| [1] | Xia, Y., He, Y., Zhang, F., Liu, Y. and Leng, J. (2020) A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications. Advanced Materials, 33, Article 2000713. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [2] | Ariano, P., Accardo, D., Lombardi, M., Bocchini, S., Draghi, L., De Nardo, L., et al. (2015) Polymeric Materials as Artificial Muscles: An Overview. Journal of Applied Biomaterials & Functional Materials, 13, 1-9. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [3] | Yan, S., Zhang, F., Luo, L., Wang, L., Liu, Y. and Leng, J. (2023) Shape Memory Polymer Composites: 4D Printing, Smart Structures, and Applications. Research, 6, Article ID: 0234. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [4] | Wang, L., Zhang, F., Liu, Y. and Leng, J. (2022) Shape Memory Polymer Fibers: Materials, Structures, and Applications. Advanced Fiber Materials, 4, 5-23. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [5] | Liu, Y., Gall, K., Dunn, M.L., Greenberg, A.R. and Diani, J. (2006) Thermomechanics of Shape Memory Polymers: Uniaxial Experiments and Constitutive Modeling. International Journal of Plasticity, 22, 279-313. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [6] | Hu, J., Zhu, Y., Huang, H. and Lu, J. (2012) Recent Advances in Shape-Memory Polymers: Structure, Mechanism, Functionality, Modeling and Applications. Progress in Polymer Science, 37, 1720-1763. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [7] | Lendlein, A., Jiang, H., Jünger, O. and Langer, R. (2005) Light-Induced Shape-Memory Polymers. Nature, 434, 879-882. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [8] | Wang, W., Shen, D., Li, X., Yao, Y., Lin, J., Wang, A., et al. (2018) Light‐Driven Shape‐Memory Porous Films with Precisely Controlled Dimensions. Angewandte Chemie International Edition, 57, 2139-2143. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [9] | Liu, X., Wu, J., Tang, Z., Wu, J., Huang, Z., Yin, X., et al. (2023) Correction to “Photoreversible Bond-Based Shape Memory Polyurethanes with Light-Induced Self-Healing, Recyclability, and 3D Fluorescence Encryption”. ACS Applied Materials & Interfaces, 15, 53174-53175. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [10] | Zare, M., Prabhakaran, M.P., Parvin, N. and Ramakrishna, S. (2019) Thermally-Induced Two-Way Shape Memory Polymers: Mechanisms, Structures, and Applications. Chemical Engineering Journal, 374, 706-720. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [11] | Li, M., Chen, K., Zhang, D., Ye, Z., Yang, Z., Wang, Q., et al. (2024) Wet‐Spinning Carbon Nanotube/Shape Memory Polymer Composite Fibers with High Actuation Stress and Predesigned Shape Change. Advanced Science, 11, Article 2404913. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [12] | Wan, X., Zhang, F., Liu, Y. and Leng, J. (2019) CNT-Based Electro-Responsive Shape Memory Functionalized 3D Printed Nanocomposites for Liquid Sensors. Carbon, 155, 77-87. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [13] | Wei, H., Cauchy, X., Navas, I.O., Abderrafai, Y., Chizari, K., Sundararaj, U., et al. (2019) Direct 3D Printing of Hybrid Nanofiber-Based Nanocomposites for Highly Conductive and Shape Memory Applications. ACS Applied Materials & Interfaces, 11, 24523-24532. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [14] | Guo, F., Zheng, X., Liang, C., Jiang, Y., Xu, Z., Jiao, Z., et al. (2019) Millisecond Response of Shape Memory Polymer Nanocomposite Aerogel Powered by Stretchable Graphene Framework. ACS Nano, 13, 5549-5558. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [15] | Li, C., Qiu, L., Zhang, B., Li, D. and Liu, C. (2015) Robust Vacuum‐/Air‐Dried Graphene Aerogels and Fast Recoverable Shape‐Memory Hybrid Foams. Advanced Materials, 28, 1510-1516. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [16] | Liu, W., Chen, H., Ge, M., Ni, Q. and Gao, Q. (2018) Electroactive Shape Memory Composites with TiO2 Whiskers for Switching an Electrical Circuit. Materials & Design, 143, 196-203. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [17] | Leng, J.S., Huang, W.M., Lan, X., Liu, Y.J. and Du, S.Y. (2008) Significantly Reducing Electrical Resistivity by Forming Conductive Ni Chains in a Polyurethane Shape-Memory Polymer/Carbon-Black Composite. Applied Physics Letters, 92, Article 204101. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [18] | Zhang, F., Xia, Y., Wang, L., Liu, L., Liu, Y. and Leng, J. (2018) Conductive Shape Memory Microfiber Membranes with Core-Shell Structures and Electroactive Performance. ACS Applied Materials & Interfaces, 10, 35526-35532. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [19] | Gong, T., Li, W., Chen, H., Wang, L., Shao, S. and Zhou, S. (2012) Remotely Actuated Shape Memory Effect of Electrospun Composite Nanofibers. Acta Biomaterialia, 8, 1248-1259. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [20] | Cai, Y., Jiang, J., Zheng, B. and Xie, M. (2012) Synthesis and Properties of Magnetic Sensitive Shape Memory Fe3O4/Poly(ε‐Caprolactone)‐Polyurethane Nanocomposites. Journal of Applied Polymer Science, 127, 49-56. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [21] | 李金绒, 赵坤, 李龙, 杨光, 丁珊, 龚韬, 周绍兵, 傅荣,等. 磁致型聚己内酯/纳米四氧化三铁形状记忆复合电纺纤维的制备与表征[J]. 化工新型材料, 2014, 42(7): 169-171. | 
                     
                                
                                    
                                        | [22] | Zeng, M., Or, S.W. and Chan, H.L.W. (2010) Dc-and Ac-Magnetic Field-Induced Strain Effects in Ferromagnetic Shape Memory Composites of Ni-Mn-Ga Single Crystal and Polyurethane Polymer. Journal of Applied Physics, 107, 09A942. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [23] | Leng, J.S., Lan, X., Liu, Y.J., Du, S.Y., Huang, W.M., Liu, N., et al. (2008) Electrical Conductivity of Thermoresponsive Shape-Memory Polymer with Embedded Micron Sized Ni Powder Chains. Applied Physics Letters, 92, Article 014104. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [24] | Golbang, A. and Kokabi, M. (2010) Magnetic Field Actuation of Shape Memory Nanocomposites. Advanced Materials Research, 123, 999-1002. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [25] | Testa, P., Style, R.W., Cui, J., Donnelly, C., Borisova, E., Derlet, P.M., et al. (2019) Magnetically Addressable Shape‐memory and Stiffening in a Composite Elastomer. Advanced Materials, 31, Article 1900561. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [26] | Zhang, H. and Zhao, Y. (2013) Polymers with Dual Light-Triggered Functions of Shape Memory and Healing Using Gold Nanoparticles. ACS Applied Materials & Interfaces, 5, 13069-13075. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [27] | Herath, H.M.C.M., Epaarachchi, J.A., Islam, M.M., Al-Azzawi, W., Leng, J. and Zhang, F. (2018) Structural Performance and Photothermal Recovery of Carbon Fibre Reinforced Shape Memory Polymer. Composites Science and Technology, 167, 206-214. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [28] | Li, G., Li, Z., Min, Y., Chen, S., Han, R. and Zhao, Z. (2023) 3D‐Printed Piezoelectric Scaffolds with Shape Memory Polymer for Bone Regeneration. Small, 19, Article 2302927. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [29] | Zhang, F., Zhou, T., Liu, Y. and Leng, J. (2015) Microwave Synthesis and Actuation of Shape Memory Polycaprolactone Foams with High Speed. Scientific Reports, 5, Article No. 11152. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [30] | An, S., Lim, Y. and Jun, Y.C. (2023) Rapid and Selective Actuation of 3D-Printed Shape-Memory Composites via Microwave Heating. Scientific Reports, 13, Article No. 18179. