胃黏膜肠上皮化生相关危险因素及内镜诊断研究进展
Research Progress on Risk Factors and Endoscopic Diagnosis of Gastric Mucosal Intestinal Metaplasia
DOI: 10.12677/acm.2025.1551475, PDF, HTML, XML,   
作者: 刘思妤:北华大学临床医学院,吉林 吉林;杨志平*:北华大学附属医院消化内科,吉林 吉林
关键词: 胃黏膜肠上皮化生癌前病变早期胃癌Gastric Mucosal Intestinal Metaplasia Precancerous Lesion Early Gastric Cancer
摘要: 目前胃癌的发病机制尚不明确。肠型胃癌的进展过程大致可被描述为浅表性胃炎–慢性萎缩性胃炎–肠化生–肠型胃癌,其中,肠化生是这一路径中最重要的病理类型,这些年来,许多学者将研究重心聚焦于这一病理变化。经研究发现,不当的饮食习惯、吸烟、饮酒、年龄、性别、幽门螺杆菌感染、胆汁酸反流等因素都可导致正常胃黏膜出现肠化生。近年来,内镜诊断也逐渐成为研究热点,以更早更直观地发现病变并及早进行干预。本文围绕胃黏膜肠上皮化生的界定、类别划分、风险要素以及内镜下的诊断要点进行系统的阐述,目的是提升临床工作者对于该病理现象的理解程度,进而更有效地进行胃癌的早期预防与干预。
Abstract: The pathogenesis of gastric cancer remains incompletely understood. The progression of intestinal-type gastric cancer can be delineated as superficial gastritis, chronic atrophic gastritis, intestinal metaplasia, and ultimately intestinal-type gastric cancer. Among these stages, intestinal metaplasia represents the most pivotal pathological transformation, which has garnered significant research attention in recent years. Studies have identified multiple contributing factors to the development of intestinal metaplasia in normal gastric mucosa, including inappropriate dietary habits, smoking, alcohol consumption, age, gender, Helicobacter pylori infection, and bile reflux. In recent years, endoscopic diagnosis has emerged as a prominent research focus, enabling earlier and more direct identification of pathological changes for timely intervention. This article provides a systematic review of the definition, classification, risk factors, and endoscopic diagnostic features of gastric intestinal metaplasia, aiming to enhance clinicians’ understanding of this pathological phenomenon and facilitate more effective early prevention and intervention strategies for gastric cancer.
文章引用:刘思妤, 杨志平. 胃黏膜肠上皮化生相关危险因素及内镜诊断研究进展[J]. 临床医学进展, 2025, 15(5): 1135-1143. https://doi.org/10.12677/acm.2025.1551475

1. 引言

胃癌是消化道最常见的恶性肿瘤之一,其发病率居所有恶性肿瘤第二位,死亡率居所有恶性肿瘤第三位[1]。其发生发展是一个漫长的过程,但大部分患者初次就诊时就已经发展为进展期胃癌,这一定程度上限制了现阶段治疗手段的应用,其五年生存率仅为10%左右。而早期胃癌五年生存率达90%以上。Correa将肠型胃癌的发生描述为一个多步骤的反应过程,按照以下几个步骤逐渐演变:浅表性胃炎 → 慢性萎缩性胃炎 → 肠上皮化生 → 异型增生 → 肠型胃癌[2]。有研究表明,胃黏膜肠上皮化生(GIM)发展为胃癌大约需要10~20年[3],这为预防早期胃癌的发生提供了较宽的时间窗。因此,明确GIM的危险因素,定期对高危患者进行内镜检查,可增加发现GIM的机会,从而提早预防及治疗避免其进展为胃癌。

2. GIM的定义及分型

2.1. GIM的定义

GIM是一种癌前组织病理学变化,定义为胃柱状细胞被肠道形态的细胞取代,其特征是存在含粘蛋白的杯状细胞、潘氏细胞和吸收细胞,导致胃粘膜上皮细胞及周围腺体被肠型上皮细胞和腺体取代[4],是胃癌的癌前病变之一。

2.2. GIM的分型

在解剖学的研究中,对于GIM的病变范围进行分类是非常重要的。根据病变的分布特点,GIM可以被细致地区分为局限性病变和弥漫性病变两大类。局限性病变指的是肠上皮化生仅限于胃部的单一区域。相对地,弥漫性病变则描述了更为广泛的情况,即分布在胃部的两个或两个以上的部位。此分类方法能够助力医务人员精确判定病患状况,从而为患者量身打造适宜的治疗策略。

