[1]
|
Liu, Z., Hu, X., Bo, R., Yang, Y., Cheng, X., Pang, W., et al. (2024) A Three-Dimensionally Architected Electronic Skin Mimicking Human Mechanosensation. Science, 384, 987-994. https://doi.org/10.1126/science.adk5556
|
[2]
|
Hammock, M.L., Chortos, A., Tee, B.C., Tok, J.B. and Bao, Z. (2013) 25th Anniversary Article: The Evolution of Electronic Skin (e‐Skin): A Brief History, Design Considerations, and Recent Progress. Advanced Materials, 25, 5997-6038. https://doi.org/10.1002/adma.201302240
|
[3]
|
Li, S., Zhang, Y., Wang, Y., Xia, K., Yin, Z., Wang, H., et al. (2019) Physical Sensors for Skin‐Inspired Electronics. InfoMat, 2, 184-211. https://doi.org/10.1002/inf2.12060
|
[4]
|
Chortos, A., Liu, J. and Bao, Z. (2016) Pursuing Prosthetic Electronic Skin. Nature Materials, 15, 937-950. https://doi.org/10.1038/nmat4671
|
[5]
|
Koo, J.H., Lee, Y.J., Kim, H.J., Matusik, W., Kim, D. and Jeong, H. (2024) Electronic Skin: Opportunities and Challenges in Convergence with Machine Learning. Annual Review of Biomedical Engineering, 26, 331-355. https://doi.org/10.1146/annurev-bioeng-103122-032652
|
[6]
|
Liu, Y., Wang, H., Zhao, W., Zhang, M., Qin, H. and Xie, Y. (2018) Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features. Sensors, 18, Article No. 645. https://doi.org/10.3390/s18020645
|
[7]
|
Zhou, H., Zhang, C., Nong, H., Weng, J., Wang, D., Yu, Y., et al. (2025) Multi-Photon Neuron Embedded Bionic Skin for High-Precision Complex Texture and Object Reconstruction Perception Research. Opto-Electronic Advances, 8, Article ID: 240152. https://doi.org/10.29026/oea.2025.240152
|
[8]
|
Zhu, Y., Haghniaz, R., Hartel, M.C., Guan, S., Bahari, J., Li, Z., et al. (2023) A Breathable, Passive‐Cooling, Non‐inflammatory, and Biodegradable Aerogel Electronic Skin for Wearable Physical‐Electrophysiological‐Chemical Analysis. Advanced Materials, 35, Article ID: 2209300. https://doi.org/10.1002/adma.202209300
|
[9]
|
Guo, Y., Sun, X., Li, L., Shi, Y., Cheng, W. and Pan, L. (2025) Deep-Learning-Based Analysis of Electronic Skin Sensing Data. Sensors, 25, Article No. 1615. https://doi.org/10.3390/s25051615
|
[10]
|
Hu, D., Giorgio-Serchi, F., Zhang, S. and Yang, Y. (2023) Stretchable E-Skin and Transformer Enable High-Resolution Morphological Reconstruction for Soft Robots. Nature Machine Intelligence, 5, 261-272. https://doi.org/10.1038/s42256-023-00622-8
|
[11]
|
Macdonald, F.L.A., Lepora, N.F., Conradt, J. and Ward-Cherrier, B. (2022) Neuromorphic Tactile Edge Orientation Classification in an Unsupervised Spiking Neural Network. Sensors, 22, Article No. 6998. https://doi.org/10.3390/s22186998
|
[12]
|
Zhu, Y., Hartel, M.C., Yu, N., Garrido, P.R., Kim, S., Lee, J., et al. (2021) Epidermis‐Inspired Wearable Piezoresistive Pressure Sensors Using Reduced Graphene Oxide Self‐Wrapped Copper Nanowire Networks. Small Methods, 6, Article ID: 2100900. https://doi.org/10.1002/smtd.202100900
|
[13]
|
Deng, S., Zeng, Q., Xiao, Z., Zhang, J., Yang, G., Wu, X., et al. (2025) High-Performance Flexible Piezoresistive 3D Pressure Sensor Based on Wrinkled Structures and Porous Microstructures. Materials Letters, 379, Article ID: 137688. https://doi.org/10.1016/j.matlet.2024.137688
|
[14]
|
Na, H.R., Lee, H.J., Jeon, J.H., Kim, H., Jerng, S., Roy, S.B., et al. (2022) Vertical Graphene on Flexible Substrate, Overcoming Limits of Crack-Based Resistive Strain Sensors. NPJ Flexible Electronics, 6, Article No. 2. https://doi.org/10.1038/s41528-022-00135-1
