[1]
|
Xia, Y., He, Y., Zhang, F., Liu, Y. and Leng, J. (2020) A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications. Advanced Materials, 33, Article 2000713. https://doi.org/10.1002/adma.202000713
|
[2]
|
Ariano, P., Accardo, D., Lombardi, M., Bocchini, S., Draghi, L., De Nardo, L., et al. (2015) Polymeric Materials as Artificial Muscles: An Overview. Journal of Applied Biomaterials & Functional Materials, 13, 1-9. https://doi.org/10.5301/jabfm.5000184
|
[3]
|
Yan, S., Zhang, F., Luo, L., Wang, L., Liu, Y. and Leng, J. (2023) Shape Memory Polymer Composites: 4D Printing, Smart Structures, and Applications. Research, 6, Article ID: 0234. https://doi.org/10.34133/research.0234
|
[4]
|
Wang, L., Zhang, F., Liu, Y. and Leng, J. (2022) Shape Memory Polymer Fibers: Materials, Structures, and Applications. Advanced Fiber Materials, 4, 5-23. https://doi.org/10.1007/s42765-021-00073-z
|
[5]
|
Liu, Y., Gall, K., Dunn, M.L., Greenberg, A.R. and Diani, J. (2006) Thermomechanics of Shape Memory Polymers: Uniaxial Experiments and Constitutive Modeling. International Journal of Plasticity, 22, 279-313. https://doi.org/10.1016/j.ijplas.2005.03.004
|
[6]
|
Hu, J., Zhu, Y., Huang, H. and Lu, J. (2012) Recent Advances in Shape-Memory Polymers: Structure, Mechanism, Functionality, Modeling and Applications. Progress in Polymer Science, 37, 1720-1763. https://doi.org/10.1016/j.progpolymsci.2012.06.001
|
[7]
|
Lendlein, A., Jiang, H., Jünger, O. and Langer, R. (2005) Light-Induced Shape-Memory Polymers. Nature, 434, 879-882. https://doi.org/10.1038/nature03496
|
[8]
|
Wang, W., Shen, D., Li, X., Yao, Y., Lin, J., Wang, A., et al. (2018) Light‐Driven Shape‐Memory Porous Films with Precisely Controlled Dimensions. Angewandte Chemie International Edition, 57, 2139-2143. https://doi.org/10.1002/anie.201712100
|
[9]
|
Liu, X., Wu, J., Tang, Z., Wu, J., Huang, Z., Yin, X., et al. (2023) Correction to “Photoreversible Bond-Based Shape Memory Polyurethanes with Light-Induced Self-Healing, Recyclability, and 3D Fluorescence Encryption”. ACS Applied Materials & Interfaces, 15, 53174-53175. https://doi.org/10.1021/acsami.3c14883
|
[10]
|
Zare, M., Prabhakaran, M.P., Parvin, N. and Ramakrishna, S. (2019) Thermally-Induced Two-Way Shape Memory Polymers: Mechanisms, Structures, and Applications. Chemical Engineering Journal, 374, 706-720. https://doi.org/10.1016/j.cej.2019.05.167
|
[11]
|
Li, M., Chen, K., Zhang, D., Ye, Z., Yang, Z., Wang, Q., et al. (2024) Wet‐Spinning Carbon Nanotube/Shape Memory Polymer Composite Fibers with High Actuation Stress and Predesigned Shape Change. Advanced Science, 11, Article 2404913. https://doi.org/10.1002/advs.202404913
|
[12]
|
Wan, X., Zhang, F., Liu, Y. and Leng, J. (2019) CNT-Based Electro-Responsive Shape Memory Functionalized 3D Printed Nanocomposites for Liquid Sensors. Carbon, 155, 77-87. https://doi.org/10.1016/j.carbon.2019.08.047
|
[13]
|
Wei, H., Cauchy, X., Navas, I.O., Abderrafai, Y., Chizari, K., Sundararaj, U., et al. (2019) Direct 3D Printing of Hybrid Nanofiber-Based Nanocomposites for Highly Conductive and Shape Memory Applications. ACS Applied Materials & Interfaces, 11, 24523-24532. https://doi.org/10.1021/acsami.9b04245