在组织病理学研究中,根据细胞在HE染色中的具体表现,可以将肠上皮化生(IM)分为完全型IM和不完全型IM两大类[5]。完全型IM的呈现,是胃壁表层的上皮细胞被肠道上皮细胞所取代,这一现象的主要标志是肠道吸收细胞、分泌黏液的杯状细胞以及具有刷状边缘的细胞的生成。与之相对,胃部不完全型异位性黏膜则呈现出胃壁上皮细胞被与结肠上皮细胞相似的细胞所替换的状态,展现出介于分化状态之间的柱状细胞,不具备刷状缘特征,同时具备分泌唾液型黏蛋白的能力。在此基础上,依据分泌黏蛋白种类的不同,IM可被细化为I型、II型以及III型这三种亚型[6]。I型IM与完全型IM相匹配,其显著标志在于杯状细胞的生成,此类细胞负责分泌唾液中的黏性蛋白。次类IM及第三类IM被归类为非完整型IM,在此,次类IM的特色为柱状细胞产出唾液黏蛋白,第三类IM则突出展现为柱状细胞生产硫磺素。

3. GIM危险因素

炎症反应在IM的发展过程中扮演着关键的病理角色。持续的慢性炎症若长时间作用于胃黏膜,会破坏其正常的组织结构,导致胃腺体及胃黏膜特定细胞的损伤与丢失。这样的病理变化可能逐步演变为IM、不典型增生,甚至最终进展为胃癌[7],在此基础上,炎症反应的激活会促使机体神经内分泌系统的活动增强,并启动应激反应机制,进而引发高血糖状态。这种状态不仅加剧了原有的炎症反应,而且还形成了一个炎症促进应激、应激导致高血糖、高血糖又加重炎症的恶性循环,使得炎症反应更加剧烈和持久[8],长期胃黏膜炎症的诱因很可能引发IM以及胃癌的风险。因此,所有那些导致胃黏膜持续炎症的因素均与肠上皮化生的产生有着紧密的联系。

3.1. 饮食习惯

研究表明,不良的饮食模式与胃黏膜肠化生的风险密切相关。特别是,过度摄入高盐食物、腌制产品、油腻食物以及过于辛辣的食材,都可能加剧胃黏膜肠化生的进程。相反,提升蔬菜、瓜果以及枸杞等健康食品的摄取比例,对于避免胃黏膜肠化生的出现具有积极作用[9]。一项国际研究指出,摄入低脂肪与高碳水化合物均可能增加GIM的风险[10]。实验研究表明,由高盐引起的胃部微循环障碍激活了HIF-1α通路,并引发了胃炎,这些变化可能在高盐饮食和MNNG摄入引发的慢性萎缩性胃炎(CAG)的病理发展中扮演关键角色[11]。因此,培养健康的饮食习惯对GIM的发生发展有一定的抑制作用,也为GIM的预防宣教提供新的思路。

3.2. 吸烟

关于吸烟与GIM的关系,我国的研究较少。一项研究表明吸烟能通过增加HP易感性、影响抑癌基因和原癌基因的表达、损伤胃黏膜及诱导肠上皮化生来增加患胃癌的风险[12]。最近一项包括来自韩国的199,235名成年人的大规模前瞻性队列研究显示,男性的既往吸烟者(风险比[HR],1.17;95% CI,1.08~1.27)和当前吸烟者(HR, 1.56; 95% CI, 1.45~1.68)新发胃肠上皮生化生的风险都很高[13]。此外,最近一项针对美国退伍军人群体(1962人)的病例对照研究显示,该研究呈正相关[14]。此外,与从不吸烟者相比,戒烟15年后胃癌吸烟风险的统计学显著性消失,在戒烟>30年后进一步导致GIM风险可以忽略不计(OR, 0.97; 95% CI, 0.59~1.59) [15]。总的来说,吸烟与新发的胃肠上皮化生呈正相关,吸烟持续时间和戒烟时间呈线性相关。文章内提及戒烟>30年后,胃肠上皮化生的风险有望降低到从不吸烟者的水平,仍需大样本研究进一步证实该结论。我国在吸烟与健康影响的研究方面,与国外相比,尚缺乏大样本的深入研究,特别是吸烟与消化系统疾病之间的关联性,还需进一步的实证研究来加以确认。

