钙钛矿量子点的原位制备及其全息显示屏应用
In-Situ Fabrication of Perovskite Quantum Dots and Their Application in Holographic Displays
DOI: 10.12677/japc.2025.142019, PDF, HTML, XML,   
作者: 郭容慧, 胡津铭*, 张轶楠*:上海理工大学智能科技学院,上海;上海理工大学光子芯片研究院,上海
关键词: 钙钛矿量子点原位制备全息显示Perovskite Quantum Dot In-Situ Fabrication Holographic Display
摘要: 近年来,卤化钙钛矿因其在光电领域中的优异性能在光伏、发光二极管、激光器和光电探测器等前沿领域中有广泛的应用。本文将CsPbI3钙钛矿前驱体与聚丙烯腈聚合物混合后旋涂成膜,100℃下经过不同时间的退火处理,原位生成了钙钛矿量子点薄膜,测试了其荧光强度随时间的变化。结果表明,厚度为1.7 μm的钙钛矿量子点薄膜在120 min的退火时间下,其荧光特性最佳,达到最高荧光强度和最窄半高宽,并验证了其优异的荧光稳定性。在此基础上,将携带“USST”字母信息的全息图输入空间光调制器,将量子点薄膜置于原先用于采集光信号的CCD相机位置进行测试,成功实现了目标信息的成像,验证了钙钛矿量子点薄膜在全息显示方面的应用潜力。本研究利用钙钛矿量子点的光致发光成像代替了传统CCD相机的光电转换过程,为相关领域的进一步研究提供了新思路。
Abstract: In recent years, halide perovskites have demonstrated extensive applications in cutting-edge fields such as photovoltaics, light-emitting diodes, lasers, and photodetectors due to their exceptional optoelectronic properties. In this study, we mixed CsPbI3 perovskite precursor with polyacrylonitrile and spin-coated composite thin film. Through annealing treatments at 100˚C for varying durations, in-situ fabrication of perovskite quantum dot in polymer matrix was achieved, and the fluorescence intensity variations over time were systematically characterized. The results revealed that PQD films with a thickness of 1.7 μm exhibited optimal fluorescence performance after 120 min of annealing, achieving the highest fluorescence intensity and narrowest full width at half maximum, while confirming excellent fluorescence stability. Based on these results, a holographic pattern encoding the letters “USST” was input into a spatial light modulator. The PQD film was then positioned at the location previously occupied by the CCD camera for light signal acquisition. The target information was successfully imaged, confirming the potential of PQD films for holographic display applications. This work replaces the traditional photoelectric conversion process of CCD cameras with photoluminescence imaging of perovskite quantum dots, providing novel pathways for related fields.
文章引用:郭容慧, 胡津铭, 张轶楠. 钙钛矿量子点的原位制备及其全息显示屏应用[J]. 物理化学进展, 2025, 14(2): 201-209. https://doi.org/10.12677/japc.2025.142019

1. 引言

钙钛矿材料因其高效的光电转换效率、可调控的带隙和较高的光吸收系数[1]-[3],已成为当前光电领域的研究热点。钙钛矿量子点作为一种极具潜力的零维荧光材料,因其高光致发光量子产率、窄半高宽、高色纯度及可调发光波长等优异的光电特性[4]-[7],受到了研究者的广泛关注。这些特性使其在多个前沿技术领域得到广泛应用,如太阳能电池[8]-[10]、光电探测器[11]、发光二极管[3] [12]、激光器[13] [14]、防伪标签[15] [16]以及显示技术[17]等。

钙钛矿量子点虽已在多个领域展现出良好的应用前景[18],但其关键参数,包括荧光强度和色纯度,仍需进一步优化以实现更广泛的实际应用[19]。其中,原位制备钙钛矿量子点并精确调控其退火时间以优化其荧光特性是当前研究的重点之一[20]。此外,尽管钙钛矿量子点的光致发光特性已被广泛研究[21],但其在全息显示光路中的应用潜力尚未得到充分探索[22]。因此,深入优化其关键参数并拓展其在新兴技术中的应用,是当前研究的重要方向。