|
[14]
|
Guo, F., Zheng, X., Liang, C., Jiang, Y., Xu, Z., Jiao, Z., et al. (2019) Millisecond Response of Shape Memory Polymer Nanocomposite Aerogel Powered by Stretchable Graphene Framework. ACS Nano, 13, 5549-5558. https://doi.org/10.1021/acsnano.9b00428
|
[15]
|
Li, C., Qiu, L., Zhang, B., Li, D. and Liu, C. (2015) Robust Vacuum‐/Air‐Dried Graphene Aerogels and Fast Recoverable Shape‐Memory Hybrid Foams. Advanced Materials, 28, 1510-1516. https://doi.org/10.1002/adma.201504317
|
[16]
|
Liu, W., Chen, H., Ge, M., Ni, Q. and Gao, Q. (2018) Electroactive Shape Memory Composites with TiO2 Whiskers for Switching an Electrical Circuit. Materials & Design, 143, 196-203. https://doi.org/10.1016/j.matdes.2018.02.005
|
[17]
|
Leng, J.S., Huang, W.M., Lan, X., Liu, Y.J. and Du, S.Y. (2008) Significantly Reducing Electrical Resistivity by Forming Conductive Ni Chains in a Polyurethane Shape-Memory Polymer/Carbon-Black Composite. Applied Physics Letters, 92, Article 204101. https://doi.org/10.1063/1.2931049
|
[18]
|
Zhang, F., Xia, Y., Wang, L., Liu, L., Liu, Y. and Leng, J. (2018) Conductive Shape Memory Microfiber Membranes with Core-Shell Structures and Electroactive Performance. ACS Applied Materials & Interfaces, 10, 35526-35532. https://doi.org/10.1021/acsami.8b12743
|
[19]
|
Gong, T., Li, W., Chen, H., Wang, L., Shao, S. and Zhou, S. (2012) Remotely Actuated Shape Memory Effect of Electrospun Composite Nanofibers. Acta Biomaterialia, 8, 1248-1259. https://doi.org/10.1016/j.actbio.2011.12.006
|
[20]
|
Cai, Y., Jiang, J., Zheng, B. and Xie, M. (2012) Synthesis and Properties of Magnetic Sensitive Shape Memory Fe3O4/Poly(ε‐Caprolactone)‐Polyurethane Nanocomposites. Journal of Applied Polymer Science, 127, 49-56. https://doi.org/10.1002/app.36849
|
[21]
|
李金绒, 赵坤, 李龙, 杨光, 丁珊, 龚韬, 周绍兵, 傅荣,等. 磁致型聚己内酯/纳米四氧化三铁形状记忆复合电纺纤维的制备与表征[J]. 化工新型材料, 2014, 42(7): 169-171.
|
[22]
|
Zeng, M., Or, S.W. and Chan, H.L.W. (2010) Dc-and Ac-Magnetic Field-Induced Strain Effects in Ferromagnetic Shape Memory Composites of Ni-Mn-Ga Single Crystal and Polyurethane Polymer. Journal of Applied Physics, 107, 09A942. https://doi.org/10.1063/1.3357408
|
[23]
|
Leng, J.S., Lan, X., Liu, Y.J., Du, S.Y., Huang, W.M., Liu, N., et al. (2008) Electrical Conductivity of Thermoresponsive Shape-Memory Polymer with Embedded Micron Sized Ni Powder Chains. Applied Physics Letters, 92, Article 014104. https://doi.org/10.1063/1.2829388
|
[24]
|
Golbang, A. and Kokabi, M. (2010) Magnetic Field Actuation of Shape Memory Nanocomposites. Advanced Materials Research, 123, 999-1002. https://doi.org/10.4028/www.scientific.net/amr.123-125.999
|
[25]
|
Testa, P., Style, R.W., Cui, J., Donnelly, C., Borisova, E., Derlet, P.M., et al. (2019) Magnetically Addressable Shape‐memory and Stiffening in a Composite Elastomer. Advanced Materials, 31, Article 1900561. https://doi.org/10.1002/adma.201900561
|
[26]
|