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [31] | Yu, K., Liu, Y. and Leng, J. (2014) Shape Memory Polymer/CNT Composites and Their Microwave Induced Shape Memory Behaviors. RSC Advances, 4, 2961-2968. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [32] | Huang, W.M., Yang, B., An, L., Li, C. and Chan, Y.S. (2005) Water-Driven Programmable Polyurethane Shape Memory Polymer: Demonstration and Mechanism. Applied Physics Letters, 86, Article 114105. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [33] | Yang, G., Liu, X., Tok, A.I.Y. and Lipik, V. (2017) Body Temperature-Responsive Two-Way and Moisture-Responsive One-Way Shape Memory Behaviors of Poly(Ethylene Glycol)-Based Networks. Polymer Chemistry, 8, 3833-3840. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [34] | Melocchi, A., Inverardi, N., Uboldi, M., Baldi, F., Maroni, A., Pandini, S., et al. (2019) Retentive Device for Intravesical Drug Delivery Based on Water-Induced Shape Memory Response of Poly(Vinyl Alcohol): Design Concept and 4D Printing Feasibility. International Journal of Pharmaceutics, 559, 299-311. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [35] | Zhang, F., Xiong, L., Ai, Y., Liang, Z. and Liang, Q. (2018) Stretchable Multiresponsive Hydrogel with Actuatable, Shape Memory, and Self‐Healing Properties. Advanced Science, 5, Article 1800450. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [36] | Salvekar, A.V., Huang, W.M., Xiao, R., Wong, Y.S., Venkatraman, S.S., Tay, K.H., et al. (2017) Water-Responsive Shape Recovery Induced Buckling in Biodegradable Photo-Cross-Linked Poly(Ethylene Glycol) (PEG) Hydrogel. Accounts of Chemical Research, 50, 141-150. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [37] | Kang, Y., Walish, J.J., Gorishnyy, T. and Thomas, E.L. (2007) Broad-Wavelength-Range Chemically Tunable Block-Copolymer Photonic Gels. Nature Materials, 6, 957-960. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [38] | Chen, H., Li, Y., Liu, Y., Gong, T., Wang, L. and Zhou, S. (2014) Highly PH-Sensitive Polyurethane Exhibiting Shape Memory and Drug Release. Polym. Chem., 5, 5168-5174. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [39] | Li, Y., Chen, H., Liu, D., Wang, W., Liu, Y. and Zhou, S. (2015) PH-Responsive Shape Memory Poly(Ethylene Glycol)-Poly(ε-Caprolactone)-Based Polyurethane/Cellulose Nanocrystals Nanocomposite. ACS Applied Materials & Interfaces, 7, 12988-12999. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [40] | Huang, L., Jiang, R., Wu, J., Song, J., Bai, H., Li, B., et al. (2016) Ultrafast Digital Printing toward 4D Shape Changing Materials. Advanced Materials, 29, Article 1605390. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [41] | Cui, H., Liu, C., Esworthy, T., Huang, Y., Yu, Z., Zhou, X., et al. (2020) 4D Physiologically Adaptable Cardiac Patch: A 4-Month in Vivo Study for the Treatment of Myocardial Infarction. Science Advances, 6, Article 2103920. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [42] | Wang, Y., Cui, H., Wang, Y., Xu, C., Esworthy, T.J., Hann, S.Y., et al. (2021) 4D Printed Cardiac Construct with Aligned Myofibers and Adjustable Curvature for Myocardial Regeneration. ACS Applied Materials & Interfaces, 13, 12746-12758. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [43] | Bao, M., Lou, X., Zhou, Q., Dong, W., Yuan, H. and Zhang, Y. (2014) Electrospun Biomimetic Fibrous Scaffold from Shape Memory Polymer of PDLLA-co-TMC for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 6, 2611-2621. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [44] | Wang, C., Yue, H., Liu, J., Zhao, Q., He, Z., Li, K., et al. (2020) Advanced Reconfigurable Scaffolds Fabricated by 4D Printing for Treating Critical-Size Bone Defects of Irregular Shapes. Biofabrication, 12, Article 045025. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [45] | You, D., Chen, G., Liu, C., Ye, X., Wang, S., Dong, M., et al. (2021) 4D Printing of Multi‐Responsive Membrane for Accelerated in Vivo Bone Healing via Remote Regulation of Stem Cell Fate. Advanced Functional Materials, 31, Article 2103920. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [46] | Miao, S., Cui, H., Nowicki, M., Xia, L., Zhou, X., Lee, S., et al. (2018) Stereolithographic 4D Bioprinting of Multiresponsive Architectures for Neural Engineering. Advanced Biosystems, 2, Article 1800101. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [47] | Fang, J., Hsu, H., Hsu, R., Peng, C., Lu, Y., Chen, Y., et al. (2020) 4D Printing of Stretchable Nanocookie@Conduit Material Hosting Biocues and Magnetoelectric Stimulation for Neurite Sprouting. NPG Asia Materials, 12, Article No. 61. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [48] | Wang, J., Xiong, H., Zhu, T., Liu, Y., Pan, H., Fan, C., et al. (2020) Bioinspired Multichannel Nerve Guidance Conduit Based on Shape Memory Nanofibers for Potential Application in Peripheral Nerve Repair. ACS Nano, 14, 12579-12595. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [49] | Zhao, Q., Wang, J., Cui, H., Chen, H., Wang, Y. and Du, X. (2018) Programmed Shape‐Morphing Scaffolds Enabling Facile 3D Endothelialization. Advanced Functional Materials, 28, Article 1801027. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [50] | Kirillova, A., Maxson, R., Stoychev, G., Gomillion, C.T. and Ionov, L. (2017) 4D Biofabrication Using Shape‐Morphing Hydrogels. Advanced Materials, 29, Article 1703443. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [51] | Zhang, C., Cai, D., Liao, P., Su, J., Deng, H., Vardhanabhuti, B., et al. (2021) 4D Printing of Shape-Memory Polymeric Scaffolds for Adaptive Biomedical Implantation. Acta Biomaterialia, 122, 101-110. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [52] | Miao, S., Nowicki, M., Cui, H., Lee, S., Zhou, X., Mills, D.K., et al. (2019) 4D Anisotropic Skeletal Muscle Tissue Constructs Fabricated by Staircase Effect Strategy. Biofabrication, 11, Article 035030. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [53] | Constante, G., Apsite, I., Alkhamis, H., Dulle, M., Schwarzer, M., Caspari, A., et al. (2021) 4D Biofabrication Using a Combination of 3D Printing and Melt-Electrowriting of Shape-Morphing Polymers. ACS Applied Materials & Interfaces, 13, 12767-12776. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [54] | Uribe-Gomez, J., Posada-Murcia, A., Shukla, A., Ergin, M., Constante, G., Apsite, I., et al. (2021) Shape-Morphing Fibrous Hydrogel/Elastomer Bilayers Fabricated by a Combination of 3D Printing and Melt Electrowriting for Muscle Tissue Regeneration. ACS Applied Bio Materials, 4, 1720-1730. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [55] | Wischke, C., Neffe, A.T., Steuer, S. and Lendlein, A. (2009) Amorphous Polymer Networks Combining Three Functionalities-Shape-Memory, Biodegradability, and Drug Release. MRS Proceedings, 1190, Article No. 1134. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [56] | Vakil, A.U., Ramezani, M. and Monroe, M.B.B. (2022) Magnetically Actuated Shape Memory Polymers for On-Demand Drug Delivery. Materials, 15, Article 7279. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [57] | Yuts, Y., McCabe, R., Krell, M., Bohley, M. and Leroux, J. (2025) 4D Printing of Biodegradable Intestinal Drug Delivery Devices with Shape-Memory Effect. International Journal of Pharmaceutics, 669, Article 125051. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [58] | Wu, X., Xia, D., Shi, T., Li, B., Wang, D., Liang, C., et al. (2025) Thermo-Responsive Microneedles Patch for Transdermal Drug Delivery via Squeezing in Diabetic Foot Ulcers. Journal of Materials Science & Technology, 205, 299-314. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [59] | Jang, L.K., Fletcher, G.K., Monroe, M.B.B. and Maitland, D.J. (2020) Biodegradable Shape Memory Polymer Foams with Appropriate Thermal Properties for Hemostatic Applications. Journal of Biomedical Materials Research Part A, 108, 1281-1294. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [60] | Hu, J., Xie, J., Peng, T., Shi, Q., Pan, C., Tan, H., et al. (2024) Fabrication of a MXene-Based Shape-Memory Hydrogel and Its Application in the Wound Repair of Skin. Soft Matter, 20, 4136-4142. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [61] | Beaman, H.T., Shepherd, E., Satalin, J., Blair, S., Ramcharran, H., Serinelli, S., et al. (2022) Hemostatic Shape Memory Polymer Foams with Improved Survival in a Lethal Traumatic Hemorrhage Model. Acta Biomaterialia, 137, 112-123. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [62] | Theocharidis, G., Yuk, H., Roh, H., Wang, L., Mezghani, I., Wu, J., et al. (2022) A Strain-Programmed Patch for the Healing of Diabetic Wounds. Nature Biomedical Engineering, 6, 1118-1133. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [63] | Sun, C., Yue, P., Chen, R., Wu, S., Ye, Q., Weng, Y., et al. (2022) Chitin-Glucan Composite Sponge Hemostat with Rapid Shape-Memory from Pleurotus eryngii for Puncture Wound. Carbohydrate Polymers, 291, Article 119553. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [64] | Liu, T., Liu, J., Zhu, Q., Mu, W., Chen, L., Weng, L., et al. (2025) NIR Responsive Scaffold with Multistep Shape Memory and Photothermal-Chemodynamic Properties for Complex Tissue Defects Repair and Antibacterial Therapy. Biomaterials, 313, Article 122794. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [65] | Metzger, M.F., Wilson, T.S., Schumann, D., Matthews, D.L. and Maitland, D.J. (2002) Mechanical Properties of Mechanical Actuator for Treating Ischemic Stroke. Biomedical Microdevices, 4, 89-96. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [66] | Maitland, D.J., Metzger, M.F., Schumann, D., Lee, A. and Wilson, T.S. (2002) Photothermal Properties of Shape Memory Polymer Micro‐Actuators for Treating Stroke. Lasers in Surgery and Medicine, 30, 1-11. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [67] | Small, W., Wilson, T.S., Buckley, P.R., Benett, W.J., Loge, J.M., Hartman, J., et al. (2007) Prototype Fabrication and Preliminary in Vitro Testing of a Shape Memory Endovascular Thrombectomy Device. IEEE Transactions on Biomedical Engineering, 54, 1657-1666. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [68] | Metcalfe, A., Desfaits, A., Salazkin, I., Yahia, L., Sokolowski, W.M. and Raymond, J. (2003) Cold Hibernated Elastic Memory Foams for Endovascular Interventions. Biomaterials, 24, 491-497. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [69] | Hampikian, J.M., Heaton, B.C., Tong, F.C., Zhang, Z. and Wong, C.P. (2006) Mechanical and Radiographic Properties of a Shape Memory Polymer Composite for Intracranial Aneurysm Coils. Materials Science and Engineering: C, 26, 1373-1379. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [70] | Yang, C., Wu, H., Sun, J., Hsiao, H. and Wang, T. (2013) Thermo-Induced Shape-Memory PEG-PCL Copolymer as a Dual-Drug-Eluting Biodegradable Stent. ACS Applied Materials & Interfaces, 5, 10985-10994. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [71] | Yakacki, C.M., Shandas, R., Lanning, C., Rech, B., Eckstein, A. and Gall, K. (2007) Unconstrained Recovery Characterization of Shape-Memory Polymer Networks for Cardiovascular Applications. Biomaterials, 28, 2255-2263. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [72] | Shi, S., Cui, M., Sun, F., Zhu, K., Iqbal, M.I., Chen, X., et al. (2021) An Innovative Solvent‐Responsive Coiling-Expan-ding Stent. Advanced Materials, 33, Article 2101005. [Google Scholar] [CrossRef] [PubMed] |