在本研究中,我们成功制备了CsPbI3前驱体/聚丙烯腈复合薄膜,如图1所示。经过100℃退火处理获得了高质量的钙钛矿量子点,系统研究了退火时间对量子点荧光特性的影响规律,结果表明:随着退火时间的延长,量子点尺寸逐渐增大,进而引起荧光峰位和半高宽等参数的变化。经过系统分析,我们确定了实现最佳荧光性能的参数。基于优化后的复合薄膜,创新性地将其应用于全息成像系统,代替传统CCD相机成功实现了衍射图案的信息采集[23]。与传统CCD相比[24],钙钛矿量子点薄膜作为无源器件[25] [26],可通过光致发光原理实现直接的光学显示,避免了复杂的光电转换过程,为全息显示提供了新途径。本研究不仅阐明了退火时间对量子点荧光特性的调控机制,还通过光致发光原理实现了全息显示功能,为钙钛矿量子点在光学成像领域的应用提供了新的技术途径。

Figure 1. Schematic diagram of the fabrication and annealing process for perovskite/polyacrylonitrile composite films

1. 钙钛矿前驱体/聚丙烯腈复合薄膜的制备与退火过程示意图

2. 材料表征

通过荧光光谱仪和紫外–可见分光光度计研究了前驱体薄膜和量子点薄膜的光学特性。如图2(a)所示,CsPbI3量子点薄膜在681 nm处呈现出一个尖锐的发射峰。这一特征峰表明所制备的量子点具有优异的发光性能,其中窄半高宽证实了量子点具有较高的色纯度和良好的尺寸均匀性。为进一步表征材料的光学特性,我们测试了量子点薄膜的吸收光谱。如图2(b)所示,CsPbI3量子点薄膜在572 nm波长处观察到一个明显的吸收峰,这与先前研究报道的CsPbI3量子点特征吸收峰相一致[19]。值得注意的是,荧光发射峰相对于吸收边出现了明显的斯托克斯位移,这一现象证实了量子点中激子复合发光的过程[27] [28]。吸收光谱与荧光光谱的特征峰位以及斯托克斯位移的存在,共同证实了CsPbI3量子点的成功制备[29]

Figure 2. (a) Photoluminescence spectrum of CsPbI3 perovskite quantum dots; (b) Absorption spectrum of CsPbI3 perovskite quantum dots

2. (a) CsPbI3钙钛矿量子点的光致发光光谱;(b) CsPbI3钙钛矿量子点的吸收光谱

X射线衍射图谱揭示了材料在退火前后的晶体结构演变。如图3(a)所示,前驱体薄膜经退火处理后,在14.50˚、21.44˚和28.83˚处出现了三个特征衍射峰,分别对应于𝛼-CsPbI3的(100)、(110)和(200)晶面,证实了钙钛矿晶格结构的成功形成,这些尖锐的衍射峰表明CsPbI3纳米晶具有高度有序的晶体结构[19]。值得注意的是,在20.8˚处观察到的宽衍射峰可归因于聚丙烯腈(PAN)基质的无定形特征。为进一步表征材料的微观特性,我们进行了拉曼光谱测试。如图3(b)所示,材料退火后在59.02 cm1和85.21 cm1处观察到两个特征峰,分别对应于[PbI₆]4八面体的面内弯曲振动和面外摇摆振动模式[30]。拉曼峰的显著增强证实了CsPbI3量子点在PAN基质中的成功合成,同时表明量子点与聚合物基质之间存在强烈的分子间相互作用。

Figure 3. (a) XRD pattern of CsPbI3 perovskite quantum dots; (b) Raman spectrum of CsPbI3 perovskite quantum dots