Zhang, H. and Zhao, Y. (2013) Polymers with Dual Light-Triggered Functions of Shape Memory and Healing Using Gold Nanoparticles. ACS Applied Materials & Interfaces, 5, 13069-13075. https://doi.org/10.1021/am404087q
|
[27]
|
Herath, H.M.C.M., Epaarachchi, J.A., Islam, M.M., Al-Azzawi, W., Leng, J. and Zhang, F. (2018) Structural Performance and Photothermal Recovery of Carbon Fibre Reinforced Shape Memory Polymer. Composites Science and Technology, 167, 206-214. https://doi.org/10.1016/j.compscitech.2018.07.042
|
[28]
|
Li, G., Li, Z., Min, Y., Chen, S., Han, R. and Zhao, Z. (2023) 3D‐Printed Piezoelectric Scaffolds with Shape Memory Polymer for Bone Regeneration. Small, 19, Article 2302927. https://doi.org/10.1002/smll.202302927
|
[29]
|
Zhang, F., Zhou, T., Liu, Y. and Leng, J. (2015) Microwave Synthesis and Actuation of Shape Memory Polycaprolactone Foams with High Speed. Scientific Reports, 5, Article No. 11152. https://doi.org/10.1038/srep11152
|
[30]
|
An, S., Lim, Y. and Jun, Y.C. (2023) Rapid and Selective Actuation of 3D-Printed Shape-Memory Composites via Microwave Heating. Scientific Reports, 13, Article No. 18179. https://doi.org/10.1038/s41598-023-45519-z
|
[31]
|
Yu, K., Liu, Y. and Leng, J. (2014) Shape Memory Polymer/CNT Composites and Their Microwave Induced Shape Memory Behaviors. RSC Advances, 4, 2961-2968. https://doi.org/10.1039/c3ra43258k
|
[32]
|
Huang, W.M., Yang, B., An, L., Li, C. and Chan, Y.S. (2005) Water-Driven Programmable Polyurethane Shape Memory Polymer: Demonstration and Mechanism. Applied Physics Letters, 86, Article 114105. https://doi.org/10.1063/1.1880448
|
[33]
|
Yang, G., Liu, X., Tok, A.I.Y. and Lipik, V. (2017) Body Temperature-Responsive Two-Way and Moisture-Responsive One-Way Shape Memory Behaviors of Poly(Ethylene Glycol)-Based Networks. Polymer Chemistry, 8, 3833-3840. https://doi.org/10.1039/c7py00786h
|
[34]
|
Melocchi, A., Inverardi, N., Uboldi, M., Baldi, F., Maroni, A., Pandini, S., et al. (2019) Retentive Device for Intravesical Drug Delivery Based on Water-Induced Shape Memory Response of Poly(Vinyl Alcohol): Design Concept and 4D Printing Feasibility. International Journal of Pharmaceutics, 559, 299-311. https://doi.org/10.1016/j.ijpharm.2019.01.045
|
[35]
|
Zhang, F., Xiong, L., Ai, Y., Liang, Z. and Liang, Q. (2018) Stretchable Multiresponsive Hydrogel with Actuatable, Shape Memory, and Self‐Healing Properties. Advanced Science, 5, Article 1800450. https://doi.org/10.1002/advs.201800450
|
[36]
|
Salvekar, A.V., Huang, W.M., Xiao, R., Wong, Y.S., Venkatraman, S.S., Tay, K.H., et al. (2017) Water-Responsive Shape Recovery Induced Buckling in Biodegradable Photo-Cross-Linked Poly(Ethylene Glycol) (PEG) Hydrogel. Accounts of Chemical Research, 50, 141-150. https://doi.org/10.1021/acs.accounts.6b00539
|
[37]
|
Kang, Y., Walish, J.J., Gorishnyy, T. and Thomas, E.L. (2007) Broad-Wavelength-Range Chemically Tunable Block-Copolymer Photonic Gels. Nature Materials, 6, 957-960. https://doi.org/10.1038/nmat2032
|
[38]
|
