[1]
|
Sailer, I., Karasan, D., Todorovic, A., Ligoutsikou, M. and Pjetursson, B.E. (2022) Prosthetic Failures in Dental Implant Therapy. Periodontology 2000, 88, 130-144. https://doi.org/10.1111/prd.12416
|
[2]
|
Lee, S., Moon, J., Jeong, C., Bae, E., Park, C., Jeon, G., et al. (2017) The Mechanical Properties and Biometrical Effect of 3D Preformed Titanium Membrane for Guided Bone Regeneration on Alveolar Bone Defect. BioMed Research International, 2017, Article ID: 7102123. https://doi.org/10.1155/2017/7102123
|
[3]
|
Tallawi, M., Rosellini, E., Barbani, N., Cascone, M.G., Rai, R., Saint-Pierre, G., et al. (2015) Strategies for the Chemical and Biological Functionalization of Scaffolds for Cardiac Tissue Engineering: A Review. Journal of The Royal Society Interface, 12, Article ID: 20150254. https://doi.org/10.1098/rsif.2015.0254
|
[4]
|
Noori, A., Ashrafi, S.J., Vaez-Ghaemi, R., Hatamian-Zaremi, A. and Webster, T.J. (2017) A Review of Fibrin and Fibrin Composites for Bone Tissue Engineering. International Journal of Nanomedicine, 12, 4937-4961. https://doi.org/10.2147/ijn.s124671
|
[5]
|
Niu, Y., Xue, Q. and Fu, Y. (2021) Natural Glycan Derived Biomaterials for Inflammation Targeted Drug Delivery. Macromolecular Bioscience, 21, Article ID: 2100162. https://doi.org/10.1002/mabi.202100162
|
[6]
|
Chocholata, P., Kulda, V. and Babuska, V. (2019) Fabrication of Scaffolds for Bone-Tissue Regeneration. Materials, 12, Article No. 568. https://doi.org/10.3390/ma12040568
|
[7]
|
Parenteau-Bareil, R., Gauvin, R. and Berthod, F. (2010) Collagen-Based Biomaterials for Tissue Engineering Applications. Materials, 3, 1863-1887. https://doi.org/10.3390/ma3031863
|
[8]
|
Mizuno, M., Shindo, M., Kobayashi, D., Tsuruga, E., Amemiya, A. and Kuboki, Y. (1997) 3steogenesis by Bone Marrow Stromal Cells Maintained on Type I Collagen Matrix Gels in Vivo. Bone, 20, 101-107. https://doi.org/10.1016/s8756-3282(96)00349-3
|
[9]
|
Chen, P., Tao, J., Zhu, S., Cai, Y., Mao, Q., Yu, D., et al. (2015) Radially Oriented Collagen Scaffold with SDF-1 Promotes Osteochondral Repair by Facilitating Cell Homing. Biomaterials, 39, 114-123. https://doi.org/10.1016/j.biomaterials.2014.10.049
|
[10]
|
Ye, Q., Zhang, Y., Dai, K., Chen, X., Read, H.M., Zeng, L., et al. (2020) Three Dimensional Printed Bioglass/Gelatin/Alginate Composite Scaffolds with Promoted Mechanical Strength, Biomineralization, Cell Responses and Osteogenesis. Journal of Materials Science: Materials in Medicine, 31, Article No. 77. https://doi.org/10.1007/s10856-020-06413-6
|
[11]
|
Fang, X., Xie, J., Zhong, L., Li, J., Rong, D., Li, X., et al. (2016) Biomimetic Gelatin Methacrylamide Hydrogel Scaffolds for Bone Tissue Engineering. Journal of Materials Chemistry B, 4, 1070-1080. https://doi.org/10.1039/c5tb02251g
|
[12]
|
Kundu, B., Kurland, N.E., Bano, S., Patra, C., Engel, F.B., Yadavalli, V.K., et al. (2014) Silk Proteins for Biomedical Applications: Bioengineering Perspectives. Progress in Polymer Science, 39, 251-267. https://doi.org/10.1016/j.progpolymsci.2013.09.002
