[1]
|
Scoffoni, C. and Sack, L. (2017) The Causes and Consequences of Leaf Hydraulic Decline with Dehydration. Journal of Experimental Botany, 68, 4479-4496. https://doi.org/10.1093/jxb/erx252
|
[2]
|
Brodribb, T.J., Holbrook, N.M., Zwieniecki, M.A. and Palma, B. (2004) Leaf Hydraulic Capacity in Ferns, Conifers and Angiosperms: Impacts on Photosynthetic Maxima. New Phytologist, 165, 839-846. https://doi.org/10.1111/j.1469-8137.2004.01259.x
|
[3]
|
Sack, L. and Frole, K. (2006) Leaf Structural Diversity Is Related to Hydraulic Capacity in Tropical Rain Forest Trees. Ecology, 87, 483-491. https://doi.org/10.1890/05-0710
|
[4]
|
Hao, G., Hoffmann, W.A., Scholz, F.G., Bucci, S.J., Meinzer, F.C., Franco, A.C., et al. (2007) Stem and Leaf Hydraulics of Congeneric Tree Species from Adjacent Tropical Savanna and Forest Ecosystems. Oecologia, 155, 405-415. https://doi.org/10.1007/s00442-007-0918-5
|
[5]
|
McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., et al. (2008) Mechanisms of Plant Survival and Mortality during Drought: Why Do Some Plants Survive While Others Succumb to Drought? New Phytologist, 178, 719-739. https://doi.org/10.1111/j.1469-8137.2008.02436.x
|
[6]
|
McDowell, N.G. (2011) Mechanisms Linking Drought, Hydraulics, Carbon Metabolism, and Vegetation Mortality. Plant Physiology, 155, 1051-1059. https://doi.org/10.1104/pp.110.170704
|
[7]
|
Choat, B., Brodribb, T.J., Brodersen, C.R., Duursma, R.A., López, R. and Medlyn, B.E. (2018) Triggers of Tree Mortality under Drought. Nature, 558, 531-539. https://doi.org/10.1038/s41586-018-0240-x
|
[8]
|
Brodribb, T.J., Powers, J., Cochard, H. and Choat, B. (2020) Hanging by a Thread? Forests and Drought. Science, 368, 261-266. https://doi.org/10.1126/science.aat7631
|
[9]
|
Trugman, A.T., Anderegg, L.D.L., Anderegg, W.R.L., Das, A.J. and Stephenson, N.L. (2021) Why Is Tree Drought Mortality So Hard to Predict? Trends in Ecology & Evolution, 36, 520-532. https://doi.org/10.1016/j.tree.2021.02.001
|
[10]
|
Tyree, M. and Zimmermann, M. (2002) Xylem Structure and the Ascent of Sap. Springer.
|
[11]
|
Delzon, S., Douthe, C., Sala, A. and Cochard, H. (2010) Mechanism of Water-Stress Induced Cavitation in Conifers: Bordered Pit Structure and Function Support the Hypothesis of Seal Capillary-Seeding. Plant, Cell & Environment, 33, 2101-2111. https://doi.org/10.1111/j.1365-3040.2010.02208.x
|
[12]
|
Choat, B., Jansen, S., Brodribb, T.J., Cochard, H., Delzon, S., Bhaskar, R., et al. (2012) Global Convergence in the Vulnerability of Forests to Drought. Nature, 491, 752-755. https://doi.org/10.1038/nature11688
|
[13]
|
Blackman, C.J., Li, X., Choat, B., Rymer, P.D., de Kauwe, M.G., Duursma, R.A., et al. (2019) Desiccation Time during Drought Is Highly Predictable across Species of Eucalyptus from Contrasting Climates. New Phytologist, 224, 632-643. https://doi.org/10.1111/nph.16042
|
[14]
|
Martin-StPaul, N., Delzon, S. and Cochard, H. (2017) Plant Resistance to Drought Depends on Timely Stomatal Closure. Ecology Letters, 20, 1437-1447. https://doi.org/10.1111/ele.12851
|
[15]
|
Scoffoni, C., Vuong, C., Diep, S., Cochard, H. and Sack, L. (2013) Leaf Shrinkage with Dehydration: Coordination with Hydraulic Vulnerability and Drought Tolerance. Plant Physiology, 164, 1772-1788. https://doi.org/10.1104/pp.113.221424
|
[16]
|
Bartlett, M.K., Scoffoni, C. and Sack, L. (2012) The Determinants of Leaf Turgor Loss Point and Prediction of Drought Tolerance of Species and Biomes: A Global Meta-Analysis. Ecology Letters, 15, 393-405. https://doi.org/10.1111/j.1461-0248.2012.01751.x
|
[17]
|
Bartlett, M.K., Zhang, Y., Kreidler, N., Sun, S., Ardy, R., Cao, K., et al. (2014) Global Analysis of Plasticity in Turgor Loss Point, a Key Drought Tolerance Trait. Ecology Letters, 17, 1580-1590. https://doi.org/10.1111/ele.12374
|
[18]
|
Tyree, M.T. and Ewers, F.W. (1991) The Hydraulic Architecture of Trees and Other Woody Plants. New Phytologist, 119, 345-360. https://doi.org/10.1111/j.1469-8137.1991.tb00035.x
|
[19]
|
Sack, L., Cowan, P.D., Jaikumar, N. and Holbrook, N.M. (2003) The ‘Hydrology’ of Leaves: Co-Ordination of Structure and Function in Temperate Woody Species. Plant, Cell & Environment, 26, 1343-1356. https://doi.org/10.1046/j.0016-8025.2003.01058.x
|
[20]
|
柏新富, 卜庆梅, 谭永芹, 等. 植物4种水势测定方法的比较及可靠性分析[J]. 林业科学, 2012, 48(12): 128-133.
