[1]
|
Li, Q., Guo, H., Xue, R., Wang, M., Xu, M., Yang, W., et al. (2020) Self-Assembled Mo Doped Ni-MoF Nanosheets Based Electrode Material for High Performance Battery-Supercapacitor Hybrid Device. International Journal of Hydrogen Energy, 45, 20820-20831. https://doi.org/10.1016/j.ijhydene.2020.05.143
|
[2]
|
Zhao, Q., Yan, Z., Chen, C. and Chen, J. (2017) Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chemical Reviews, 117, 10121-10211. https://doi.org/10.1021/acs.chemrev.7b00051
|
[3]
|
Siracusano, S., Van Dijk, N., Payne-Johnson, E., Baglio, V. and Aricò, A.S. (2015) Nanosized IrOx and IrRuOx Electrocatalysts for the O2 Evolution Reaction in PEM Water Electrolysers. Applied Catalysis B: Environmental, 164, 488-495. https://doi.org/10.1016/j.apcatb.2014.09.005
|
[4]
|
Gasteiger, H.A., Kocha, S.S., Sompalli, B. and Wagner, F.T. (2005) Activity Benchmarks and Requirements for Pt, Pt-Alloy, and Non-Pt Oxygen Reduction Catalysts for PEMFCs. Applied Catalysis B: Environmental, 56, 9-35. https://doi.org/10.1016/j.apcatb.2004.06.021
|
[5]
|
Shudo, Y., Fukuda, M., Islam, M.S., Kuroiwa, K., Sekine, Y., Karim, M.R., et al. (2021) 3D Porous Ni/NiOx as a Bifunctional Oxygen Electrocatalyst Derived from Freeze-Dried Ni(OH)2. Nanoscale, 13, 5530-5535. https://doi.org/10.1039/d0nr08034a
|
[6]
|
Tsutsumi, M., Islam, M.S., Karim, M.R., Rabin, N.N., Ohtani, R., Nakamura, M., et al. (2017) Tri-Functional OER, HER and ORR Electrocatalyst Electrodes from in Situ Metal-Nitrogen Co-Doped Oxidized Graphite Rods. Bulletin of the Chemical Society of Japan, 90, 950-954. https://doi.org/10.1246/bcsj.20170102
|
[7]
|
Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O’Keeffe, M., et al. (2008) High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science, 319, 939-943. https://doi.org/10.1126/science.1152516
|
[8]
|
Rieter, W.J., Taylor, K.M.L. and Lin, W. (2007) Surface Modification and Functionalization of Nanoscale Metal-Organic Frameworks for Controlled Release and Luminescence Sensing. Journal of the American Chemical Society, 129, 9852-9853. https://doi.org/10.1021/ja073506r
|
[9]
|
Palaniselvam, T., Biswal, B.P., Banerjee, R. and Kurungot, S. (2013) Zeolitic Imidazolate Framework (ZIF)‐Derived, Hollow‐Core, Nitrogen‐Doped Carbon Nanostructures for Oxygen‐Reduction Reactions in PEFCs. Chemistry—A European Journal, 19, 9335-9342. https://doi.org/10.1002/chem.201300145
|
[10]
|
Liu, X., Dong, J., You, B. and Sun, Y. (2016) Competent Overall Water-Splitting Electrocatalysts Derived from ZIF-67 Grown on Carbon Cloth. RSC Advances, 6, 73336-73342. https://doi.org/10.1039/c6ra17030g
|
[11]
|
Chaikittisilp, W., Torad, N.L., Li, C., Imura, M., Suzuki, N., Ishihara, S., et al. (2014) Synthesis of Nanoporous Carbon-Cobalt‐Oxide Hybrid Electrocatalysts by Thermal Conversion of Metal-Organic Frameworks. Chemistry—A European Journal, 20, 4217-4221. https://doi.org/10.1002/chem.201304404
|
[12]
|
Dou, S., Li, X., Tao, L., Huo, J. and Wang, S. (2016) Cobalt Nanoparticle-Embedded Carbon Nanotube/Porous Carbon Hybrid Derived from MOF-Encapsulated Co3O4 for Oxygen Electrocatalysis. Chemical Communications, 52, 9727-9730. https://doi.org/10.1039/c6cc05244d
|
[13]
|
Wang, H., Zhang, L., Zhang, W., Sun, S. and Yao, S. (2023) Highly Efficient Spatial Three-Level Cop@ZIF-8/PNF Based on Modified Porous NF as Dual Functional Electrocatalyst for Water Splitting. Nanomaterials, 13, Article 1386. https://doi.org/10.3390/nano13081386
|
[14]
|
Gong, C., Li, W., Lei, Y., He, X., Chen, H., Du, X., et al. (2022) Interfacial Engineering of ZIF-67 Derived CoSe/Co(OH)2 Catalysts for Efficient Overall Water Splitting. Composites Part B: Engineering, 236, Article ID: 109823. https://doi.org/10.1016/j.compositesb.2022.109823
|
[15]
|
Li, X., Jiang, Q., Dou, S., Deng, L., Huo, J. and Wang, S. (2016) ZIF-67-Derived Co-Nc@CoP-Nc Nanopolyhedra as an Efficient Bifunctional Oxygen Electrocatalyst. Journal of Materials Chemistry A, 4, 15836-15840. https://doi.org/10.1039/c6ta06434e
