随着全球寿命延长和人口老龄化加剧,骨质疏松症是老年人群中常见疾病之一。这种疾病典型特征表现在骨密度降低、骨强度减弱。骨小梁连通性丧失同时伴有骨小梁退化,皮质骨变薄,都会显著增加骨折风险。最严重的部位是髋部骨折[1] [2]。骨质疏松性骨折不仅常见,还伴随着较高的发病率、死亡率及医疗成本[3]。
髋部骨折患者常因关节功能障碍需调整生活方式,长期卧床尤易导致下肢深静脉血栓、呼吸和泌尿系统感染。此外,压疮、肠梗阻和营养不良也是老年髋部骨折术后常见的并发症。在围手术期还可能发生手术切口感染、心血管等并发症(如静脉血栓栓塞、心力衰竭、心肌梗死)以及中枢神经系统问题(如卒中、脑梗死) [4]。蔡蔚[5]等人共收集了884例老年髋部骨折急性期患者病例,其中94.57% (836例)因轻微外伤入院。同时,肺部感染和尿路感染的发生率随着年龄的增加呈上升趋势。
在幸存的老年髋部骨折患者中,仅三分之一能够恢复到以前的自理生活水平,而50%的患者则需要长期的日常生活帮助,无法独立行走。此外,约25%的患者需要全日制的养老院护理[6]。早期行髋关节手术有效地规避了较高的死亡率和较多的围手术期并发症[7]。
2. 髋关节置换术的发展
1835年,法国病理学家兼外科医生Jean Lobstein首次提出“骨质疏松症”一词,当时的描述主要聚焦于蓝灰色巩膜的特征,可能与I型成骨不全相关。他在研究中发现骨组织标本中毛细管空间扩张,伴随皮质骨的丧失为代价。骨质疏松性骨丢失主要源于骨骼稳态调节过程中重塑活动的失衡,特别是在中央骨区域,这种重塑活动更加显著[19]。
性别也是影响骨质变化的因素之一。男性的骨骼通常较大,且皮质区面积也更广。在男女两性中,皮质区面积在70岁之前持续增长,随后开始下降,女性在绝经后这一趋势更为明显。此外,随年龄增长,骨皮质变薄速度加快[29]。Riggs [30]等人的研究指出,骨膜和皮质内的骨重塑导致皮层向外移位。女性皮质体积骨密度(vBMD)的下降幅度(25%)高于男性(18%),这一现象表明皮质下吸收加剧,皮质孔隙度增加,骨小梁vBMD显著下降,这可能是老年人骨骼脆弱性增强的主要原因。
老年患者常伴有基础疾病,在置换术中更易出现并发症,如缺氧、低血压、心律失常、肺血管阻力增加(PVR)甚至心脏骤停等骨水泥植入综合征(BCIS)症状。Donaldson [43]等人指出,骨水泥植入过程中产生的高髓内压力会引发放热反应,导致假体与骨之间空间膨胀,进而将空气和髓质内容物挤入血液循环,引发血流动力学变化和栓塞,尤其对于有心血管病史的患者更需警惕。
无论是通过组织长入、加压还是骨水泥固定,股骨尺寸与假体之间的密切匹配在临床中至关重要。假体的髓内稳定依赖于近端与远端负荷之间的协调传递,这种相对作用取决于许多因素,包括假体与骨的贴合度以及固定区域的刚性。
骨质疏松所导致的股骨髓腔扩大,在假体植入过程中往往需大量去除髓内组织及部分内侧皮质骨以适应股骨的生理前弓,这进一步削弱了股骨强度和皮质厚度。加上高龄患者骨髓干细胞数量减少,这些因素均不利于骨—假体界面形成新骨。因此,在确保假体稳定固定的基础上,尽可能保留股骨骨量,对于改善长期手术效果具有重要意义[57]。
在早期应用中,通常使用ABG II柄对Dorr C型股骨行全髋关节置换,但无论采用短柄还是标准柄,其术后假体周围骨折风险均较高,部分原因在于假体顶端股骨皮质因松动形成薄弱区,易引发后续骨折[49]。此外,一项研究报道了37例存在广泛股骨骨缺损的患者,采用205 mm骨水泥长柄Exeter假体进行翻修,平均随访9年,假体生存率达96.3%。其中1例因复发性脱位于5年后再次重建,9例(24%)在术中发生骨折或骨裂,另有2例(5%)在术后发生假体周围骨折,均通过钢板固定处理。尽管假体整体稳定性良好,但翻修患者骨量普遍不足[58]。
6. 翻修手术的策略优化
在假体翻修中会遇到多种复杂情况,即使通过调整手术策略,在扩髓和假体植入过程中仍应保持动作轻柔,避免股骨髓腔破裂,一旦发生股骨骨折,术中应及时使用钢丝或电缆进行围扎固定[59]。若术中骨折处理困难,甚至需要改变手术入路来完成。当髋臼骨缺损严重时,需使用结构性植骨或金属垫块进行重建,以重建髋关节旋转中心并增加骨储量[60]。潘琦[61]等在17例髋关节翻修手术中,采用生物型加长柄联合同种异体骨移植进行重建,显著改善了髋关节功能,并取得了令人满意的短期疗效。Feyen [62]也报道了10例术中骨折,均在环扎钢丝后取得了良好的固定效果。