|
[13]
|
Xing, X., Han, Y. and Cheng, H. (2023) Biomedical Applications of Chitosan/Silk Fibroin Composites: A Review. International Journal of Biological Macromolecules, 240, Article ID: 124407. https://doi.org/10.1016/j.ijbiomac.2023.124407
|
[14]
|
Park, S.Y., Ki, C.S., Park, Y.H., Jung, H.M., Woo, K.M. and Kim, H.J. (2010) Electrospun Silk Fibroin Scaffolds with Macropores for Bone Regeneration: An in Vitro and in Vivo Study. Tissue Engineering Part A, 16, 1271-1279. https://doi.org/10.1089/ten.tea.2009.0328
|
[15]
|
Lauritano, D., Limongelli, L., Moreo, G., Favia, G. and Carinci, F. (2020) Nanomaterials for Periodontal Tissue Engineering: Chitosan-Based Scaffolds. a Systematic Review. Nanomaterials, 10, Article No. 605. https://doi.org/10.3390/nano10040605
|
[16]
|
Schwab, A., Hélary, C., Richards, R.G., Alini, M., Eglin, D. and D’Este, M. (2020) Tissue Mimetic Hyaluronan Bioink Containing Collagen Fibers with Controlled Orientation Modulating Cell Migration and Alignment. Materials Today Bio, 7, Article ID: 100058. https://doi.org/10.1016/j.mtbio.2020.100058
|
[17]
|
Ardizzoni, A., Neglia, R.G., Baschieri, M.C., Cermelli, C., Caratozzolo, M., Righi, E., et al. (2011) Influence of Hyaluronic Acid on Bacterial and Fungal Species, Including Clinically Relevant Opportunistic Pathogens. Journal of Materials Science: Materials in Medicine, 22, 2329-2338. https://doi.org/10.1007/s10856-011-4408-2
|
[18]
|
Litwiniuk, M., Krejner, A., Speyrer, M.S., et al. (2016) Hyaluronic Acid in Inflammation and Tissue Regeneration. Wounds: A Compendium of Clinical Research and Practice, 28, 78-88.
|
[19]
|
Shuborna, N.S., Chaiyasamut, T., Sakdajeyont, W., Vorakulpipat, C., Rojvanakarn, M. and Wongsirichat, N. (2019) Generation of Novel Hyaluronic Acid Biomaterials for Study of Pain in Third Molar Intervention: A Review. Journal of Dental Anesthesia and Pain Medicine, 19, 11-19. https://doi.org/10.17245/jdapm.2019.19.1.11
|
[20]
|
Zhao, D., Zhu, T., Li, J., Cui, L., Zhang, Z., Zhuang, X., et al. (2021) Poly(lactic-co-glycolic Acid)-Based Composite Bone-Substitute Materials. Bioactive Materials, 6, 346-360. https://doi.org/10.1016/j.bioactmat.2020.08.016
|
[21]
|
Heljak, M.K., Swieszkowski, W. and Kurzydlowski, K.J. (2014) Modeling of the Degradation Kinetics of Biodegradable Scaffolds: The Effects of the Environmental Conditions. Journal of Applied Polymer Science, 131. https://doi.org/10.1002/app.40280
|
[22]
|
Baican, M., Stoleru, E. and Vasile, C. (2020) Cellular Response to Synthetic Polymers. In: Mozafari, M., Ed., Handbook of Biomaterials Biocompatibility, Elsevier, 269-319. https://doi.org/10.1016/b978-0-08-102967-1.00014-1
|
[23]
|
Gunatillake, P. and Adhikari, R. (2003) Biodegradable Synthetic Polymers for Tissue Engineering. European Cells and Materials, 5, 1-16. https://doi.org/10.22203/ecm.v005a01
|
[24]
|