3.3. 饮酒

饮酒与多种疾病密切相关,最近一项针对81项研究的荟萃分析表明,饮酒者患胃癌的风险增加[16]。对20项研究的汇总分析分为轻度饮酒(≤12克/天)、中度(12至48克/天)、重度饮酒(48至72克/天)和非常重度饮酒者(大于72克/天)显示,轻度饮酒者(OR, 1.00; 95% CI, 0.86~1.16)胃癌风险没有增加。而中度饮酒者(OR, 1.11; 95% CI, 1.01~1.23)、重度饮酒者(OR, 1.26; 95% CI, 1.08~1.48)和极度饮酒者(OR, 1.48; 95% CI, 1.29~1.70)的风险增加[17]。此外,两项荟萃分析显示,轻度饮酒者患胃癌的风险没有升高(RR, 0.94~0.95) [18] [19]。对20项研究的汇总分析还调查了饮酒持续时间与胃癌风险之间的关联,两者之间没有观察到一致的关系,因此,戒酒并未降低风险[17]。一些Meta分析提出,不同酒精饮料类型发生胃癌的风险不同,但仍存在争议[18] [20] [21]。另一项荟萃分析显示,男性饮酒导致胃癌的风险显著(RR, 1.18; 95% CI, 1.06~1.32),但女性则没有(RR, 1.07; 95% CI, 0.95~1.19) [22]。然而,一项包括来自美国的2084例个体的病例对照研究显示,即使是每周饮酒≥336 g的极度饮酒者,胃肠上皮化生的风险也没有升高(OR, 1.27; 95% CI, 0.74~2.19) [23]。考虑到饮酒与胃癌的中度关联,尽管它们呈阳性关联,但预计饮酒导致胃化生的风险不会那么高。因此,有必要进行进一步的大规模研究以得出明确的结论。

总的来说,中度至重度饮酒者表现出患胃癌的风险增加。此外,饮酒与胃肠上皮化生之间的关联值得进一步研究。

3.4. Hp感染

幽门螺杆菌(H. pylori)被世界卫生组织归类为I类致癌物,是胃炎和胃肠上皮化生的关键因素[24] [25]。IM被认为是幽门螺杆菌诱导的化生–异型增生–癌序列中的癌前病变,其特征是CDX2和/或MUC2表达增加[26] [27],这是一种调节肠粘膜表型发育和维持的肠道特异性同源框基因[28]。既往研究表明幽门螺杆菌毒力因子CagA通过上调CDX2介导的AGS胃癌细胞中的Claudin-2表达,从而破坏紧密连接[29],幽门螺杆菌通过NF-κB [30] SOX2 [31]和激活素A受体I型(ACVR1)促进CDX2介导的IM [26]

3.5. 胆汁酸

众所周知,胆汁酸(BAs)在GIM的发生中发挥着重要作用。BAs是胆汁和十二指肠胃反流(DGR)的主要成分之一,它们是一类具有独特物理、化学和生物特性的类固醇酸。在患者DGR中,最为丰富的胆汁酸是脱氧胆酸(DCA)和鹅去氧胆酸(CDCA) [32]。DCA作为一种未结合胆汁酸,与GIM的发生存在关联。一项研究表明[33],BAs通过多种信号通路调节CDX2的表达,从而诱导BE和GIM的发生和发展。其中,多种信号可触发NF-κB活性,最终激活IκB-NF-κB-PKAc复合物调节CDX2的转录。此外,BAs和FXR的组合诱导胃上皮中miR-92a-1-5p的上调。MiR-92a-1-5p通过FOXD1/NF-κB通路调节CDX2表达,促进GIM进展。值得注意的是,近年来的研究表明,FOXP3作为一种关键的转录因子,下调CDX2水平并与HDAC6和HNF4α相互作用形成HDAC6/FOXP3/HNF4α环,参与GIM的发育。

3.6. 其他因素

年龄成为引发GIM的关键危险要素。在一项我国开展的研究中,针对2149例消化道溃疡病例进行了详尽的分析,研究发现,超过50岁的患者罹患胃食管反流病的几率明显提升,且伴随着年龄的提升,胃食管反流病的发病率亦呈现出逐步上升的态势[34]。老年人与持续性IM或进展为异型增生显著相关。这可能是由于比年轻患者更易发生癌前病变。一项美国的研究[35]发现与之前在中国的研究结果不同,指出>45岁与IM进展相关[36]。这可能是因为GIM的患病率较高(62.8%)和上述研究中对IM进展的不同定义,其中包括较高的IM评分、异型增生和癌症作为IM进展,而这项研究仅将异型增生作为IM进展。除年龄外,糖尿病作为合并症也与持续性IM或进展为异型增生显著相关[35]。各种研究通过几种提出的机制描述了糖尿病与胃癌之间的关联[37] [38]。高血糖可产生活性氧,导致氧化DNA损伤积累,并最终促进胃癌发生[39] [40]。此外,胰岛素抵抗可通过表达胰岛素样生长因子(IGF)和IGF结合蛋白(IGFBP)的异质性表达来诱导细胞增殖[41]。最佳血糖控制可能有助于降低IM持续和进展的风险。一项研究[42]显示男性患者发生IM的风险显著高于女性患者。然而,柯丽等[43]在对我国西北区域2157名患者的临床数据进行深入剖析后,我们发现性别并不构成IM独立的危险要素,关于性别是否构成GIM的危险因素,目前缺乏明确定论,仍需要大样本研究进一步探究。对于其具体机制可以聚焦于不同性别肠道微生物菌群及性激素的差异,需更多实验数据进一步证实其结论。