Chen, H., Li, Y., Liu, Y., Gong, T., Wang, L. and Zhou, S. (2014) Highly PH-Sensitive Polyurethane Exhibiting Shape Memory and Drug Release. Polym. Chem., 5, 5168-5174. https://doi.org/10.1039/c4py00474d
|
[39]
|
Li, Y., Chen, H., Liu, D., Wang, W., Liu, Y. and Zhou, S. (2015) PH-Responsive Shape Memory Poly(Ethylene Glycol)-Poly(ε-Caprolactone)-Based Polyurethane/Cellulose Nanocrystals Nanocomposite. ACS Applied Materials & Interfaces, 7, 12988-12999. https://doi.org/10.1021/acsami.5b02940
|
[40]
|
Huang, L., Jiang, R., Wu, J., Song, J., Bai, H., Li, B., et al. (2016) Ultrafast Digital Printing toward 4D Shape Changing Materials. Advanced Materials, 29, Article 1605390. https://doi.org/10.1002/adma.201605390
|
[41]
|
Cui, H., Liu, C., Esworthy, T., Huang, Y., Yu, Z., Zhou, X., et al. (2020) 4D Physiologically Adaptable Cardiac Patch: A 4-Month in Vivo Study for the Treatment of Myocardial Infarction. Science Advances, 6, Article 2103920. https://doi.org/10.1126/sciadv.abb5067
|
[42]
|
Wang, Y., Cui, H., Wang, Y., Xu, C., Esworthy, T.J., Hann, S.Y., et al. (2021) 4D Printed Cardiac Construct with Aligned Myofibers and Adjustable Curvature for Myocardial Regeneration. ACS Applied Materials & Interfaces, 13, 12746-12758. https://doi.org/10.1021/acsami.0c17610
|
[43]
|
Bao, M., Lou, X., Zhou, Q., Dong, W., Yuan, H. and Zhang, Y. (2014) Electrospun Biomimetic Fibrous Scaffold from Shape Memory Polymer of PDLLA-co-TMC for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 6, 2611-2621. https://doi.org/10.1021/am405101k
|
[44]
|
Wang, C., Yue, H., Liu, J., Zhao, Q., He, Z., Li, K., et al. (2020) Advanced Reconfigurable Scaffolds Fabricated by 4D Printing for Treating Critical-Size Bone Defects of Irregular Shapes. Biofabrication, 12, Article 045025. https://doi.org/10.1088/1758-5090/abab5b
|
[45]
|
You, D., Chen, G., Liu, C., Ye, X., Wang, S., Dong, M., et al. (2021) 4D Printing of Multi‐Responsive Membrane for Accelerated in Vivo Bone Healing via Remote Regulation of Stem Cell Fate. Advanced Functional Materials, 31, Article 2103920. https://doi.org/10.1002/adfm.202103920
|
[46]
|
Miao, S., Cui, H., Nowicki, M., Xia, L., Zhou, X., Lee, S., et al. (2018) Stereolithographic 4D Bioprinting of Multiresponsive Architectures for Neural Engineering. Advanced Biosystems, 2, Article 1800101. https://doi.org/10.1002/adbi.201800101
|
[47]
|
Fang, J., Hsu, H., Hsu, R., Peng, C., Lu, Y., Chen, Y., et al. (2020) 4D Printing of Stretchable Nanocookie@Conduit Material Hosting Biocues and Magnetoelectric Stimulation for Neurite Sprouting. NPG Asia Materials, 12, Article No. 61. https://doi.org/10.1038/s41427-020-00244-1
|
[48]
|
Wang, J., Xiong, H., Zhu, T., Liu, Y., Pan, H., Fan, C., et al. (2020) Bioinspired Multichannel Nerve Guidance Conduit Based on Shape Memory Nanofibers for Potential Application in Peripheral Nerve Repair. ACS Nano, 14, 12579-12595. https://doi.org/10.1021/acsnano.0c03570
|
[49]
|
Zhao, Q., Wang, J., Cui, H., Chen, H., Wang, Y. and Du, X. (2018) Programmed Shape‐Morphing Scaffolds Enabling Facile 3D Endothelialization. Advanced Functional Materials, 28, Article 1801027. https://doi.org/10.1002/adfm.201801027
