article No. 22. https://doi.org/10.1038/s41421-020-0157-z
|
[11]
|
Tacke, F. and Zimmermann, H.W. (2014) Macrophage Heterogeneity in Liver Injury and Fibrosis. Journal of Hepatology, 60, 1090-1096. https://doi.org/10.1016/j.jhep.2013.12.025
|
[12]
|
Ma, X., Qiu, J., Zou, S., Tan, L. and Miao, T. (2024) The Role of Macrophages in Liver Fibrosis: Composition, Heterogeneity, and Therapeutic Strategies. Frontiers in Immunology, 15, Article 1494250. https://doi.org/10.3389/fimmu.2024.1494250
|
[13]
|
Wen, Y., Lambrecht, J., Ju, C. and Tacke, F. (2020) Hepatic Macrophages in Liver Homeostasis and Diseases-Diversity, Plasticity and Therapeutic Opportunities. Cellular & Molecular Immunology, 18, 45-56. https://doi.org/10.1038/s41423-020-00558-8
|
[14]
|
Heymann, F. and Tacke, F. (2016) Immunology in the Liver—From Homeostasis to Disease. Nature Reviews Gastroenterology & Hepatology, 13, 88-110. https://doi.org/10.1038/nrgastro.2015.200
|
[15]
|
Hu, C., Xuan, Y., Zhang, X., Liu, Y., Yang, S. and Yang, K. (2022) Immune Cell Metabolism and Metabolic Reprogramming. Molecular Biology Reports, 49, 9783-9795. https://doi.org/10.1007/s11033-022-07474-2
|
[16]
|
Park, S., Lee, J., Seo, H., Hwang, S.S., Lee, C. and Lee, G.R. (2025) Modulation of Immune Responses by Metabolic Reprogramming: The Key Role of Immunometabolism. Immune Network, 25, e15. https://doi.org/10.4110/in.2025.25.e15
|
[17]
|
Murray, P.J. (2017) Macrophage Polarization. Annual Review of Physiology, 79, 541-566. https://doi.org/10.1146/annurev-physiol-022516-034339
|
[18]
|
Ma, P., Gao, C., Yi, J., Zhao, J., Liang, S., Zhao, Y., et al. (2017) Cytotherapy with M1-Polarized Macrophages Ameliorates Liver Fibrosis by Modulating Immune Microenvironment in Mice. Journal of Hepatology, 67, 770-779. https://doi.org/10.1016/j.jhep.2017.05.022
|
[19]
|
Marrocco, A. and Ortiz, L.A. (2022) Role of Metabolic Reprogramming in Pro-Inflammatory Cytokine Secretion from LPS or Silica-Activated Macrophages. Frontiers in Immunology, 13, Article 936167. https://doi.org/10.3389/fimmu.2022.936167
|
[20]
|
Liu, Y., Xu, R., Gu, H., Zhang, E., Qu, J., Cao, W., et al. (2021) Metabolic Reprogramming in Macrophage Responses. Biomarker Research, 9, Article No. 1. https://doi.org/10.1186/s40364-020-00251-y
|
[21]
|
Xu, F., Guo, M., Huang, W., Feng, L., Zhu, J., Luo, K., et al. (2020) Annexin A5 Regulates Hepatic Macrophage Polarization via Directly Targeting PKM2 and Ameliorates Nash. Redox Biology, 36, Article ID: 101634. https://doi.org/10.1016/j.redox.2020.101634
|
[22]
|
Dong, G., Mao, Q., Xia, W., Xu, Y., Wang, J., Xu, L., et al. (2016) PKM2 and Cancer: The Function of PKM2 Beyond Glycolysis. Oncology Letters, 11, 1980-1986. https://doi.org/10.3892/ol.2016.4168
|
[23]
|
Liu, P., Li, H., Gong, J., Geng, Y., Jiang, M., Xu, H., et al. (2022) Chitooligosaccharides Alleviate Hepatic Fibrosis by Regulating the Polarization of M1 and M2 Macrophages. Food & Function, 13, 753-768. https://doi.org/10.1039/d1fo03768d
|
[24]
|
Chen, P., Lou, L., Sharma, B., Li, M., Xie, C., Yang, F., et al. (2024) Recent Advances on PKM2 Inhibitors and Activators in Cancer Applications. Current Medicinal Chemistry, 31, 2955-2973. https://doi.org/10.2174/0929867331666230714144851
|
[25]
|
Li, Q., Cao, L., Tian, Y., Zhang, P., Ding, C., Lu, W., et al. (2018) Butyrate Suppresses the Proliferation of Colorectal Cancer Cells via Targeting Pyruvate Kinase M2 and Metabolic Reprogramming. Molecular & Cellular Proteomics, 17, 1531-1545. https://doi.org/10.1074/mcp.ra118.000752
|
[26]
|
姚树坤, 刘婧, 周天惠. 代谢相关脂肪性肝病的发病机制与中医病机[J]. 临床肝胆病杂志, 2024, 40(10): 1954-1958.