4. GIM内镜诊断

当前,内镜检查依然是GIM诊断的首选手段。然而,传统的白光内镜检查(WLE)在GIM诊断中的敏感性并不高,且该检查方法无法准确判定GIM的严重程度与影响范围。近期,各类创新内镜技术,尤其是图像强化内镜技术的快速发展,极大地提高了GIM的检测效率,这为GIM的确诊和治疗提供了强有力的技术支撑。

4.1. 联动彩色成像

联动彩色成像(LCI)技术常被应用于GIM及早期胃癌的诊断,其能够通过提高对周围胃黏膜肠上皮化生区域的彩色对比度,从而提升对早期胃癌的识别能力。相关研究[44]借助于LCI技术对颜色差异与颜色成分值的精确测量,能够更加客观地刻画出早期胃癌的病变特征。相较于传统的白光成像,LCI技术显著提升了病变与正常组织间的颜色对比度,从而增强了对胃癌早期病变的识别能力。类似研究[45]也显示,通过彩色内镜检查发现的斑驳状浅紫区域被视作预测胃粘膜病变的重要信号,其整体诊断精确度达到79.44%,相比之下,传统白光内镜下的诊断准确度仅为40.19%,二者差异显著。临床实践[46]显示,在58名胃窦部有组织学IM患者中,通过LCI检测识别出的IM病例达到53例,其准确率相较于传统检测方法有显著提升。

4.2. 蓝色激光成像

一项研究[47]将蓝色激光成像(BLI)与放大内镜(ME)相结合应用于IM的诊断,并对其效能进行评估,结果表明,BLI-ME技术在检测IM方面的诊断准确率达到了94.0%。有研究[48]将1.5%乙酸灌注应用于胃镜检查,结果表明,醋酸染色内镜(AAC)的总体诊断准确率达到了89.0%,而另一项研究[49]表明,醋酸可增强BLT的成像质量,并且有助于提升IM的探测效率,实验采用BLT与醋酸联合应用(BLT-AA)对IM进行筛查,研究数据表明BLT-AA的检测精确度可达84.9%。两项研究结果具有一定差异,仍需大样本研究进一步证实是否两者结合的检查方法更有助于诊断IM。

4.3. 窄带成像技术

窄带成像(NBI)是一种新型图像增强内窥镜(IEE)方法,基于缩小帧序列成像方法中使用的滤光片的光谱透射率带宽,以创建视频内窥镜图像。这种方法于2003年首次被描述[50]。它可以突出病灶的表面微血管系统,因为NBI滤光片的中心波长是415和540 nm,被血红蛋白很好地吸收。粘膜中浅蓝色嵴(light blue crest, LBC)的出现是胃粘膜肠上皮化生的一种独特内窥镜表现,NBI对诊断GIM的有用性首次在一项日本研究中报道,敏感性为89%,特异性为93% [51]。一项Meta [52]分析结果显示窄带成像内镜应用于诊断胃粘膜肠上皮化生的灵敏度为89%,特异度为91%,有良好的诊断效能。

4.4. 其他诊断方法

文献报道[53]非线性光学显微镜能够在无需标记的情况下,精准捕捉IM病变的特定标志,并能够辨别IM的多种亚型。非标记式光学显微镜在IM的诊断识别中展现出显著的潜力,为IM相关病症的研究开辟了新的研究方向。目前,为了对IM进行精确的分期,一般需执行至少四次组织活检,并且这些样本必须分别置于两个不同的容器中。但一项研究[54]表明,将胃窦与胃体的活检样本置于同一容器中进行保存,这一做法对于降低内窥镜检查的成本以及减轻相关工作部门的负担具有显著意义。