Chen, Y., Chai, M., Xuan, C., Lin, J., Yang, H., Li, C., et al. (2024) Tuning the Properties of Surgical Polymeric Materials for Improved Soft-Tissue Wound Closure and Healing. Progress in Materials Science, 143, Article ID: 101249. https://doi.org/10.1016/j.pmatsci.2024.101249
|
[25]
|
Yeo, T., Ko, Y., Kim, E.J., Kwon, O.K., Chung, H.Y. and Kwon, O.H. (2021) Promoting Bone Regeneration by 3d-Printed Poly(glycolic Acid)/hydroxyapatite Composite Scaffolds. Journal of Industrial and Engineering Chemistry, 94, 343-351. https://doi.org/10.1016/j.jiec.2020.11.004
|
[26]
|
Kundreckaitė, P., Šešok, A., Stonkus, R., Gaidulis, G., Romańczuk-Ruszuk, E. and Pauk, J. (2024) Mechanical Properties of 3D Printed PLA Scaffolds for Bone Regeneration. Acta Mechanica et Automatica, 18, 682-689. https://doi.org/10.2478/ama-2024-0072
|
[27]
|
Lasprilla, A.J.R., Martinez, G.A.R., Lunelli, B.H., Jardini, A.L. and Filho, R.M. (2012) Poly-Lactic Acid Synthesis for Application in Biomedical Devices—A Review. Biotechnology Advances, 30, 321-328. https://doi.org/10.1016/j.biotechadv.2011.06.019
|
[28]
|
Wang, W., Zhang, B., Zhao, L., Li, M., Han, Y., Wang, L., et al. (2021) Fabrication and Properties of Pla/Nano-Ha Composite Scaffolds with Balanced Mechanical Properties and Biological Functions for Bone Tissue Engineering Application. Nanotechnology Reviews, 10, 1359-1373. https://doi.org/10.1515/ntrev-2021-0083
|
[29]
|
Vach Agocsova, S., Culenova, M., Birova, I., Omanikova, L., Moncmanova, B., Danisovic, L., et al. (2023) Resorbable Biomaterials Used for 3D Scaffolds in Tissue Engineering: A Review. Materials, 16, Article No. 4267. https://doi.org/10.3390/ma16124267
|
[30]
|
Zhu, L., Luo, D. and Liu, Y. (2020) Effect of the Nano/Microscale Structure of Biomaterial Scaffolds on Bone Regeneration. International Journal of Oral Science, 12, Article No. 6. https://doi.org/10.1038/s41368-020-0073-y
|
[31]
|
Gao, J., Chen, S., Tang, D., Jiang, L., Shi, J. and Wang, S. (2018) Mechanical Properties and Degradability of Electrospun PCL/PLGA Blended Scaffolds as Vascular Grafts. Transactions of Tianjin University, 25, 152-160. https://doi.org/10.1007/s12209-018-0152-8
|
[32]
|
Donnaloja, F., Jacchetti, E., Soncini, M. and Raimondi, M.T. (2020) Natural and Synthetic Polymers for Bone Scaffolds Optimization. Polymers, 12, Article No. 905. https://doi.org/10.3390/polym12040905
|
[33]
|
Gaharwar, A.K., Singh, I. and Khademhosseini, A. (2020) Engineered Biomaterials for in Situ Tissue Regeneration. Nature Reviews Materials, 5, 686-705. https://doi.org/10.1038/s41578-020-0209-x
|
[34]
|
Khosla, S. (2009) Increasing Options for the Treatment of Osteoporosis. New England Journal of Medicine, 361, 818-820. https://doi.org/10.1056/nejme0905480
|
[35]
|
Koons, G.L., Diba, M. and Mikos, A.G. (2020) Materials Design for Bone-Tissue Engineering. Nature Reviews Materials, 5, 584-603. https://doi.org/10.1038/s41578-020-0204-2
|
[36]
|