|
[27]
|
Luo, W., Ai, L., Wang, B., Wang, L., Gan, Y., Liu, C., et al. (2020) Eccentric Exercise and Dietary Restriction Inhibits M1 Macrophage Polarization Activated by High-Fat Diet-Induced Obesity. Life Sciences, 243, Article ID: 117246. https://doi.org/10.1016/j.lfs.2019.117246
|
[28]
|
Lv, Q., Gao, R., Peng, C., Yi, J., Liu, L., Yang, S., et al. (2017) Bisphenol a Promotes Hepatic Lipid Deposition Involving Kupffer Cells M1 Polarization in Male Mice. Journal of Endocrinology, 234, 143-154. https://doi.org/10.1530/joe-17-0028
|
[29]
|
汤莉, 吴伶莉. 原发性肝癌患者肠道菌群变化与内毒素和炎性因子水平的关系[J]. 中国微生态学杂志, 2021, 33(10): 1162-1165.
|
[30]
|
Habib, A., Chokr, D., Wan, J., Hegde, P., Mabire, M., Siebert, M., et al. (2018) Inhibition of Monoacylglycerol Lipase, an Anti-Inflammatory and Antifibrogenic Strategy in the Liver. Gut, 68, 522-532. https://doi.org/10.1136/gutjnl-2018-316137
|
[31]
|
Shao, T., Chen, Z., Rong, J., Belov, V., Chen, J., Jeyarajan, A., et al. (2022) [18F]MAGL-4-11 Positron Emission Tomography Molecular Imaging of Monoacylglycerol Lipase Changes in Preclinical Liver Fibrosis Models. Acta Pharmaceutica Sinica B, 12, 308-315. https://doi.org/10.1016/j.apsb.2021.07.007
|
[32]
|
Wang, F., Zhang, S., Vuckovic, I., Jeon, R., Lerman, A., Folmes, C.D., et al. (2018) Glycolytic Stimulation Is Not a Requirement for M2 Macrophage Differentiation. Cell Metabolism, 28, 463-475.e4. https://doi.org/10.1016/j.cmet.2018.08.012
|
[33]
|
Stifel, U., Caratti, G. and Tuckermann, J. (2022) Novel Insights into the Regulation of Cellular Catabolic Metabolism in Macrophages through Nuclear Receptors. FEBS Letters, 596, 2617-2629. https://doi.org/10.1002/1873-3468.14474
|
[34]
|
Ma, S., Murakami, K., Tanaka, K., Hashimoto, M., Tanaka, M., Kitagori, K., et al. (2022) Fatostatin Ameliorates Inflammation without Affecting Cell Viability. FEBS Open Bio, 12, 594-604. https://doi.org/10.1002/2211-5463.13364
|
[35]
|