已有研究总结了六种常用的假体固定技术,其中同种异体移植物支架联合环系索在长柄无骨水泥假体中,可提供优异的稳定性和强度,推荐用于处理假体松动骨折。带有近端皮质螺钉的钢板则提供了最佳固定强度,而带环系索的支架则具有最佳稳定性。此外,对于股骨柄尖端骨折,不建议在未采取额外内固定措施的情况下直接转换为加长、远端光滑的非骨水泥柄[63]。
手术过程中还应重点关注与骨折风险密切相关的步骤,如髋关节脱位、骨水泥取出、髓腔准备及假体植入等过程,同时通过适当软组织切除来减少术野暴露所需的牵拉力。在复杂翻修手术中,术前必须详细规划,充分识别容易引发骨折的畸形部位或骨质流失区域,术中利用透视确保导丝精确置于髓腔中心,并在术后行X线检查以排查可能遗漏的潜在骨折[66]。
7. 总结
Lorentzon, M. and Cummings, S.R. (2015) Osteoporosis: The Evolution of a Diagnosis. Journal of Internal Medicine, 277, 650-661. https://doi.org/10.1111/joim.12369
Cummings, S.R. and Melton, L.J. (2002) Epidemiology and Outcomes of Osteoporotic Fractures. The Lancet, 359, 1761-1767. https://doi.org/10.1016/s0140-6736(02)08657-9
Cooper, C., Campion, G. and Melton, L.J. (1992) Hip Fractures in the Elderly: A World-Wide Projection. Osteoporosis International, 2, 285-289. https://doi.org/10.1007/bf01623184
魏永康, 陈平波. 老年髋部骨折围手术期常见并发症风险因素研究进展[J]. 临床医学进展, 2023, 13(7): 11354-11360.
蔡蔚, 胡文帅, 赵进喜. 全髋关节置换术与人工股骨头置换术治疗老年股骨颈骨折的临床效果分析[J]. 中国社区医师, 2024, 40(29): 15-17.
Mak, J.C.S., Cameron, I.D. and March, L.M. (2010) Evidence-Based Guidelines for the Management of Hip Fractures in Older Persons: An Update. Medical Journal of Australia, 192, 37-41.
https://doi.org/10.5694/j.1326-5377.2010.tb03400.x
Klestil, T., Röder, C., Stotter, C., Winkler, B., Nehrer, S., Lutz, M., et al. (2018) Impact of Timing of Surgery in Elderly Hip Fracture Patients: A Systematic Review and Meta-Analysis. Scientific Reports, 8, Article No. 13933.
https://doi.org/10.1038/s41598-018-32098-7
Szita, J., Cserháti, P., Bosch, U., Manninger, J., Bodzay, T. and Fekete, K. (2002) Intracapsular Femoral Neck Fractures: The Importance of Early Reduction and Stable Osteosynthesis. Injury, 33, 41-46.