3. (a) CsPbI3钙钛矿量子点的XRD图;(b) CsPbI3钙钛矿量子点的Raman光谱

3. 材料制备与实验分析

实验所用原料包括高纯度无机前驱体和有机溶剂:碘化铅(PbI2, 99.999%),碘化铯(CsI, 99.999%)和N,N-二甲基甲酰胺(DMF,分析纯,≥99.5%)购自上海阿拉丁试剂有限公司。表面配体正辛胺卤化物(OAI, 99.5%)由西安浴日光能科技有限公司提供,聚合物基质材料聚丙烯腈(PAN, Mw ≈ 150,000)采购自Sigma-Aldrich公司。为确保实验的一致性和可重复性,所有化学试剂均未经进一步纯化处理,直接用于实验。

Figure 4. Size variation of quantum dots under different annealing time

4. 不同退火时间下量子点的尺寸变化

在薄膜制备过程中,我们严格按照CsPbI3量子点的化学计量比,精确称取0.16 mmol CsI、0.16 mmol PbI2、0.04 mmol OAI和0.7 g PAN,将其溶解于5 ml DMF溶剂中,经充分搅拌获得均匀透明的聚合物前驱体溶液[23]。为确保薄膜质量,玻璃基底依次经过去离子水、乙醇、丙酮和异丙醇的超声清洗(KQ-800DE数控超声波清洗器,15 min),氮气吹干后使用BZS250GF-TC型紫外臭氧清洗机处理20 min以增强表面浸润性。随后采用旋涂法制备薄膜,将前驱体溶液滴加至处理后的玻璃基底表面,在1600 rpm转速下旋涂60 s,形成均匀的前驱体/PAN复合薄膜。最后,通过100℃退火处理诱导钙钛矿量子点原位生成,完成薄膜制备。

通过对制备完成的CsPbI3量子点薄膜进行透射电子显微镜(TEM)的表征,证实了钙钛矿量子点生长的过程,如图4所示。随着退火时间的逐渐延长,量子点平均尺寸从9.93 ± 6.66 nm逐渐增大至14.79 ± 11.83 nm,同时结晶度显著提升(量子点的平均粒径不断增大,依次为9.93 nm、10.60 nm、12.08 nm和14.79 nm,误差值依次为6.66 nm、7.03 nm、7.88 nm和11.83 nm)。这一过程符合经典的成核与生长理论[31] [32]:在惰性气体中,前驱体离子随温度升高而扩散,达到过饱和后形成晶核;随后,较小晶核溶解并向较大晶核转移,实现晶体生长。值得注意的是,量子点在聚丙烯腈(PAN)基质中始终保持均匀分布,证实了原位退火生成钙钛矿量子点的可行性。

此外,基于CsPbI3量子点薄膜的光学性能优化需求,退火时间的精确调控至关重要:若时间过短会导致量子点成核密度不足,荧光强度较弱;而时间过长则会引起量子点尺寸过度生长,导致半高宽展宽和色纯度下降,即在优化过程中,需确保荧光强度的同时兼顾色纯度的提升。我们系统分析了荧光强度、峰位和半高宽随退火时间的变化规律。研究表明:CsPbI3量子点的荧光强度呈现先升后降的趋势,而半高宽的变化趋势则与之相反。如图5(b)图6(a)所示。这一现象可从量子点成核–生长动力学进行解释[31] [32]:在退火初期(0~60 min),量子点经历快速成核过程,晶核密度增加,晶体质量显著提升,导致荧光强度增强。此阶段量子点尺寸分布趋于均匀,表现为光谱半高宽逐渐变窄。随着退火时间延长,奥斯特瓦尔德熟化过程主导量子点生长,较小量子点溶解而较大量子点继续生长,虽然量子点密度降低,但由于尺寸分布仍保持相对均匀,荧光强度达到最大值(60~120 min)。然而,当过退火时间过长时(大于120 min),量子点发生显著团聚,尺寸分布范围变宽,导致荧光强度降低和光谱展宽。

Figure 5. (a) PL spectrum variation of quantum dots under different annealing time; (b) PL peak intensity variation of quantum dots under different annealing time