总而言之,各种内镜技术对肠上皮化生的诊断效果不一,仍需要大样本研究探究其诊断效果的差异,掌握各类内镜技术在GIM方面的应用价值,对于临床实践具有重大意义。

综上所述,GIM作为胃癌的前驱病变,其在病理组织学分类、危险因素及胃镜检查技术等方面已有显著成就。但仍需大样本研究证实相关危险因素导致GIM的分子机制,从而进一步针对危险因素对其进行预防。现临床采用多种内镜技术相结合的方法来提高对GIM诊断的敏感度和特异度,效果比较突出的主要为NBI与其他内镜技术结合的检查方法,但现阶段对于GIM的诊断仍以病理活检作为金标准,仍需进一步研究出更为全面的无创诊断方法。伴随跨学科领域的持续发展,针对此病理性变化的探究预计将进一步加深,目的是提升临床上对胃癌前期病变的辨识与干预水平,从而降低胃癌发病率。

NOTES

*通讯作者。

参考文献

[1] Cao, M., Li, H., Sun, D. and Chen, W. (2020) Cancer Burden of Major Cancers in China: A Need for Sustainable Actions. Cancer Communications, 40, 205-210.
https://doi.org/10.1002/cac2.12025
[2] Correa, P. (1992) Human Gastric Carcinogenesis: A Multistep and Multifactorial Process—First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Research, 52, 6735-6740.
[3] Correa, P., Haenszel, W., Cuello, C., Zavala, D., Fontham, E., Zarama, G., et al. (1990) Gastric Precancerous Process in a High Risk Population: Cohort Follow-Up. Cancer Research, 50, 4737-4740.
[4] Shah, S.C., Gupta, S., Li, D., Morgan, D., Mustafa, R.A. and Gawron, A.J. (2020) Spotlight: Gastric Intestinal Metaplasia. Gastroenterology, 158, 704.
https://doi.org/10.1053/j.gastro.2020.01.012
[5] Aumpan, N., Vilaichone, R., Nunanan, P., Chonprasertsuk, S., Siramolpiwat, S., Bhanthumkomol, P., et al. (2020) Predictors for Development of Complete and Incomplete Intestinal Metaplasia (IM) Associated with H. pylori Infection: A Large-Scale Study from Low Prevalence Area of Gastric Cancer (IM-HP Trial). PLOS ONE, 15, e0239434.
https://doi.org/10.1371/journal.pone.0239434
[6] Shah, S.C., Gawron, A.J., Mustafa, R.A. and Piazuelo, M.B. (2020) Histologic Subtyping of Gastric Intestinal Metaplasia: Overview and Considerations for Clinical Practice. Gastroenterology, 158, 745-750.
https://doi.org/10.1053/j.gastro.2019.12.004
[7] Meyer, A.R. and Goldenring, J.R. (2018) Injury, Repair, Inflammation and Metaplasia in the Stomach. The Journal of Physiology, 596, 3861-3867.
https://doi.org/10.1113/jp275512
[8] 朱军民, 陈刚, 秦俊杰, 等. 糖代谢异常和炎症对胃癌的影响[J]. 兰州大学学报(医学版), 2018, 44(1): 83-88.
[9] 柳云婷, 刘敏, 李强, 姚玮, 王玉平, 郭庆红, 等. 胃黏膜肠上皮化生研究现状[J]. 胃肠病学和肝病学杂志, 2019, 28(10): 1169-1173.
[10] Tan, M.C., Mallepally, N., Ho, Q., Liu, Y., El-Serag, H.B. and Thrift, A.P. (2020) Dietary Factors and Gastric Intestinal Metaplasia Risk among US Veterans. Digestive Diseases and Sciences, 66, 1600-1610.
https://doi.org/10.1007/s10620-020-06399-9
[11] Yin, J., Yi, J., Yang, C., Xu, B., Lin, J., Hu, H., et al. (2021) Chronic Atrophic Gastritis and Intestinal Metaplasia Induced by High-Salt and N-Methyl-N’-Nitro-N-Nitrosoguanidine Intake in Rats. Experimental and Therapeutic Medicine, 21, Article No. 315.
https://doi.org/10.3892/etm.2021.9746
[12] 袁世发. 吸烟与胃癌的研究进展[J]. 武警医学院学报, 2009, 18(10): 910-912.
[13] Kim, K., Chang, Y., Ahn, J., Yang, H., Jung, J.Y., Kim, S., et al. (2019) Smoking and Urinary Cotinine Levels Are Predictors of Increased Risk for Gastric Intestinal Metaplasia. Cancer Research, 79, 676-684.
https://doi.org/10.1158/0008-5472.can-18-2268
[14] Thrift, A.P., Jove, A.G., Liu, Y., Tan, M.C. and El-Serag, H.B. (2020) Associations of Duration, Intensity, and Quantity of Smoking with Risk of Gastric Intestinal Metaplasia. Journal of Clinical Gastroenterology, 56, e71-e76.
https://doi.org/10.1097/mcg.0000000000001479
[15] Hatta, W., Koike, T., Asano, N., Hatayama, Y., Ogata, Y., Saito, M., et al. (2024) The Impact of Tobacco Smoking and Alcohol Consumption on the Development of Gastric Cancers. International Journal of Molecular Sciences, 25, Article 7854.