https://doi.org/10.1016/s0020-1383(02)00330-3
Martínez Tapia, A.G., Ugalde Hernández, E., Ramos Texta, J. and Domínguez González, R.C. (2024) Valoración funcional en pacientes mayores de 80 años postoperados de fractura de cadera con sustitución del calcar y colocación de hemiprótesis de Thompson. Acta Médica Grupo Ángeles, 22, 11-16. https://doi.org/10.35366/114587
Forsh, D.A. and Ferguson, T.A. (2012) Contemporary Management of Femoral Neck Fractures: The Young and the Old. Current Reviews in Musculoskeletal Medicine, 5, 214-221. https://doi.org/10.1007/s12178-012-9127-x
Mraz, S.J. (2019) Study Finds 60% of Hip Implants Last 25 Years. Machine Design, 91.
Sah, P., et al. (2022) Acetabulum; Anterior Hip Replacement; C-Arm; Hip Arthritis; Hip Arthroplasty; Mini-Anterior Approach; Muscle-Sparing Surgery; Proximal Femur. Springer.
Learmonth, I.D., Young, C. and Rorabeck, C. (2007) The Operation of the Century: Total Hip Replacement. The Lancet, 370, 1508-1519. https://doi.org/10.1016/s0140-6736(07)60457-7
Endo, N. (2007) Treatment of Osteoarthritic Change in the Hip. Springer.
Baig, M., Kearns, S., Shannon, F.J. and Devitt, A. (2021) Ten Inventions That Shaped Modern Orthopedics. Cureus, 13, e12819. https://doi.org/10.7759/cureus.12819
Charnley, J. (1961) Arthroplasty of the Hip: A New Operation. The Lancet, 277, 1129-1132.
https://doi.org/10.1016/s0140-6736(61)92063-3
Callaghan, J.J., Albright, J.C., Goetz, D.D., Olejniczak, J.P. and Johnston, R.C. (2000) Charnley Total Hip Arthroplasty with Cement: Minimum Twenty-Five-Year Follow-Up. The Journal of Bone and Joint Surgery-American Volume, 82, 487-497. https://doi.org/10.2106/00004623-200004000-00004
Wroblewski, B.M., Siney, P.D. and Fleming, P.A. (2006) The Charnley Hip Replacement—43 Years of Clinical Success. Acta Chirurgiae Orthopaedicae et Traumatologiae Cechoslovaca, 73, 6-9. https://doi.org/10.55095/achot2006/001
Galassi, F.M. and Varotto, E. (2023) Osteoporosis and Vertebral Trabecular Bone Health: An Historico-Anthropological Perspective. Anthropological Review, 86, 17-22. https://doi.org/10.18778/1898-6773.86.1.02
Gregory, J.S. and Aspden, R.M. (2008) Femoral Geometry as a Risk Factor for Osteoporotic Hip Fracture in Men and Women. Medical Engineering & Physics, 30, 1275-1286. https://doi.org/10.1016/j.medengphy.2008.09.002
Cummings, S.R. (1990) Appendicular Bone Density and Age Predict Hip Fracture in Women. JAMA: The Journal of the American Medical Association, 263, 665-668. https://doi.org/10.1001/jama.1990.03440050059033
Albright, F., Burnett, C.H., Cope, O. and Parson, W. (1941) Acute Atrophy of Bone (Osteoporosis) Simulating Hyperparathyroidism. The Journal of Clinical Endocrinology & Metabolism, 1, 711-716.
https://doi.org/10.1210/jcem-1-9-711
Bouxsein, M.L. (2006) Biomechanics of Osteoporotic Fractures. Clinical Reviews in Bone and Mineral Metabolism, 4, 143-154. https://doi.org/10.1385/bmm:4:3:143
NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (2001) Osteoporosis Prevention, Diagnosis, and Therapy. JAMA: The Journal of the American Medical Association, 285, 785-795.