5. (a) 不同退火时间下量子点的PL光谱变化;(b) 不同退火时间下量子点的荧光峰值变化

与此同时,我们观察到CsPbI3量子点的光致发光峰位呈现显著的红移现象,如图6(b)所示。随着退火时间从零延长至150 min,量子点的平均尺寸逐渐增大,导致发射峰位置从646 nm逐步红移至675 nm。这一现象可由量子限域效应合理解释[33]-[35]:当量子点尺寸远小于其激子玻尔半径时,载流子的运动受到强量子限域效应的约束,导致带隙展宽,表现为较短波长的光致发光。随着量子点尺寸增大,量子限域效应逐渐减弱,带隙宽度降低,引起发射波长红移。当量子点尺寸接近或超过其激子玻尔半径时,量子限域效应显著减弱,载流子运动逐渐表现出类似体材料的特性,带隙宽度趋于稳定。此时,发光光谱峰位基本保持不变(674 ± 2 nm),即使进一步延长退火时间也不会引起显著的红移。这一现象表明,量子点的光学特性存在尺寸阈值效应,当尺寸超过临界值后,其电子结构和光学性质对尺寸的依赖性显著降低,光谱红移达到饱和状态。基于上述研究结果,我们确定120 min为最佳退火时间参数,此时量子点具有良好结晶度,同时具备高荧光强度和优异色纯度,能够实现理想的尺寸分布和光学性能。

Figure 6. (a) FWHM variation of quantum dots under different annealing time; (b) PL peak position variation of quantum dots under different annealing time

6. (a) 不同退火时间下量子点的半高宽变化;(b) 不同退火时间下量子点的峰位变化

此外,我们探究了钙钛矿量子点薄膜在极端环境下的荧光稳定性,测试其在空气、去离子水和紫外光照射条件下的荧光性能。如图7(a)图7(c)所示,我们监测了量子点薄膜在不同条件下24小时内的荧光强度变化,结果发现其荧光强度均保持相对稳定。具体来说,在空气中,其荧光强度能够保持初始值的99.2%;在去离子水中,其荧光强度为初始值的98.9%;在紫外光照射下,荧光强度仍能维持在初始值的98.1%。这些数据表明,钙钛矿量子点复合薄膜在极端环境下未出现明显的荧光淬灭或降解现象,具有优异的材料稳定性。

Figure 7. (a) PL intensity variation in air; (b) PL intensity variation in deionized water; (c) PL intensity variation under ultraviolet light

7. (a) 空气中荧光强度变化;(b) 去离子水中荧光强度变化;(c) 紫外光下荧光强度变化

4. 应用与讨论

本研究创新性地将CsPbI3量子点/聚丙烯腈复合薄膜应用于全息成像领域。量子点薄膜与传统CCD器件在成像原理上存在本质差异,CCD是基于光电效应和数字重建的成像机制来实现图像采集[36]-[38]:首先,其感光单元(像素)将入射光子转换为光生电荷,电荷量与光强呈正比;随后,通过电荷转移和放大电路将模拟信号转换为数字信号;最后,借助傅里叶变换等数字图像处理算法重现全息图信息。相比之下,量子点作为纳米尺度的半导体材料,利用其独特的光致发光特性可直接实现光学成像,无需复杂的光电转换过程。

实验结果表明,1.7 μm厚度的薄膜经120分钟退火后获得最佳荧光性能,即达到最高的荧光强度和最窄半高宽。基于优化后的CsPbI3量子点薄膜,我们采用50 mm × 50 mm × 0.7 mm的大面积玻璃基底进行全息显示实验。为验证量子点薄膜的全息显示性能,我们搭建了基于空间光调制器(SLM)的光学实验系统,如图8所示。首先,通过计算机生成包含“USST”字母的全息图,并加载到SLM上;随后,515 nm激光经SLM调制后形成特定的衍射光场;量子点薄膜吸收515 nm的高能光子后,通过下转换发光的过程在红光波段产生荧光,成功记录并再现了“USST”的全息图像。该结果表明,钙钛矿量子点薄膜与SLM的协同作用可以替代CCD,实现全息图的直接光学记录,为无源显示器件发展提供了新的思路。