|
[15]
|
Zhu, Y., Li, Y., Xie, D., Yan, B., Wu, Y., Zhang, Y., et al. (2023) High-Performance Flexible Tactile Sensor Enabled by Multi-Contact Mechanism for Normal and Shear Force Measurement. Nano Energy, 117, Article ID: 108862. https://doi.org/10.1016/j.nanoen.2023.108862
|
[16]
|
Bacher, E., Cartiel, S., García-Pueyo, J., Stopar, J., Zore, A., Kamnik, R., et al. (2024) Optoskin: Novel LIDAR Touch Sensors for Detection of Touch and Pressure within Wave Guides. IEEE Sensors Journal, 24, 33268-33280. https://doi.org/10.1109/jsen.2024.3443615
|
[17]
|
He, Y., Xu, X., Xiao, S., Wu, J., Zhou, P., Chen, L., et al. (2024) Research Progress and Application of Multimodal Flexible Sensors for Electronic Skin. ACS Sensors, 9, 2275-2293. https://doi.org/10.1021/acssensors.4c00307
|
[18]
|
Yeon, H., Lee, H., Kim, Y., Lee, D., Lee, Y., Lee, J., et al. (2021) Long-Term Reliable Physical Health Monitoring by Sweat Pore-Inspired Perforated Electronic Skins. Science Advances, 7, eabg8459. https://doi.org/10.1126/sciadv.abg8459
|
[19]
|
Sharifuzzaman, M., Chhetry, A., Zahed, M.A., Yoon, S.H., Park, C.I., Zhang, S., et al. (2020) Smart Bandage with Integrated Multifunctional Sensors Based on Mxene-Functionalized Porous Graphene Scaffold for Chronic Wound Care Management. Biosensors and Bioelectronics, 169, Article ID: 112637. https://doi.org/10.1016/j.bios.2020.112637
|
[20]
|
Zhang, J., Yan, K., Huang, J., Sun, X., Li, J., Cheng, Y., et al. (2024) Mechanically Robust, Flexible, Fast Responding Temperature Sensor and High‐Resolution Array with Ionically Conductive Double Cross‐Linked Hydrogel. Advanced Functional Materials, 34, Article ID: 2314433. https://doi.org/10.1002/adfm.202314433
|
[21]
|
Ni, Y., Zang, X., Yang, Y., Gong, Z., Li, H., Chen, J., et al. (2024) Environmental Stability Stretchable Organic Hydrogel Humidity Sensor for Respiratory Monitoring with Ultrahigh Sensitivity. Advanced Functional Materials, 34, Article ID: 2402853. https://doi.org/10.1002/adfm.202402853
|
[22]
|
Chen, Y., Lv, C., Ye, X., Ping, J., Ying, Y. and Lan, L. (2025) Hydrogel-Based Pressure Sensors for Electronic Skin Systems. Matter, 8, Article ID: 101992. https://doi.org/10.1016/j.matt.2025.101992
|
[23]
|
Lu, Y., Yang, G., Wang, S., Zhang, Y., Jian, Y., He, L., et al. (2023) Stretchable Graphene-Hydrogel Interfaces for Wearable and Implantable Bioelectronics. Nature Electronics, 7, 51-65. https://doi.org/10.1038/s41928-023-01091-y
|
[24]
|
Geng, B., Zeng, H., Luo, H. and Wu, X. (2023) Construction of Wearable Touch Sensors by Mimicking the Properties of Materials and Structures in Nature. Biomimetics, 8, Article No. 372. https://doi.org/10.3390/biomimetics8040372
|
[25]
|
Yao, N. and Wang, S. (2024) Recent Progress of Optical Tactile Sensors: A Review. Optics & Laser Technology, 176, Article ID: 111040. https://doi.org/10.1016/j.optlastec.2024.111040
|
[26]
|
Hu, H., Ma, Y., Hassan, Y.A., Chen, L., Ouyang, J., Yang, H., et al. (2025) Conductive PDA@HNT/rGO/PDMS Aerogel Composites with Significantly Enhanced Durability and Stretchability for Wearable Electronics. Microstructures, 5, Article ID: 2025020. https://doi.org/10.20517/microstructures.2024.121
|
[27]
|
Choi, S., Kang, S., Lee, J., Park, J. and Kang, S. (2023) Recent Advances in Wearable Iontronic Sensors for Healthcare Applications. Frontiers in Bioengineering and Biotechnology, 11, Article ID: 1335188. https://doi.org/10.3389/fbioe.2023.1335188