Tan, L., Yu, X., Wan, P. and Yang, K. (2013) Biodegradable Materials for Bone Repairs: A Review. Journal of Materials Science & Technology, 29, 503-513. https://doi.org/10.1016/j.jmst.2013.03.002
|
[37]
|
Dwivedi, R., Kumar, S., Pandey, R., Mahajan, A., Nandana, D., Katti, D.S., et al. (2020) Polycaprolactone as Biomaterial for Bone Scaffolds: Review of Literature. Journal of Oral Biology and Craniofacial Research, 10, 381-388. https://doi.org/10.1016/j.jobcr.2019.10.003
|
[38]
|
Ilha, J., Figueiro, A., Grando, M.C., Macuvele, D.L.P., Fiori, M.A., Padoin, N., et al. (2022) Nanosilica: Polycaprolactone Ratio and Heat Treatment Modify the Wettability of Nanosilica/Polycaprolactone Coatings for Application in Aqueous Systems. Surfaces and Interfaces, 31, Article ID: 101997. https://doi.org/10.1016/j.surfin.2022.101997
|
[39]
|
Kaur, G., Kumar, V., Baino, F., Mauro, J.C., Pickrell, G., Evans, I., et al. (2019) Mechanical Properties of Bioactive Glasses, Ceramics, Glass-Ceramics and Composites: State-of-the-Art Review and Future Challenges. Materials Science and Engineering: C, 104, Article ID: 109895. https://doi.org/10.1016/j.msec.2019.109895
|
[40]
|
Satish Kumar, T., Vijaya Ramu, D. and Sampath Kumar, N.S. (2019) Preparation and Characterization of Biodegradable Collagen—Chitosan Scaffolds. Materials Today: Proceedings, 19, 2587-2590. https://doi.org/10.1016/j.matpr.2019.10.091
|
[41]
|
Peng, C., Zheng, J., Chen, D., Zhang, X., Deng, L., Chen, Z., et al. (2018) Response of hPDLSCs on 3D Printed PCL/PLGA Composite Scaffolds in Vitro. Molecular Medicine Reports, 18, 1335-1344. https://doi.org/10.3892/mmr.2018.9076
|
[42]
|
Patel, D.K., Dutta, S.D., Hexiu, J., Ganguly, K. and Lim, K. (2020) Bioactive Electrospun Nanocomposite Scaffolds of Poly(lactic Acid)/Cellulose Nanocrystals for Bone Tissue Engineering. International Journal of Biological Macromolecules, 162, 1429-1441. https://doi.org/10.1016/j.ijbiomac.2020.07.246
|
[43]
|
Perez, R.A. and Mestres, G. (2016) Role of Pore Size and Morphology in Musculo-Skeletal Tissue Regeneration. Materials Science and Engineering: C, 61, 922-939. https://doi.org/10.1016/j.msec.2015.12.087
|
[44]
|
Ma, Z., Wang, Q., Xie, W., Ye, W., Zhong, L., Huge, J., et al. (2021) Performance of 3D Printed PCL/PLGA/HA Biological Bone Tissue Engineering Scaffold. Polymer Composites, 42, 3593-3602. https://doi.org/10.1002/pc.26081
|
[45]
|
Cui, L., Zhang, J., Zou, J., Yang, X., Guo, H., Tian, H., et al. (2020) Electroactive Composite Scaffold with Locally Expressed Osteoinductive Factor for Synergistic Bone Repair upon Electrical Stimulation. Biomaterials, 230, Article ID: 119617. https://doi.org/10.1016/j.biomaterials.2019.119617
|
[46]
|
Li, L., Yang, H., Li, X., Yan, S., Xu, A., You, R., et al. (2021) Natural Silk Nanofibrils as Reinforcements for the Preparation of Chitosan-Based Bionanocomposites. Carbohydrate Polymers, 253, Article ID: 117214. https://doi.org/10.1016/j.carbpol.2020.117214
|
[47]
|