Figure 8. Optical setup for holography display by employing CsPbI3 perovskite quantum dot film as CCD replacement

8. CsPbI3钙钛矿量子点薄膜代替CCD实现全息显示的系统光路图

此外,本研究主要基于红光钙钛矿量子点的下转换发光机制实现全息图像的单色显示。若要进一步扩展其彩色显示应用,需要精确设计卤素成分,制备红、绿、蓝三色的钙钛矿量子点材料,实现其量子点薄膜在空间上的依次堆叠,并结合空间复用全息算法,实现其不同颜色全息图像在空间维度上的结合,进而实现彩色显示功能。

5. 结论

本研究通过制备CsPbI3钙钛矿前驱体/聚丙烯腈复合薄膜,系统研究了退火时间对薄膜荧光特性的调控规律,并探索了其荧光强度在极端环境下的稳定性,验证了其在全息显示方面的应用。研究发现,经过120 min的退火处理,钙钛矿量子点薄膜展现出最优异的荧光性能,呈现出最高的荧光强度和最窄半高宽,且在空气、去离子水和紫外光照射24小时下,仍保持优异的荧光稳定性。基于优化后的薄膜,利用量子点的光致发光特性替代传统CCD的光电转换过程,成功实现了“USST”红色字母全息图的高效显示,验证了其在光信号捕捉与成像中的应用可行性。该研究不仅为钙钛矿量子点在全息显示领域的应用提供了新的技术方案,也为光学器件的性能优化奠定了理论基础。