|
[28]
|
Mao, Y., Wang, L., Wu, Z., Ji, D., Sheng, H., Chang, X., et al. (2023) Thermochromic Optical/Electrical Hydrated Ionogel with Anti-Freezing and Self-Healing Ability for Multimodal Sensor. Composites Communications, 44, Article ID: 101769. https://doi.org/10.1016/j.coco.2023.101769
|
[29]
|
Li, J., Wang, H., Luo, Y., Zhou, Z., Zhang, H., Chen, H., et al. (2024) Design of AI-Enhanced and Hardware-Supported Multimodal E-Skin for Environmental Object Recognition and Wireless Toxic Gas Alarm. Nano-Micro Letters, 16, Article No. 256. https://doi.org/10.1007/s40820-024-01466-6
|
[30]
|
Li, Z., Yang, J., Zhang, Y., Geng, P., Feng, J., Chen, B., et al. (2024) Ultrafast Readout, Crosstalk Suppression Iontronic Array Enabled by Frequency-Coding Architecture. NPJ Flexible Electronics, 8, Article No. 9. https://doi.org/10.1038/s41528-024-00295-2
|
[31]
|
Mao, P., Li, H. and Yu, Z. (2023) A Review of Skin-Wearable Sensors for Non-Invasive Health Monitoring Applications. Sensors, 23, Article No. 3673. https://doi.org/10.3390/s23073673
|
[32]
|
Sundaram, S., Kellnhofer, P., Li, Y., Zhu, J., Torralba, A. and Matusik, W. (2019) Learning the Signatures of the Human Grasp Using a Scalable Tactile Glove. Nature, 569, 698-702. https://doi.org/10.1038/s41586-019-1234-z
|
[33]
|
Park, K., Yuk, H., Yang, M., Cho, J., Lee, H. and Kim, J. (2022) A Biomimetic Elastomeric Robot Skin Using Electrical Impedance and Acoustic Tomography for Tactile Sensing. Science Robotics, 7, eabm7187. https://doi.org/10.1126/scirobotics.abm7187
|
[34]
|
Zhang, J., Liu, Z., Tang, Y., Wang, S., Meng, J. and Li, F. (2024) Explainable Deep Learning-Assisted Self-Calibrating Colorimetric Patches for in Situ Sweat Analysis. Analytical Chemistry, 96, 1205-1213. https://doi.org/10.1021/acs.analchem.3c04368
|
[35]
|
Możaryn, J. (2023) NARX Recurrent Neural Network Model of the Graphene-Based Electronic Skin Sensors with Hysteretic Behaviour. In: Biele, C., et al., Eds., Machine Intelligence and Digital Interaction Conference, Springer, 233-241. https://doi.org/10.1007/978-3-031-37649-8_23
|
[36]
|
Liu, F., Deswal, S., Christou, A., Sandamirskaya, Y., Kaboli, M. and Dahiya, R. (2022) Neuro-Inspired Electronic Skin for Robots. Science Robotics, 7, eabl7344. https://doi.org/10.1126/scirobotics.abl7344
|
[37]
|
Guo, F., Yu, F., Li, M., Chen, C., Yan, J., Li, Y., et al. (2025) Event-Driven Tactile Sensing with Dense Spiking Graph Neural Networks. IEEE Transactions on Instrumentation and Measurement, 74, Article ID: 2508113. https://doi.org/10.1109/tim.2025.3541787
|
[38]
|
Shiri, F.M., Perumal, T., Mustapha, N., et al. (2023) A Comprehensive Overview and Comparative Analysis on Deep Learning Models: CNN, RNN, LSTM, GRU.
|
[39]
|
Liu, Z., Wang, X., Xiang, G., Wang, Z., Shao, Y. and Liu, H. (2025) A Neuromorphic Tactile Perception System Based on Spiking Neural Network for Texture Recognition. In: Lan, X.G., et al., Eds., International Conference on Intelligent Robotics and Applications, Springer, 176-191. https://doi.org/10.1007/978-981-96-0789-1_13
|
[40]
|
Molina-Lopez, F., Gao, T.Z., Kraft, U., Zhu, C., Öhlund, T., Pfattner, R., et al. (2019) Inkjet-Printed Stretchable and Low Voltage Synaptic Transistor Array. Nature Communications, 10, Article No. 2676. https://doi.org/10.1038/s41467-019-10569-3
|