https://doi.org/10.1001/jama.285.6.785
Ross, P.D., Davis, J.W., Epstein, R.S. and Wasnich, R.D. (1991) Pre-Existing Fractures and Bone Mass Predict Vertebral Fracture Incidence in Women. Annals of Internal Medicine, 114, 919-923.
https://doi.org/10.7326/0003-4819-114-11-919
Cummings, S.R., Nevitt, M.C., Browner, W.S., Stone, K., Fox, K.M., Ensrud, K.E., et al. (1995) Risk Factors for Hip Fracture in White Women. New England Journal of Medicine, 332, 767-773.
https://doi.org/10.1056/nejm199503233321202
Kanis, J.A., Johnell, O., Oden, A., et al. (2000) Long-Term Risk of Osteoporotic Fracture in Malmö. Osteoporosis International, 11, 669-674.
Black, D.M., Arden, N.K., Palermo, L., Pearson, J. and Cummings, S.R. (1999) Prevalent Vertebral Deformities Predict Hip Fractures and New Vertebral Deformities but Not Wrist Fractures. Journal of Bone and Mineral Research, 14, 821-828. https://doi.org/10.1359/jbmr.1999.14.5.821
Feik, S.A., Thomas, C.D.L. and Clement, J.G. (1997) Age‐Related Changes in Cortical Porosity of the Midshaft of the Human Femur. Journal of Anatomy, 191, 407-416. https://doi.org/10.1046/j.1469-7580.1997.19130407.x
Riggs, B.L., Melton, L.J., Robb, R.A., Camp, J.J., Atkinson, E.J., Peterson, J.M., et al. (2004) Population-Based Study of Age and Sex Differences in Bone Volumetric Density, Size, Geometry, and Structure at Different Skeletal Sites. Journal of Bone and Mineral Research, 19, 1945-1954. https://doi.org/10.1359/jbmr.040916
Buenzli, P.R., Thomas, C.D.L., Clement, J.G. and Pivonka, P. (2013) Endocortical Bone Loss in Osteoporosis: The Role of Bone Surface Availability. International Journal for Numerical Methods in Biomedical Engineering, 29, 1307-1322.
https://doi.org/10.1002/cnm.2567
Dorr, L.D., Faugere, M., Mackel, A.M., Gruen, T.A., Bognar, B. and Malluche, H.H. (1993) Structural and Cellular Assessment of Bone Quality of Proximal Femur. Bone, 14, 231-242. https://doi.org/10.1016/8756-3282(93)90146-2
Noble, P.C., Alexander, J.W., Lindahl, L.J., Yew, D.T., Granberry, W.M. and Tullos, H.S. (1988) The Anatomic Basis of Femoral Component Design. Clinical Orthopaedics and Related Research, 235, 148-165.
https://doi.org/10.1097/00003086-198810000-00015
Zebaze, R.M., Ghasem-Zadeh, A., Bohte, A., Iuliano-Burns, S., Mirams, M., Price, R.I., et al. (2010) Intracortical Remodelling and Porosity in the Distal Radius and Post-Mortem Femurs of Women: A Cross-Sectional Study. The Lancet, 375, 1729-1736. https://doi.org/10.1016/s0140-6736(10)60320-0
Miettinen, S.S.A., Mäkinen, T.J., Kostensalo, I., Mäkelä, K., Huhtala, H., Kettunen, J.S., et al. (2015) Risk Factors for Intraoperative Calcar Fracture in Cementless Total Hip Arthroplasty. Acta Orthopaedica, 87, 113-119.
https://doi.org/10.3109/17453674.2015.1112712
李毅中, 李建龙, 林金矿, 等. 髓腔闪烁指数在全髋关节置换测量中的意义[J]. 中国组织工程研究, 2012, 16(52): 9702-9706.
Umer, M., Sepah, Y.J., Khan, A., Wazir, A., Ahmed, M. and Jawad, M.U. (2010) Morphology of the Proximal Femur in a Pakistani Population. Journal of Orthopaedic Surgery, 18, 279-281. https://doi.org/10.1177/230949901001800304
中华人民共和国国家卫生健康委员会医政司. 老年髋部骨折诊疗与管理指南(2022年版) [J]. 骨科临床与研究杂志, 2023, 8(2): 77-83.