NOTES

*通讯作者。

参考文献

[1] Yang, W.S., Park, B., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U., et al. (2017) Iodide Management in Formamidinium-Lead-Halide-Based Perovskite Layers for Efficient Solar Cells. Science, 356, 1376-1379.
https://doi.org/10.1126/science.aan2301
[2] Jung, H.S., Han, G.S., Park, N. and Ko, M.J. (2019) Flexible Perovskite Solar Cells. Joule, 3, 1850-1880.
https://doi.org/10.1016/j.joule.2019.07.023
[3] Stranks, S.D. and Snaith, H.J. (2015) Metal-Halide Perovskites for Photovoltaic and Light-Emitting Devices. Nature Nanotechnology, 10, 391-402.
https://doi.org/10.1038/nnano.2015.90
[4] Protesescu, L., Yakunin, S., Bodnarchuk, M.I., Krieg, F., Caputo, R., Hendon, C.H., et al. (2015) Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters, 15, 3692-3696.
https://doi.org/10.1021/nl5048779
[5] Zhang, F., Zhong, H., Chen, C., Wu, X., Hu, X., Huang, H., et al. (2015) Brightly Luminescent and Color-Tunable Colloidal Ch3Nh3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano, 9, 4533-4542.
https://doi.org/10.1021/acsnano.5b01154
[6] Song, J., Li, J., Li, X., Xu, L., Dong, Y. and Zeng, H. (2015) Quantum Dot Light‐emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3). Advanced Materials, 27, 7162-7167.
https://doi.org/10.1002/adma.201502567
[7] Sutton, R.J., Eperon, G.E., Miranda, L., Parrott, E.S., Kamino, B.A., Patel, J.B., et al. (2016) Bandgap‐Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells. Advanced Energy Materials, 6, Article ID: 1502458.
https://doi.org/10.1002/aenm.201502458
[8] Swarnkar, A., Marshall, A.R., Sanehira, E.M., Chernomordik, B.D., Moore, D.T., Christians, J.A., et al. (2016) Quantum Dot-Induced Phase Stabilization of Α-CsPbI3 Perovskite for High-Efficiency Photovoltaics. Science, 354, 92-95.
https://doi.org/10.1126/science.aag2700
[9] Kulbak, M., Gupta, S., Kedem, N., Levine, I., Bendikov, T., Hodes, G., et al. (2015) Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. The Journal of Physical Chemistry Letters, 7, 167-172.
https://doi.org/10.1021/acs.jpclett.5b02597
[10] Tsai, H., Nie, W., Blancon, J., Stoumpos, C.C., Asadpour, R., Harutyunyan, B., et al. (2016) High-Efficiency Two-Dimensional Ruddlesden-Popper Perovskite Solar Cells. Nature, 536, 312-316.
https://doi.org/10.1038/nature18306
[11] Peng, M., Wang, Y., Shen, Q., Xie, X., Zheng, H., Ma, W., et al. (2018) High-Performance Flexible and Broadband Photodetectors Based on PbS Quantum Dots/ZnO Nanoparticles Heterostructure. Science China Materials, 62, 225-235.
https://doi.org/10.1007/s40843-018-9311-9
[12] Shirasaki, Y., Supran, G.J., Bawendi, M.G. and Bulović, V. (2012) Emergence of Colloidal Quantum-Dot Light-Emitting Technologies. Nature Photonics, 7, 13-23.
https://doi.org/10.1038/nphoton.2012.328
[13] Zhu, H., Fu, Y., Meng, F., Wu, X., Gong, Z., Ding, Q., et al. (2015) Lead Halide Perovskite Nanowire Lasers with Low Lasing Thresholds and High Quality Factors. Nature Materials, 14, 636-642.
https://doi.org/10.1038/nmat4271
[14] Yakunin, S., Protesescu, L., Krieg, F., Bodnarchuk, M.I., Nedelcu, G., Humer, M., et al. (2015) Low-Threshold Amplified Spontaneous Emission and Lasing from Colloidal Nanocrystals of Caesium Lead Halide Perovskites. Nature Communications, 6, Article NO. 8056.
https://doi.org/10.1038/ncomms9056
[15] Hao, X., Wang, T., Zhu, X., Hou, L., Nie, L., Liu, H., et al. (2024) Color-Tunable CsCdCl3 Perovskite for Low-Temperature Anticounterfeiting and Information Storage Applications. Inorganic Chemistry, 63, 16047-16055.
https://doi.org/10.1021/acs.inorgchem.4c02629
[16] Zhang, F., Liang, W., Wang, L., Ma, Z., Ji, X., Wang, M., et al. (2021) Moisture‐Induced Reversible Phase Conversion of Cesium Copper Iodine Nanocrystals Enables Advanced Anti‐Counterfeiting. Advanced Functional Materials, 31, Article ID: 2105771.
https://doi.org/10.1002/adfm.202105771
[17] Swarnkar, A., Chulliyil, R., Ravi, V.K., Irfanullah, M., Chowdhury, A. and Nag, A. (2015) Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence Beyond Traditional Quantum Dots. Angewandte Chemie, 127, 15644-15648.