|
[21]
|
付爱红, 陈亚宁, 李卫红, 等. 干旱、盐胁迫下的植物水势研究与进展[J]. 中国沙漠, 2005(5): 744-749.
|
[22]
|
刘欣. 植物水势研究与应用综述[J]. 吉林林业科技, 2015, 44(4): 35-37.
|
[23]
|
林军. 干湿球湿度计测量原理与影响因素研究[J]. 中国计量, 2008(10): 80-81.
|
[24]
|
Turner, N.C., 李凌浩, 张岁岐. 植物水分状况的测定技术[J]. 麦类作物学报, 1989(5): 23-26.
|
[25]
|
Corso, D., Delzon, S., Lamarque, L.J., Cochard, H., Torres-Ruiz, J.M., King, A., et al. (2020) Neither Xylem Collapse, Cavitation, or Changing Leaf Conductance Drive Stomatal Closure in Wheat. Plant, Cell & Environment, 43, 854-865. https://doi.org/10.1111/pce.13722
|
[26]
|
Bourbia, I. and Brodribb, T.J. (2023) A New Technique for Monitoring Plant Transpiration under Field Conditions Using Leaf Optical Dendrometry. Agricultural and Forest Meteorology, 331, Article 109328. https://doi.org/10.1016/j.agrformet.2023.109328
|
[27]
|
Johnson, K.M., Jordan, G.J. and Brodribb, T.J. (2018) Wheat Leaves Embolized by Water Stress Do Not Recover Function Upon Rewatering. Plant, Cell & Environment, 41, 2704-2714. https://doi.org/10.1111/pce.13397
|
[28]
|
Harrison Day, B.L. and Brodribb, T.J. (2023) Resistant Xylem from Roots to Peduncles Sustains Reproductive Water Supply after Drought-Induced Cavitation of Wheat Leaves. Annals of Botany, 131, 839-850. https://doi.org/10.1093/aob/mcad048
|
[29]
|
Scoffoni, C., Albuquerque, C., Brodersen, C.R., Townes, S.V., John, G.P., Cochard, H., et al. (2016) Leaf Vein Xylem Conduit Diameter Influences Susceptibility to Embolism and Hydraulic Decline. New Phytologist, 213, 1076-1092. https://doi.org/10.1111/nph.14256
|
[30]
|
Scoffoni, C., Albuquerque, C., Brodersen, C.R., Townes, S.V., John, G.P., Bartlett, M.K., et al. (2017) Outside-Xylem Vulnerability, Not Xylem Embolism, Controls Leaf Hydraulic Decline during Dehydration. Plant Physiology, 173, 1197-1210. https://doi.org/10.1104/pp.16.01643
|
[31]
|
Brodribb, T.J., Skelton, R.P., McAdam, S.A.M., Bienaimé, D., Lucani, C.J. and Marmottant, P. (2016) Visual Quantification of Embolism Reveals Leaf Vulnerability to Hydraulic Failure. New Phytologist, 209, 1403-1409. https://doi.org/10.1111/nph.13846
|
[32]
|
Creek, D., Lamarque, L.J., Torres-Ruiz, J.M., Parise, C., Burlett, R., Tissue, D.T., et al. (2019) Xylem Embolism in Leaves Does Not Occur with Open Stomata: Evidence from Direct Observations Using the Optical Visualization Technique. Journal of Experimental Botany, 71, 1151-1159. https://doi.org/10.1093/jxb/erz474
|
[33]
|
Hochberg, U., Windt, C.W., Ponomarenko, A., Zhang, Y., Gersony, J., Rockwell, F.E., et al. (2017) Stomatal Closure, Basal Leaf Embolism, and Shedding Protect the Hydraulic Integrity of Grape Stems. Plant Physiology, 174, 764-775. https://doi.org/10.1104/pp.16.01816
|