Brovkovych, V., Izhar, Y., Danes, J.M., Dubrovskyi, O., Sakallioglu, I.T., Morrow, L.M., et al. (2018) Fatostatin Induces Pro-and Anti-Apoptotic Lipid Accumulation in Breast Cancer. Oncogenesis, 7, Article No. 66. https://doi.org/10.1038/s41389-018-0076-0
|
[36]
|
Zhao, Y., Wang, L., Liu, M., Du, A., Qiu, M., Shu, H., et al. (2023) ROS Inhibition Increases KDM6A-Mediated NOX2 Transcription and Promotes Macrophages Oxidative Stress and M1 Polarization. Cell Stress and Chaperones, 28, 375-384. https://doi.org/10.1007/s12192-023-01347-8
|
[37]
|
Huang, C., Gan, D., Luo, F., Wan, S., Chen, J., Wang, A., et al. (2019) Interaction Mechanisms between the NOX4/ROS and RhoA/ROCK1 Signaling Pathways as New Anti-Fibrosis Targets of Ursolic Acid in Hepatic Stellate Cells. Frontiers in Pharmacology, 10, Article 431. https://doi.org/10.3389/fphar.2019.00431
|
[38]
|
Yang, G., Ni, J., Li, Y., Zha, M., Tu, Y. and Li, K. (2021) Acceptor Engineering for Optimized ROS Generation Facilitates Reprogramming Macrophages to M1 Phenotype in Photodynamic Immunotherapy. Angewandte Chemie International Edition, 60, 5386-5393. https://doi.org/10.1002/anie.202013228
|
[39]
|
Zhang, N., Guo, F. and Song, Y. (2023) HOXC8/TGF-β1 Positive Feedback Loop Promotes Liver Fibrosis and Hepatic Stellate Cell Activation via Activating Smad2/smad3 Signaling. Biochemical and Biophysical Research Communications, 662, 39-46. https://doi.org/10.1016/j.bbrc.2023.04.011
|
[40]
|
Zhang, J., Liu, Y., Chen, H., Yuan, Q., Wang, J., Niu, M., et al. (2022) MyD88 in Hepatic Stellate Cells Enhances Liver Fibrosis via Promoting Macrophage M1 Polarization. Cell Death & Disease, 13, Article No. 411. https://doi.org/10.1038/s41419-022-04802-z
|
[41]
|
王慜婷, 许丰, 张谢. 肝星状细胞调控肝纤维化的相关机制研究进展[J]. 中国现代医生, 2024, 62(31): 94-97.
|
[42]
|
阿比丹∙拜合提亚尔, 郭津生. 肝纤维化发生时活化肝星状细胞的代谢改变[J]. 中国细胞生物学学报, 2021, 43(10): 2054-2060.
|
[43]
|
Pan, M., Li, H. and Shi, X. (2024) A New Target for Hepatic Fibrosis Prevention and Treatment: The Warburg Effect. Frontiers in Bioscience-Landmark, 29, Article 321. https://doi.org/10.31083/j.fbl2909321
|
[44]
|
廖昭辉 ,谢正元. 肝纤维化发病的分子机制及其相关治疗靶点的研究进展[J]. 吉林大学学报(医学版), 2024, 50(5): 1450-1456.