Winner, S.J., Morgan, C.A. and Evans, J.G. (1989) Perimenopausal Risk of Falling and Incidence of Distal Forearm Fracture. BMJ, 298, 1486-1488. https://doi.org/10.1136/bmj.298.6686.1486
Bonnaire, F., Zenker, H., Lill, C., Weber, A.T. and Linke, B. (2005) Treatment Strategies for Proximal Femur Fractures in Osteoporotic Patients. Osteoporosis International, 16, S93-S102. https://doi.org/10.1007/s00198-004-1746-7
Levashov, G., Hasan, M.H., Frakulli, A., Macaalay, J. and Nahad, K. (2024) An Overview of Bone Cement Compositions Used in Vertebroplasty and Their Viability in Clinical Settings. International Journal of Engineering Materials and Manufacture, 9, 1-14. https://doi.org/10.26776/ijemm.09.01.2024.01
Karachalios, T.S., Koutalos, A.A. and Komnos, G.A. (2019) Total Hip Arthroplasty in Patients with Osteoporosis. HIP International, 30, 370-379. https://doi.org/10.1177/1120700019883244
Donaldson, A.J., Thomson, H.E., Harper, N.J. and Kenny, N.W. (2009) Bone Cement Implantation Syndrome. British Journal of Anaesthesia, 102, 12-22. https://doi.org/10.1093/bja/aen328
孙长鲛, 余鹏, 许平平, 等. 骨质疏松患者髋关节置换术的研究进展[J]. 中国骨与关节杂志, 2022, 11(11): 847-853.
黄敬叶, 罗世兴. 骨水泥型与非骨水泥型髋关节置换的研究进展[J]. 医学综述, 2017, 23(11): 2186-2189, 2196.
Unnanuntana, A., Wagner, D. and Goodman, S.B. (2009) The Accuracy of Preoperative Templating in Cementless Total Hip Arthroplasty. The Journal of Arthroplasty, 24, 180-186. https://doi.org/10.1016/j.arth.2007.10.032
Lindberg-Larsen, M., Jørgensen, C.C., Solgaard, S., Kjersgaard, A.G. and Kehlet, H. (2017) Increased Risk of Intraoperative and Early Postoperative Periprosthetic Femoral Fracture with Uncemented Stems. Acta Orthopaedica, 88, 390-394. https://doi.org/10.1080/17453674.2017.1302908
Reitman, R.D., Emerson, R., Higgins, L. and Head, W. (2003) Thirteen Year Results of Total Hip Arthroplasty Using a Tapered Titanium Femoral Component Inserted without Cement in Patients with Type C Bone. The Journal of Arthroplasty, 18, 116-121. https://doi.org/10.1016/s0883-5403(03)00344-9
Li, M., Zeng, Y., Nie, Y., Liao, K., Pei, F., Yang, J., et al. (2023) A High Risk of Postoperative Periprosthetic Femoral Fracture in Dorr Type C Femurs: A Retrospective Cohort Study with Ten-Year Follow-Up Data and a Preliminary Monochromatic Image Analysis. International Journal of Surgery, 110, 296-305.
https://doi.org/10.1097/js9.0000000000000810
Tarala, M., Janssen, D. and Verdonschot, N. (2013) Toward a Method to Simulate the Process of Bone Ingrowth in Cementless THA Using Finite Element Method. Medical Engineering & Physics, 35, 543-548.
https://doi.org/10.1016/j.medengphy.2012.10.010
Wolff, J. (1884) Das Gesetz der inneren Transformation der Knochen bei pathologischen Vernderungen der ueren Knochenform. Sitzg. Physik-Math, Sitz. Ber. Press.