|
[50]
|
Kirillova, A., Maxson, R., Stoychev, G., Gomillion, C.T. and Ionov, L. (2017) 4D Biofabrication Using Shape‐Morphing Hydrogels. Advanced Materials, 29, Article 1703443. https://doi.org/10.1002/adma.201703443
|
[51]
|
Zhang, C., Cai, D., Liao, P., Su, J., Deng, H., Vardhanabhuti, B., et al. (2021) 4D Printing of Shape-Memory Polymeric Scaffolds for Adaptive Biomedical Implantation. Acta Biomaterialia, 122, 101-110. https://doi.org/10.1016/j.actbio.2020.12.042
|
[52]
|
Miao, S., Nowicki, M., Cui, H., Lee, S., Zhou, X., Mills, D.K., et al. (2019) 4D Anisotropic Skeletal Muscle Tissue Constructs Fabricated by Staircase Effect Strategy. Biofabrication, 11, Article 035030. https://doi.org/10.1088/1758-5090/ab1d07
|
[53]
|
Constante, G., Apsite, I., Alkhamis, H., Dulle, M., Schwarzer, M., Caspari, A., et al. (2021) 4D Biofabrication Using a Combination of 3D Printing and Melt-Electrowriting of Shape-Morphing Polymers. ACS Applied Materials & Interfaces, 13, 12767-12776. https://doi.org/10.1021/acsami.0c18608
|
[54]
|
Uribe-Gomez, J., Posada-Murcia, A., Shukla, A., Ergin, M., Constante, G., Apsite, I., et al. (2021) Shape-Morphing Fibrous Hydrogel/Elastomer Bilayers Fabricated by a Combination of 3D Printing and Melt Electrowriting for Muscle Tissue Regeneration. ACS Applied Bio Materials, 4, 1720-1730. https://doi.org/10.1021/acsabm.0c01495
|
[55]
|
Wischke, C., Neffe, A.T., Steuer, S. and Lendlein, A. (2009) Amorphous Polymer Networks Combining Three Functionalities-Shape-Memory, Biodegradability, and Drug Release. MRS Proceedings, 1190, Article No. 1134. https://doi.org/10.1557/proc-1190-nn11-34
|
[56]
|
Vakil, A.U., Ramezani, M. and Monroe, M.B.B. (2022) Magnetically Actuated Shape Memory Polymers for On-Demand Drug Delivery. Materials, 15, Article 7279. https://doi.org/10.3390/ma15207279
|
[57]
|
Yuts, Y., McCabe, R., Krell, M., Bohley, M. and Leroux, J. (2025) 4D Printing of Biodegradable Intestinal Drug Delivery Devices with Shape-Memory Effect. International Journal of Pharmaceutics, 669, Article 125051. https://doi.org/10.1016/j.ijpharm.2024.125051
|
[58]
|
Wu, X., Xia, D., Shi, T., Li, B., Wang, D., Liang, C., et al. (2025) Thermo-Responsive Microneedles Patch for Transdermal Drug Delivery via Squeezing in Diabetic Foot Ulcers. Journal of Materials Science & Technology, 205, 299-314. https://doi.org/10.1016/j.jmst.2024.03.068
|
[59]
|
Jang, L.K., Fletcher, G.K., Monroe, M.B.B. and Maitland, D.J. (2020) Biodegradable Shape Memory Polymer Foams with Appropriate Thermal Properties for Hemostatic Applications. Journal of Biomedical Materials Research Part A, 108, 1281-1294. https://doi.org/10.1002/jbm.a.36901
|
[60]
|
Hu, J., Xie, J., Peng, T., Shi, Q., Pan, C., Tan, H., et al. (2024) Fabrication of a MXene-Based Shape-Memory Hydrogel and Its Application in the Wound Repair of Skin. Soft Matter, 20, 4136-4142. https://doi.org/10.1039/d4sm00157e
|
[61]
|