|
[45]
|
Zhou, M., Cheng, M., Huang, T., Hu, R., Zou, G., Li, H., et al. (2021) Transforming Growth Factor β-1 Upregulates Glucose Transporter 1 and Glycolysis through Canonical and Noncanonical Pathways in Hepatic Stellate Cells. World Journal of Gastroenterology, 27, 6908-6926. https://doi.org/10.3748/wjg.v27.i40.6908
|
[46]
|
Wan, L., Xia, T., Du, Y., Liu, J., Xie, Y., Zhang, Y., et al. (2019) Exosomes from Activated Hepatic Stellate Cells Contain GLUT1 and PKM2: A Role for Exosomes in Metabolic Switch of Liver Nonparenchymal Cells. The FASEB Journal, 33, 8530-8542. https://doi.org/10.1096/fj.201802675r
|
[47]
|
Czuba, L.C. and Isoherranen, N. (2024) LX-2 Stellate Cells Are a Model System for Investigating the Regulation of Hepatic Vitamin a Metabolism and Respond to Tumor Necrosis Factor Α and Interleukin 1β. Drug Metabolism and Disposition, 52, 442-454. https://doi.org/10.1124/dmd.124.001679
|
[48]
|
Zheng, D., Jiang, Y., Qu, C., Yuan, H., Hu, K., He, L., et al. (2020) Pyruvate Kinase M2 Tetramerization Protects against Hepatic Stellate Cell Activation and Liver Fibrosis. The American Journal of Pathology, 190, 2267-2281. https://doi.org/10.1016/j.ajpath.2020.08.002
|
[49]
|
Yoneda, A., Sakai-Sawada, K., Niitsu, Y. and Tamura, Y. (2016) Vitamin A and Insulin Are Required for the Maintenance of Hepatic Stellate Cell Quiescence. Experimental Cell Research, 341, 8-17. https://doi.org/10.1016/j.yexcr.2016.01.012
|
[50]
|
Chen, M., Liu, J., Yang, W. and Ling, W. (2017) Lipopolysaccharide Mediates Hepatic Stellate Cell Activation by Regulating Autophagy and Retinoic Acid Signaling. Autophagy, 13, 1813-1827. https://doi.org/10.1080/15548627.2017.1356550
|
[51]
|
Alkhouri, N., Dixon, L.J. and Feldstein, A.E. (2009) Lipotoxicity in Nonalcoholic Fatty Liver Disease: Not All Lipids Are Created Equal. Expert Review of Gastroenterology & Hepatology, 3, 445-451. https://doi.org/10.1586/egh.09.32
|
[52]
|
Lee, E., Lee, J., Kim, D., Lee, Y., Jo, Y., Dao, T., et al. (2024) Loss of SREBP-1c Ameliorates Iron-Induced Liver Fibrosis by Decreasing Lipocalin-2. Experimental & Molecular Medicine, 56, 1001-1012. https://doi.org/10.1038/s12276-024-01213-2
|
[53]
|
Du, K., Chitneni, S.K., Suzuki, A., Wang, Y., Henao, R., Hyun, J., et al. (2020) Increased Glutaminolysis Marks Active Scarring in Nonalcoholic Steatohepatitis Progression. Cellular and Molecular Gastroenterology and Hepatology, 10, 1-21. https://doi.org/10.1016/j.jcmgh.2019.12.006
|
[54]
|
Zhang, M., Serna-Salas, S., Damba, T., Borghesan, M., Demaria, M. and Moshage, H. (2021) Hepatic Stellate Cell Senescence in Liver Fibrosis: Characteristics, Mechanisms and Perspectives. Mechanisms of Ageing and Development, 199, Article ID: 111572. https://doi.org/10.1016/j.mad.2021.111572
|
[55]
|
de Oliveira da Silva, B., Ramos, L.F. and Moraes, K.C.M. (2017) Molecular Interplays in Hepatic Stellate Cells: Apoptosis, Senescence, and Phenotype Reversion as Cellular Connections That Modulate Liver Fibrosis. Cell Biology International, 41, 946-959. https://doi.org/10.1002/cbin.10790
|
[56]
|
Königshofer, P., Brusilovskaya, K., Petrenko, O., Hofer, B.S., Schwabl, P., Trauner, M., et al. (2021) Nuclear Receptors in Liver Fibrosis. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1867, Article ID: 166235. https://doi.org/10.1016/j.bbadis.2021.166235