https://doi.org/10.3390/ijms25147854
[16] Deng, W., Jin, L., Zhuo, H., Vasiliou, V. and Zhang, Y. (2021) Alcohol Consumption and Risk of Stomach Cancer: A Meta-Analysis. Chemico-Biological Interactions, 336, Article ID: 109365.
https://doi.org/10.1016/j.cbi.2021.109365
[17] Rota, M., Pelucchi, C., Bertuccio, P., Matsuo, K., Zhang, Z., Ito, H., et al. (2017) Alcohol Consumption and Gastric Cancer Risk—A Pooled Analysis within the Stop Project Consortium. International Journal of Cancer, 141, 1950-1962.
https://doi.org/10.1002/ijc.30891
[18] He, Z., Zhao, T., Xu, H., Wang, Z., Xu, Y., Song, Y., et al. (2017) Association between Alcohol Consumption and the Risk of Gastric Cancer: A Meta-Analysis of Prospective Cohort Studies. Oncotarget, 8, 84459-84472.
https://doi.org/10.18632/oncotarget.20880
[19] Jun, S., Park, H., Kim, U., Choi, E.J., Lee, H.A., Park, B., et al. (2023) Cancer Risk Based on Alcohol Consumption Levels: A Comprehensive Systematic Review and Meta-analysis. Epidemiology and Health, 45, e2023092.
https://doi.org/10.4178/epih.e2023092
[20] Wang, P., Xiao, F., Gong, B. and Liu, F. (2017) Alcohol Drinking and Gastric Cancer Risk: A Meta-Analysis of Observational Studies. Oncotarget, 8, 99013-99023.
https://doi.org/10.18632/oncotarget.20918
[21] Fang, X., Wei, J., He, X., An, P., Wang, H., Jiang, L., et al. (2015) Landscape of Dietary Factors Associated with Risk of Gastric Cancer: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. European Journal of Cancer, 51, 2820-2832.
https://doi.org/10.1016/j.ejca.2015.09.010
[22] Bae, J. (2021) Sex as an Effect Modifier in the Association between Alcohol Intake and Gastric Cancer Risk. World Journal of Gastrointestinal Oncology, 13, 453-461.
https://doi.org/10.4251/wjgo.v13.i5.453
[23] Holmes, H.M., Jove, A.G., Tan, M.C., El-Serag, H.B. and Thrift, A.P. (2021) Alcohol Consumption and the Risk of Gastric Intestinal Metaplasia in a U.S. Veterans Population. PLOS ONE, 16, e0260019.
https://doi.org/10.1371/journal.pone.0260019
[24] Serena, S., Michele, R., Chiara, M., Gioacchino, L., Lorella, F., Tiziana, M., et al. (2018) Relationship between Helicobacter pylori Infection and GERD. Acta Biomedica, 89, 40-43.
[25] Zheng, J., Zhang, G., Gao, C., Xu, G., Lin, W., Jiang, C., et al. (2022) Linked Color Imaging-Based Endoscopic Grading of Gastric Intestinal Metaplasia and Histological Gastritis Staging in the Assessment of Gastric Cancer Risk. Scandinavian Journal of Gastroenterology, 57, 1374-1380.
https://doi.org/10.1080/00365521.2022.2085061
[26] Chen, H., Hu, Y., Xu, X., Zhou, Y., Li, N., He, C., et al. (2021) Upregulation of Oncogene Activin a Receptor Type I by Helicobacter pylori Infection Promotes Gastric Intestinal Metaplasia via Regulating CDX2. Helicobacter, 26, e12849.
https://doi.org/10.1111/hel.12849
[27] Chen, H., Hu, Y., Lu, N. and Zhu, Y. (2020) Caudal Type Homeoboxes as a Driving Force in Helicobacter pylori Infection-Induced Gastric Intestinal Metaplasia. Gut Microbes, 12, Article ID: 1809331.
https://doi.org/10.1080/19490976.2020.1809331
[28] Huang, L., Tang, X., Yang, F., Pan, W., Liang, X., Xu, Z., et al. (2021) Shikonin Contributes to Intestinal Epithelial Cell Differentiation through PKM2/NRF2-Mediated Polyol Pathway. Pharmacological ResearchModern Chinese Medicine, 1, Article ID: 100004.