Beaman, H.T., Shepherd, E., Satalin, J., Blair, S., Ramcharran, H., Serinelli, S., et al. (2022) Hemostatic Shape Memory Polymer Foams with Improved Survival in a Lethal Traumatic Hemorrhage Model. Acta Biomaterialia, 137, 112-123. https://doi.org/10.1016/j.actbio.2021.10.005
|
[62]
|
Theocharidis, G., Yuk, H., Roh, H., Wang, L., Mezghani, I., Wu, J., et al. (2022) A Strain-Programmed Patch for the Healing of Diabetic Wounds. Nature Biomedical Engineering, 6, 1118-1133. https://doi.org/10.1038/s41551-022-00905-2
|
[63]
|
Sun, C., Yue, P., Chen, R., Wu, S., Ye, Q., Weng, Y., et al. (2022) Chitin-Glucan Composite Sponge Hemostat with Rapid Shape-Memory from Pleurotus eryngii for Puncture Wound. Carbohydrate Polymers, 291, Article 119553. https://doi.org/10.1016/j.carbpol.2022.119553
|
[64]
|
Liu, T., Liu, J., Zhu, Q., Mu, W., Chen, L., Weng, L., et al. (2025) NIR Responsive Scaffold with Multistep Shape Memory and Photothermal-Chemodynamic Properties for Complex Tissue Defects Repair and Antibacterial Therapy. Biomaterials, 313, Article 122794. https://doi.org/10.1016/j.biomaterials.2024.122794
|
[65]
|
Metzger, M.F., Wilson, T.S., Schumann, D., Matthews, D.L. and Maitland, D.J. (2002) Mechanical Properties of Mechanical Actuator for Treating Ischemic Stroke. Biomedical Microdevices, 4, 89-96. https://doi.org/10.1023/a:1014674912979
|
[66]
|
Maitland, D.J., Metzger, M.F., Schumann, D., Lee, A. and Wilson, T.S. (2002) Photothermal Properties of Shape Memory Polymer Micro‐Actuators for Treating Stroke. Lasers in Surgery and Medicine, 30, 1-11. https://doi.org/10.1002/lsm.10007
|
[67]
|
Small, W., Wilson, T.S., Buckley, P.R., Benett, W.J., Loge, J.M., Hartman, J., et al. (2007) Prototype Fabrication and Preliminary in Vitro Testing of a Shape Memory Endovascular Thrombectomy Device. IEEE Transactions on Biomedical Engineering, 54, 1657-1666. https://doi.org/10.1109/tbme.2007.892921
|
[68]
|
Metcalfe, A., Desfaits, A., Salazkin, I., Yahia, L., Sokolowski, W.M. and Raymond, J. (2003) Cold Hibernated Elastic Memory Foams for Endovascular Interventions. Biomaterials, 24, 491-497. https://doi.org/10.1016/s0142-9612(02)00362-9
|
[69]
|
Hampikian, J.M., Heaton, B.C., Tong, F.C., Zhang, Z. and Wong, C.P. (2006) Mechanical and Radiographic Properties of a Shape Memory Polymer Composite for Intracranial Aneurysm Coils. Materials Science and Engineering: C, 26, 1373-1379. https://doi.org/10.1016/j.msec.2005.08.026
|
[70]
|
Yang, C., Wu, H., Sun, J., Hsiao, H. and Wang, T. (2013) Thermo-Induced Shape-Memory PEG-PCL Copolymer as a Dual-Drug-Eluting Biodegradable Stent. ACS Applied Materials & Interfaces, 5, 10985-10994. https://doi.org/10.1021/am4032295
|
[71]
|
Yakacki, C.M., Shandas, R., Lanning, C., Rech, B., Eckstein, A. and Gall, K. (2007) Unconstrained Recovery Characterization of Shape-Memory Polymer Networks for Cardiovascular Applications. Biomaterials, 28, 2255-2263. https://doi.org/10.1016/j.biomaterials.2007.01.030
|
[72]
|
Shi, S., Cui, M., Sun, F., Zhu, K., Iqbal, M.I., Chen, X., et al. (2021) An Innovative Solvent‐Responsive Coiling-Expan-ding Stent. Advanced Materials, 33, Article 2101005. https://doi.org/10.1002/adma.202101005
|