|
[57]
|
Nelson, V.L., Nguyen, H.C.B., Garcìa-Cañaveras, J.C., Briggs, E.R., Ho, W.Y., DiSpirito, J.R., et al. (2018) PPARγ Is a Nexus Controlling Alternative Activation of Macrophages via Glutamine Metabolism. Genes & Development, 32, 1035-1044. https://doi.org/10.1101/gad.312355.118
|
[58]
|
Bennett, R.G., Simpson, R.L. and Hamel, F.G. (2017) Serelaxin Increases the Antifibrotic Action of Rosiglitazone in a Model of Hepatic Fibrosis. World Journal of Gastroenterology, 23, 3999-4006. https://doi.org/10.3748/wjg.v23.i22.3999
|
[59]
|
Preethi, S., Arthiga, K., Patil, A.B., Spandana, A. and Jain, V. (2022) Review on NAD(P)H Dehydrogenase Quinone 1 (NQO1) Pathway. Molecular Biology Reports, 49, 8907-8924. https://doi.org/10.1007/s11033-022-07369-2
|
[60]
|
Xue, J., Xiao, T., Wei, S., Sun, J., Zou, Z., Shi, M., et al. (2021) miR‐21‐Regulated M2 Polarization of Macrophage Is Involved in Arsenicosis‐induced Hepatic Fibrosis through the Activation of Hepatic Stellate Cells. Journal of Cellular Physiology, 236, 6025-6041. https://doi.org/10.1002/jcp.30288
|
[61]
|
Hellemans, K., Michalik, L., Dittie, A., Knorr, A., Rombouts, K., de Jong, J., et al. (2003) Peroxisome Proliferator-Activated Receptor-β Signaling Contributes to Enhanced Proliferation of Hepatic Stellate Cells. Gastroenterology, 124, 184-201. https://doi.org/10.1053/gast.2003.50015
|
[62]
|
Francque, S., Szabo, G., Abdelmalek, M.F., Byrne, C.D., Cusi, K., Dufour, J., et al. (2020) Nonalcoholic Steatohepatitis: The Role of Peroxisome Proliferator-Activated Receptors. Nature Reviews Gastroenterology & Hepatology, 18, 24-39. https://doi.org/10.1038/s41575-020-00366-5
|
[63]
|
Endo-Umeda, K., Kim, E., Thomas, D.G., Liu, W., Dou, H., Yalcinkaya, M., et al. (2022) Myeloid LXR (Liver X Receptor) Deficiency Induces Inflammatory Gene Expression in Foamy Macrophages and Accelerates Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 42, 719-731. https://doi.org/10.1161/atvbaha.122.317583
|
[64]
|
Endo-Umeda, K., Nakashima, H., Umeda, N., Seki, S. and Makishima, M. (2018) Dysregulation of Kupffer Cells/Macrophages and Natural Killer T Cells in Steatohepatitis in LXRα Knockout Male Mice. Endocrinology, 159, 1419-1432. https://doi.org/10.1210/en.2017-03141
|
[65]
|
Zhong, L., Ning, B., Du, X., et al. (2019) Liver X receptor; Controls Hepatic Stellate Cell Activation via Hedgehog Signaling. bioRxiv.
|
[66]
|
Jaroonwitchawan, T., Arimochi, H., Sasaki, Y., Ishifune, C., Kondo, H., Otsuka, K., et al. (2023) Stimulation of the Farnesoid X Receptor Promotes M2 Macrophage Polarization. Frontiers in Immunology, 14, Article 1065790. https://doi.org/10.3389/fimmu.2023.1065790
|
[67]
|
Shi, T., Malik, A., Yang vom Hofe, A., Matuschek, L., Mullen, M., Lages, C.S., et al. (2022) Farnesoid X Receptor Antagonizes Macrophage-Dependent Licensing of Effector T Lymphocytes and Progression of Sclerosing Cholangitis. Science Translational Medicine, 14, eabi4354. https://doi.org/10.1126/scitranslmed.abi4354
|
[68]
|
Manka, P., Coombes, J.D., Sydor, S., Swiderska‐Syn, M.K., Best, J., Gauthier, K., et al. (2023) Thyroid Hormone Receptor α Modulates Fibrogenesis in Hepatic Stellate Cells. Liver International, 44, 125-138. https://doi.org/10.1111/liv.15759
|