https://doi.org/10.1016/j.prmcm.2021.100004
[29] Song, X., Chen, H., Wang, X., Deng, X., Xi, Y., He, Q., et al. (2013) H. pylori-Encoded CagA Disrupts Tight Junctions and Induces Invasiveness of AGS Gastric Carcinoma Cells via Cdx2-Dependent Targeting of Claudin-2. Cellular Immunology, 286, 22-30.
https://doi.org/10.1016/j.cellimm.2013.10.008
[30] Asano, N., Imatani, A., Watanabe, T., Fushiya, J., Kondo, Y., Jin, X., et al. (2016) Cdx2 Expression and Intestinal Metaplasia Induced by H. pylori Infection of Gastric Cells Is Regulated by Nod1-Mediated Innate Immune Responses. Cancer Research, 76, 1135-1145.
https://doi.org/10.1158/0008-5472.can-15-2272
[31] Asonuma, S., Imatani, A., Asano, N., Oikawa, T., Konishi, H., Iijima, K., et al. (2009) Helicobacter pylori Induces Gastric Mucosal Intestinal Metaplasia through the Inhibition of Interleukin-4-Mediated HMG Box Protein Sox2 Expression. American Journal of Physiology-Gastrointestinal and Liver Physiology, 297, G312-G322.
https://doi.org/10.1152/ajpgi.00518.2007
[32] Peng, S., Huo, X., Rezaei, D., Zhang, Q., Zhang, X., Yu, C., et al. (2014) In Barrett’s Esophagus Patients and Barrett’s Cell Lines, Ursodeoxycholic Acid Increases Antioxidant Expression and Prevents DNA Damage by Bile Acids. American Journal of Physiology-Gastrointestinal and Liver Physiology, 307, G129-G139.
https://doi.org/10.1152/ajpgi.00085.2014
[33] Wang, M., Lou, E. and Xue, Z. (2023) The Role of Bile Acid in Intestinal Metaplasia. Frontiers in Physiology, 14, Article 1115250.
https://doi.org/10.3389/fphys.2023.1115250
[34] Hong, J., Xia, L., Zuo, W., Wang, A., Xu, S., Xiong, H., et al. (2014) Risk Factors for Intestinal Metaplasia in Concomitant Gastric and Duodenal Ulcer Disease. Experimental and Therapeutic Medicine, 7, 929-934.
https://doi.org/10.3892/etm.2014.1507
[35] Aumpan, N., Vilaichone, R., Pornthisarn, B., Chonprasertsuk, S., Siramolpiwat, S., Bhanthumkomol, P., et al. (2021) Predictors for Regression and Progression of Intestinal Metaplasia (IM): A Large Population-Based Study from Low Prevalence Area of Gastric Cancer (IM-Predictor Trial). PLOS ONE, 16, e0255601.
https://doi.org/10.1371/journal.pone.0255601
[36] Leung, W.K. (2004) Factors Predicting Progression of Gastric Intestinal Metaplasia: Results of a Randomised Trial on Helicobacter Pylori Eradication. Gut, 53, 1244-1249.
https://doi.org/10.1136/gut.2003.034629
[37] Tseng, C. (2010) Diabetes Conveys a Higher Risk of Gastric Cancer Mortality Despite an Age-Standardised Decreasing Trend in the General Population in Taiwan Region. Gut, 60, 774-779.
https://doi.org/10.1136/gut.2010.226522
[38] Cheung, K.S., Chan, E.W., Chen, L., Seto, W.K., Wong, I.C.K. and Leung, W.K. (2019) Diabetes Increases Risk of Gastric Cancer after Helicobacter pylori Eradication: A Territory-Wide Study with Propensity Score Analysis. Diabetes Care, 42, 1769-1775.
https://doi.org/10.2337/dc19-0437
[39] Dandona, P., Thusu, K., Cook, S., Snyder, B., Makowski, J., Armstrong, D., et al. (1996) Oxidative Damage to DNA in Diabetes Mellitus. The Lancet, 347, 444-445.
https://doi.org/10.1016/s0140-6736(96)90013-6
[40] Farinati, F., Cardin, R., Degan, P., Rugge, M., Di Mario, F., Bonvicini, P., et al. (1998) Oxidative DNA Damage Accumulation in Gastric Carcinogenesis. Gut, 42, 351-356.
https://doi.org/10.1136/gut.42.3.351