Wang, L., Wang, D., Zhou, Y., Zhang, Y., Li, Q. and Shen, C. (2019) Fabrication of Open‐Porous PCL/PLA Tissue Engineering Scaffolds and the Relationship of Foaming Process, Morphology, and Mechanical Behavior. Polymers for Advanced Technologies, 30, 2539-2548. https://doi.org/10.1002/pat.4701
|
[48]
|
Reddy, M.S.B., Ponnamma, D., Choudhary, R. and Sadasivuni, K.K. (2021) A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers, 13, Article No. 1105. https://doi.org/10.3390/polym13071105
|
[49]
|
Toosi, S., Naderi-Meshkin, H., Kalalinia, F., HosseinKhani, H., Heirani-Tabasi, A., Havakhah, S., et al. (2019) Bone Defect Healing Is Induced by Collagen Sponge/Polyglycolic Acid. Journal of Materials Science: Materials in Medicine, 30, Article No. 33. https://doi.org/10.1007/s10856-019-6235-9
|
[50]
|
Abbas, M., Alqahtani, M.S. and Alhifzi, R. (2023) Recent Developments in Polymer Nanocomposites for Bone Regeneration. International Journal of Molecular Sciences, 24, Article No. 3312. https://doi.org/10.3390/ijms24043312
|
[51]
|
Åkerlund, E., Diez-Escudero, A., Grzeszczak, A. and Persson, C. (2022) The Effect of PCL Addition on 3D-Printable PLA/HA Composite Filaments for the Treatment of Bone Defects. Polymers, 14, Article No. 3305. https://doi.org/10.3390/polym14163305
|
[52]
|
Lee, J., Park, J., Hong, I., Jeon, S., Cha, J., Paik, J., et al. (2021) 3D-Printed Barrier Membrane Using Mixture of Polycaprolactone and Beta-Tricalcium Phosphate for Regeneration of Rabbit Calvarial Defects. Materials, 14, Article No. 3280. https://doi.org/10.3390/ma14123280
|
[53]
|
Park, H., Choi, J.W. and Jeong, W.S. (2022) Clinical Application of Three-Dimensional Printing of Polycaprolactone/Beta-Tricalcium Phosphate Implants for Cranial Reconstruction. Journal of Craniofacial Surgery, 33, 1394-1399. https://doi.org/10.1097/scs.0000000000008595
|
[54]
|
Mirzavandi, Z., Poursamar, S.A., Amiri, F., Bigham, A. and Rafienia, M. (2024) 3D Printed Polycaprolactone/Gelatin/Ordered Mesoporous Calcium Magnesium Silicate Nanocomposite Scaffold for Bone Tissue Regeneration. Journal of Materials Science: Materials in Medicine, 35, Article No. 58. https://doi.org/10.1007/s10856-024-06828-5
|
[55]
|
Radziunas-Salinas, Y., Carnero, B., Pita-Vilar, M., Aboal-Castro, L., Díaz-Gómez, L.A. and Flores-Arias, M.T. (2024) Femtosecond Laser Ablation of 3D-Printed PCL Scaffolds as a Strategy to Enhance Bone Tissue Regeneration Efficacy. EPJ Web of Conferences, 309, Article No. 10014. https://doi.org/10.1051/epjconf/202430910014
|
[56]
|
Bartnikowski, M., Vaquette, C. and Ivanovski, S. (2020) Workflow for Highly Porous Resorbable Custom 3D Printed Scaffolds Using Medical Grade Polymer for Large Volume Alveolar Bone Regeneration. Clinical Oral Implants Research, 31, 431-441. https://doi.org/10.1111/clr.13579
|
[57]
|
Kartal, F. and Kaptan, A. (2024) Response of PLA Material to 3D Printing Speeds: A Comprehensive Examination on Mechanical Properties and Production Quality. European Mechanical Science, 8, 137-144. https://doi.org/10.26701/ems.1395362
|