|
[16]
|
Howarth, A.J., Liu, Y., Li, P., Li, Z., Wang, T.C., Hupp, J.T., et al. (2016) Chemical, Thermal and Mechanical Stabilities of Metal-Organic Frameworks. Nature Reviews Materials, 1, Article No. 15018. https://doi.org/10.1038/natrevmats.2015.18
|
[17]
|
Lu, X., Liao, P., Wang, J., Wu, J., Chen, X., He, C., et al. (2016) An Alkaline-Stable, Metal Hydroxide Mimicking Metal-Organic Framework for Efficient Electrocatalytic Oxygen Evolution. Journal of the American Chemical Society, 138, 8336-8339. https://doi.org/10.1021/jacs.6b03125
|
[18]
|
Pan, Y., Sun, K., Liu, S., Cao, X., Wu, K., Cheong, W., et al. (2018) Core-Shell ZIF-8@ZIF-67-Derived Cop Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. Journal of the American Chemical Society, 140, 2610-2618. https://doi.org/10.1021/jacs.7b12420
|
[19]
|
Tong, X., Liao, W., Fu, Y., Qian, M., Dai, H., Mei, L., et al. (2022) Ag‐Doped Cop Hollow Nanoboxes as Efficient Water Splitting Electrocatalysts and Antibacterial Materials. ChemistrySelect, 7, e202202343. https://doi.org/10.1002/slct.202202343
|
[20]
|
Afkhami-Ardekani, M., Naimi-Jamal, M.R., Doaee, S. and Rostamnia, S. (2022) Solvent-Free Mechanochemical Preparation of Metal-Organic Framework ZIF-67 Impregnated by Pt Nanoparticles for Water Purification. Catalysts, 13, Article 9. https://doi.org/10.3390/catal13010009
|
[21]
|
Wakamatsu, S., Islam, M.S., Shudo, Y., Fukuda, M., Tagawa, R., Goto, N., et al. (2023) An Efficient Oxygen Evolution Reaction Catalyst Using Ni-Co Layered Double Hydroxide Anchored on Reduced Graphene Oxide. Energy Advances, 2, 1375-1380. https://doi.org/10.1039/d3ya00192j
|
[22]
|
Munawar, T., Bashir, A., Nadeem, M.S., Mukhtar, F., Manzoor, S., Ashiq, M.N., et al. (2023) Electrochemical Performance Evaluation of Bimetallic Sulfide Nanocomposite with Fullerene (CeNdS/C60) for Efficient Oxygen Evolution Reaction (OER). Energy & Fuels, 37, 1370-1386. https://doi.org/10.1021/acs.energyfuels.2c03661
|
[23]
|
Denis, P.A. (2022) Heteroatom Codoped Graphene: The Importance of Nitrogen. ACS Omega, 7, 45935-45961. https://doi.org/10.1021/acsomega.2c06010
|
[24]
|
Chen, H., Luo, Q., Liu, T., Tai, M., Lin, J., Murugadoss, V., et al. (2020) Boosting Multiple Interfaces by Co-Doped Graphene Quantum Dots for High Efficiency and Durability Perovskite Solar Cells. ACS Applied Materials & Interfaces, 12, 13941-13949. https://doi.org/10.1021/acsami.9b23255
|
[25]
|
Nadeem, M.S., Munawar, T., Mukhtar, F., Naveed ur Rahman, M., Riaz, M., Hussain, A., et al. (2021) Hydrothermally Derived Co, Ni Co-Doped ZnO Nanorods; Structural, Optical, and Morphological Study. Optical Materials, 111, Article ID: 110606. https://doi.org/10.1016/j.optmat.2020.110606
|
[26]
|
Sheng, J., Wang, L., Deng, L., Zhang, M., He, H., Zeng, K., et al. (2018) MOF-Templated Fabrication of Hollow Co4N@N-Doped Carbon Porous Nanocages with Superior Catalytic Activity. ACS Applied Materials & Interfaces, 10, 7191-7200. https://doi.org/10.1021/acsami.8b00573
|
[27]
|
Grimaud, A., Diaz-Morales, O., Han, B., Hong, W.T., Lee, Y., Giordano, L., et al. (2017) Activating Lattice Oxygen Redox Reactions in Metal Oxides to Catalyse Oxygen Evolution. Nature Chemistry, 9, 457-465. https://doi.org/10.1038/nchem.2695
|
[28]
|
Golubeva, M.A., Mukhtarova, M., Sadovnikov, A.A. and Maximov, A.L. (2022) Bulk Molybdenum and Tungsten Phosphides for Selective Phenol Production from Guaiacol. ACS Omega, 7, 40586-40595. https://doi.org/10.1021/acsomega.2c06396
|
[29]
|
Wang, X., Pan, Z., Chu, X., Huang, K., Cong, Y., Cao, R., et al. (2019) Atomic‐Scale Insights into Surface Lattice Oxygen Activation at the Spinel/Perovskite Interface of Co3O4/La0.3Sr0.7CoO3. Angewandte Chemie International Edition, 58, 11720-11725. https://doi.org/10.1002/anie.201905543
|