https://doi.org/10.1002/ange.201508276
[18] Akkerman, Q.A., Rainò, G., Kovalenko, M.V. and Manna, L. (2018) Genesis, Challenges and Opportunities for Colloidal Lead Halide Perovskite Nanocrystals. Nature Materials, 17, 394-405.
https://doi.org/10.1038/s41563-018-0018-4
[19] Kim, Y.D., Kim, H., Cho, Y., Ryoo, J.H., Park, C., Kim, P., et al. (2015) Bright Visible Light Emission from Graphene. Nature Nanotechnology, 10, 676-681.
https://doi.org/10.1038/nnano.2015.118
[20] Li, J., Xu, L., Wang, T., Song, J., Chen, J., Xue, J., et al. (2016) 50‐Fold EQE Improvement up to 6.27% of Solution‐processed All‐Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control. Advanced Materials, 29, Article ID: 1603885.
https://doi.org/10.1002/adma.201603885
[21] Wang, Y., Li, X., Song, J., Xiao, L., Zeng, H. and Sun, H. (2015) All‐Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics. Advanced Materials, 27, 7101-7108.
https://doi.org/10.1002/adma.201503573
[22] Kovalenko, M.V., Protesescu, L. and Bodnarchuk, M.I. (2017) Properties and Potential Optoelectronic Applications of Lead Halide Perovskite Nanocrystals. Science, 358, 745-750.
https://doi.org/10.1126/science.aam7093
[23] Janesick, J.R. (2001) Scientific Charge-Coupled Devices. SPIE Press, 83.
[24] Maier, S.A. (2007) Plasmonics: Fundamentals and Applications. Springer.
[25] Zheludev, N.I. and Kivshar, Y.S. (2012) From Metamaterials to Metadevices. Nature Materials, 11, 917-924.
https://doi.org/10.1038/nmat3431
[26] Efros, A.L. and Rosen, M. (2000) The Electronic Structure of Semiconductor Nanocrystals. Annual Review of Materials Science, 30, 475-521.
https://doi.org/10.1146/annurev.matsci.30.1.475
[27] Klimov, V.I. (2007) Spectral and Dynamical Properties of Multiexcitons in Semiconductor Nanocrystals. Annual Review of Physical Chemistry, 58, 635-673.
https://doi.org/10.1146/annurev.physchem.58.032806.104537
[28] Zhang, X., Lin, H., Huang, H., Reckmeier, C., Zhang, Y., Choy, W.C.H., et al. (2016) Enhancing the Brightness of Cesium Lead Halide Perovskite Nanocrystal Based Green Light-Emitting Devices through the Interface Engineering with Perfluorinated Ionomer. Nano Letters, 16, 1415-1420.
https://doi.org/10.1021/acs.nanolett.5b04959
[29] Huang, H., Lin, H., Kershaw, S.V., Susha, A.S., Choy, W.C.H. and Rogach, A.L. (2016) Polyhedral Oligomeric Silsesquioxane Enhances the Brightness of Perovskite Nanocrystal-Based Green Light-Emitting Devices. The Journal of Physical Chemistry Letters, 7, 4398-4404.
https://doi.org/10.1021/acs.jpclett.6b02224
[30] LaMer, V.K. and Dinegar, R.H. (1950) Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. Journal of the American Chemical Society, 72, 4847-4854.
https://doi.org/10.1021/ja01167a001
[31] Venables, J.A., Spiller, G.D.T. and Hanbucken, M. (1984) Nucleation and Growth of Thin Films. Reports on Progress in Physics, 47, 399-459.
https://doi.org/10.1088/0034-4885/47/4/002
[32] Brus, L.E. (1984) Electron-Electron and Electron-Hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State. The Journal of Chemical Physics, 80, 4403-4409.
https://doi.org/10.1063/1.447218
[33] Alivisatos, A.P. (1996) Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science, 271, 933-937.
https://doi.org/10.1126/science.271.5251.933
[34] Ekimov, A.I. and Onushchenko, A.A. (2023) Quantum Size Effect in Three-Dimensional Microscopic Semiconductor Crystals. JETP Letters, 118, S15-S17.
https://doi.org/10.1134/s0021364023130040
[35] Janesick, J.R., Elliott, T., Collins, S., Blouke, M.M. and Freeman, J. (1987) Scientific Charge-Coupled Devices. Optical Engineering, 26, 692-714.
https://doi.org/10.1117/12.7974139
[36] Kreis, T. (2006) Handbook of Holographic Interferometry: Optical and Digital Methods. John Wiley & Sons.
[37] Yaroslavsky, L. (2013) Digital Holography and Digital Image Processing: Principles, Methods, Algorithms. Springer Science & Business Media.
[38] Cuche, E., Bevilacqua, F. and Depeursinge, C. (1999) Digital Holography for Quantitative Phase-Contrast Imaging. Optics Letters, 24, 291-293.
https://doi.org/10.1364/ol.24.000291