[41] Yi, H.K., Hwang, P.H., Yang, D., Kang, C. and Lee, D. (2001) Expression of the Insulin-Like Growth Factors (IGFs) and the IGF-Binding Proteins (IGFBPs) in Human Gastric Cancer Cells. European Journal of Cancer, 37, 2257-2263.
https://doi.org/10.1016/s0959-8049(01)00269-6
[42] Joo, Y., Park, H., Myung, D., Baik, G., Shin, J., SeoII, G., et al. (2013) Prevalence and Risk Factors of Atrophic Gastritis and Intestinal Metaplasia: A Nationwide Multicenter Prospective Study in Korea. Gut and Liver, 7, 303-310.
https://doi.org/10.5009/gnl.2013.7.3.303
[43] 柯丽, 张迪, 陈瑜, 张林慧, 朱绍华, 王安辉, 等. 中国西北地区胃粘膜肠上皮化生危险因素调查[J]. 现代生物医学进展, 2016, 16(34): 6639-6643.
[44] Fukuda, H., Miura, Y., Osawa, H., Takezawa, T., Ino, Y., Okada, M., et al. (2018) Linked Color Imaging Can Enhance Recognition of Early Gastric Cancer by High Color Contrast to Surrounding Gastric Intestinal Metaplasia. Journal of Gastroenterology, 54, 396-406.
https://doi.org/10.1007/s00535-018-1515-6
[45] Chen, H., Wang, H., Wu, X., Liu, Y., Wu, Q., Lu, Y., et al. (2019) Predictability of Gastric Intestinal Metaplasia by Patchy Lavender Color Seen on Linked Color Imaging Endoscopy. Lasers in Medical Science, 34, 1791-1797.
https://doi.org/10.1007/s10103-019-02775-8
[46] Ono, S., Kato, M., Tsuda, M., Miyamoto, S., Abiko, S., Shimizu, Y., et al. (2018) Lavender Color in Linked Color Imaging Enables Noninvasive Detection of Gastric Intestinal Metaplasia. Digestion, 98, 222-230.
https://doi.org/10.1159/000489454
[47] Chen, H., Liu, Y., Lu, Y., Lin, X., Wu, Q., Sun, J., et al. (2018) Ability of Blue Laser Imaging with Magnifying Endoscopy for the Diagnosis of Gastric Intestinal Metaplasia. Lasers in Medical Science, 33, 1757-1762.
https://doi.org/10.1007/s10103-018-2536-3
[48] Song, K.H., Hwang, J.A., Kim, S.M., Ko, H.S., Kang, M.K., Ryu, K.H., et al. (2017) Acetic Acid Chromoendoscopy for Determining the Extent of Gastric Intestinal Metaplasia. Gastrointestinal Endoscopy, 85, 349-356.
https://doi.org/10.1016/j.gie.2016.07.064
[49] Chen, H., Wu, X., Liu, Y., Wu, Q., Lu, Y. and Li, C. (2018) Blue Laser Imaging with Acetic Acid Enhancement Improved the Detection Rate of Gastric Intestinal Metaplasia. Lasers in Medical Science, 34, 555-559.
https://doi.org/10.1007/s10103-018-2629-z
[50] Gono, K., Yamazaki, K., Doguchi, N., Nonami, T., Obi, T., Yamaguchi, M., et al. (2003) Endoscopic Observation of Tissue by Narrowband Illumination. Optical Review, 10, 211-215.
https://doi.org/10.1007/s10043-003-0211-8
[51] Uedo, N., Ishihara, R., Iishi, H., Yamamoto, S., Yamamoto, S., Yamada, T., et al. (2006) A New Method of Diagnosing Gastric Intestinal Metaplasia: Narrow-Band Imaging with Magnifying Endoscopy. Endoscopy, 38, 819-824.
https://doi.org/10.1055/s-2006-944632
[52] 张美. 内镜窄带成像技术用于胃黏膜肠上皮化生诊断的Meta分析[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2019.
[53] Li, L., Kang, D., Tu, H., Zhou, Y., Feng, C., Zhuo, S., et al. (2018) Nonlinear Optical Microscopy for Label-Freely Detecting Gastric Intestinal Metaplasia. Laser Physics Letters, 16, Article ID: 015602.
https://doi.org/10.1088/1612-202x/aaea72
[54] Castro, R., Esposito, G., Libânio, D., Afonso, L., Annibale, B., Dinis-Ribeiro, M., et al. (2019) A Single Vial Is Enough in the Absence of Endoscopic Suspected Intestinal Metaplasia—Less Is More! Scandinavian Journal of Gastroenterology, 54, 673-677.
https://doi.org/10.1080/00365521.2019.1613443