Galante, J.O. and Jacobs, J. (1992) Clinical Performances of Ingrowth Surfaces. Clinical Orthopaedics and Related Research, 276, 41-49. https://doi.org/10.1097/00003086-199203000-00007
McLaughlin, J.R. and Lee, K.R. (2016) Long-Term Results of Uncemented Total Hip Arthroplasty with the Taperloc Femoral Component in Patients with Dorr Type C Proximal Femoral Morphology. The Bone & Joint Journal, 98, 595-600. https://doi.org/10.1302/0301-620x.98b5.35816
Schilcher, J., Ivarsson, I., Perlbach, R. and Palm, L. (2017) No Difference in Periprosthetic Bone Loss and Fixation between a Standard-Length Stem and a Shorter Version in Cementless Total Hip Arthroplasty. A Randomized Controlled Trial. The Journal of Arthroplasty, 32, 1220-1226. https://doi.org/10.1016/j.arth.2016.11.015
Harrison, T., Jones, H.W., Darrah, C., Warriner, G. and Tucker, J.K. (2013) Long Stem Cemented Revision Arthroplasty for Aseptic Loosening in Elderly Patients Produces Good Results, Despite Significant Bone Loss. HIP International, 23, 54-59. https://doi.org/10.5301/hip.2013.10615
Hofmann, A.A., Wyatt, R.W.B., France, E.P., Bigler, G.T., Daniels, A.U. and Hess, W.E. (1989) Endosteal Bone Loss after Total Hip Arthroplasty. Clinical Orthopaedics and Related Research, 245, 138-144.
https://doi.org/10.1097/00003086-198908000-00021
简小飞, 陈廖斌, 蒋林. 远端生物固定翻修柄在老年患者髋关节股骨侧翻修中的应用[J]. 中华老年医学杂志, 2018, 37(10): 1122-1125.
te Stroet, M.A.J., Bronsema, E., Rijnen, W.H.C., Gardeniers, J.W.M. and Schreurs, B.W. (2014) The Use of a Long Stem Cemented Femoral Component in Revision Total Hip Replacement. The Bone & Joint Journal, 96, 1207-1213.
https://doi.org/10.1302/0301-620x.96b9.33304
Liu, P., Qiao, Y., Lou, J., et al. (2023) Cementless Total Hip Arthroplasty for Treatment of Acetabular Protrusion Secondary to Rheumatoid Arthritis. https://doi.org/10.21203/rs.3.rs-2413042/v1
翁习生. 人工髋关节翻修术中髋臼骨缺损的重建方法[J]. 中华骨与关节外科杂志, 2022, 15(1): 10-18.
潘琦, 吴烨, 王力军. 生物型加长柄联合同种异体骨移植在股骨假体翻修术中的应用[J]. 中国骨与关节损伤杂志, 2018, 33(4): 408-409.
Feyen, H. and Shimmin, A.J. (2014) Is the Length of the Femoral Component Important in Primary Total Hip Replacement? The Bone & Joint Journal, 96, 442-448. https://doi.org/10.1302/0301-620x.96b4.33036
Schmotzer, H., Tchejeyan, G.H. and Dall, D.M. (1996) Surgical Management of Intra- and Postoperative Fractures of the Femur about the Tip of the Stem in Total Hip Arthroplasty. The Journal of Arthroplasty, 11, 709-717.
https://doi.org/10.1016/s0883-5403(96)80010-6
Dennis, M.G., Simon, J.A., Kummer, F.J., Koval, K.J. and DiCesare, P.E. (2000) Fixation of Periprosthetic Femoral Shaft Fractures Occurring at the Tip of the Stem. The Journal of Arthroplasty, 15, 523-528.
https://doi.org/10.1054/arth.2000.4339
Duwelius, P.J., Schmidt, A.H., Kyle, R.F., Talbott, V., Ellis, T.J. and Butler, J.B.V. (2004) A Prospective, Modernized Treatment Protocol for Periprosthetic Femur Fractures. Orthopedic Clinics of North America, 35, 485-492.
https://doi.org/10.1016/j.ocl.2004.05.001
Davidson, D., Pike, J., Garbuz, D., Duncan, C.P. and Masri, B.A. (2008) Intraoperative Periprosthetic Fractures during Total Hip Arthroplasty: Evaluation and Management. The Journal of Bone and Joint Surgery-American Volume, 90, 2000-2012. https://doi.org/10.2106/jbjs.h.00331