[1]
|
中国高血压防治指南修订委员会, 中国高血压联盟, 中国医疗保健国际交流促进会高血压病学分会, 等. 中国高血压防治指南(2024年修订版) [J]. 中华高血压杂志(中英文), 2024, 32(7): 603-700.
|
[2]
|
Park, S., Han, K., Lee, S., Kim, Y., Lee, Y., Kang, M.W., et al. (2021) Cardiovascular or Mortality Risk of Controlled Hypertension and Importance of Physical Activity. Heart, 107, 1472-1479. https://doi.org/10.1136/heartjnl-2020-318193
|
[3]
|
Frangogiannis, N.G. (2020) Cardiac Fibrosis. Cardiovascular Research, 117, 1450-1488. https://doi.org/10.1093/cvr/cvaa324
|
[4]
|
Nwabuo, C.C. and Vasan, R.S. (2020) Pathophysiology of Hypertensive Heart Disease: Beyond Left Ventricular Hypertrophy. Current Hypertension Reports, 22, Article No. 11. https://doi.org/10.1007/s11906-020-1017-9
|
[5]
|
AlQudah, M., Hale, T.M. and Czubryt, M.P. (2020) Targeting the Renin-Angiotensin-Aldosterone System in Fibrosis. Matrix Biology, 91, 92-108. https://doi.org/10.1016/j.matbio.2020.04.005
|
[6]
|
Spoladore, R., Falasconi, G., Fiore, G., Di Maio, S., Preda, A., Slavich, M., et al. (2021) Cardiac Fibrosis: Emerging Agents in Preclinical and Clinical Development. Expert Opinion on Investigational Drugs, 30, 153-166. https://doi.org/10.1080/13543784.2021.1868432
|
[7]
|
Gibb, A.A., Lazaropoulos, M.P. and Elrod, J.W. (2020) Myofibroblasts and Fibrosis. Circulation Research, 127, 427-447. https://doi.org/10.1161/circresaha.120.316958
|
[8]
|
Te Riet, L., van Esch, J.H.M., Roks, A.J.M., van den Meiracker, A.H. and Danser, A.H.J. (2015) Hypertension. Circulation Research, 116, 960-975. https://doi.org/10.1161/circresaha.116.303587
|
[9]
|
Sztechman, D., Czarzasta, K., Cudnoch-Jedrzejewska, A., Szczepanska-Sadowska, E. and Zera, T. (2018) Aldosterone and Mineralocorticoid Receptors in Regulation of the Cardiovascular System and Pathological Remodeling of the Heart and Arteries. Journal of Physiology and Pharmacology, 69, 829-845.
|
[10]
|
Li, P., He, R., Shi, S., Li, R., Wang, Q., Rao, G., et al. (2019) Modulation of miR-10a-Mediated TGF-β1/Smads Signaling Affects Atrial Fibrillation-Induced Cardiac Fibrosis and Cardiac Fibroblast Proliferation. Bioscience Reports, 39, BSR20181931. https://doi.org/10.1042/bsr20181931
|
[11]
|
Khalil, H., Kanisicak, O., Prasad, V., Correll, R.N., Fu, X., Schips, T., et al. (2017) Fibroblast-Specific TGF-β-Smad2/3 Signaling Underlies Cardiac Fibrosis. Journal of Clinical Investigation, 127, 3770-3783. https://doi.org/10.1172/jci94753
|
[12]
|
Li, F., Du, W.W., Li, X., Xu, J., Wu, N., Awan, F.M., et al. (2024) A Novel Circular RNA CirciTGa9 Predominantly Generated in Human Heart Disease Induces Cardiac Remodeling and Fibrosis. Research, 7, Article 303. https://doi.org/10.34133/research.0303
|
[13]
|
Xue, Y., Zhang, M., Liu, M., Liu, Y., Li, L., Han, X., et al. (2021) 8-Gingerol Ameliorates Myocardial Fibrosis by Attenuating Reactive Oxygen Species, Apoptosis, and Autophagy via the PI3K/Akt/mTOR Signaling Pathway. Frontiers in Pharmacology, 12, Article 711701. https://doi.org/10.3389/fphar.2021.711701
|
[14]
|
Tang, L., Dai, F., Liu, Y., Yu, X., Huang, C., Wang, Y., et al. (2018) Rhoa/Rock Signaling Regulates Smooth Muscle Phenotypic Modulation and Vascular Remodeling via the JNK Pathway and Vimentin Cytoskeleton. Pharmacological Research, 133, 201-212. https://doi.org/10.1016/j.phrs.2018.05.011
|
[15]
|
Nusse, R. and Clevers, H. (2017) Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell, 169, 985-999. https://doi.org/10.1016/j.cell.2017.05.016
|
[16]
|
Liu, J., Xiao, Q., Xiao, J., Niu, C., Li, Y., Zhang, X., et al. (2022) Wnt/β-catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduction and Targeted Therapy, 7, Article No. 3. https://doi.org/10.1038/s41392-021-00762-6
|
[17]
|
Działo, E., Czepiel, M., Tkacz, K., Siedlar, M., Kania, G. and Błyszczuk, P. (2021) Wnt/β-Catenin Signaling Promotes TGF-β-Mediated Activation of Human Cardiac Fibroblasts by Enhancing IL-11 Production. International Journal of Molecular Sciences, 22, Article 10072. https://doi.org/10.3390/ijms221810072
|
[18]
|
Xiang, F., Fang, M. and Yutzey, K.E. (2017) Loss of β-Catenin in Resident Cardiac Fibroblasts Attenuates Fibrosis Induced by Pressure Overload in Mice. Nature Communications, 8, Article No. 712. https://doi.org/10.1038/s41467-017-00840-w
|
[19]
|
Steven, S., Frenis, K., Oelze, M., Kalinovic, S., Kuntic, M., Bayo Jimenez, M.T., et al. (2019) Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. Oxidative Medicine and Cellular Longevity, 2019, 1-26. https://doi.org/10.1155/2019/7092151
|
[20]
|
Mikolajczyk, T.P., Szczepaniak, P., Vidler, F., Maffia, P., Graham, G.J. and Guzik, T.J. (2021) Role of Inflammatory Chemokines in Hypertension. Pharmacology & Therapeutics, 223, Article 107799. https://doi.org/10.1016/j.pharmthera.2020.107799
|
[21]
|
Lavine, K.J., Pinto, A.R., Epelman, S., Kopecky, B.J., Clemente-Casares, X., Godwin, J., et al. (2018) The Macrophage in Cardiac Homeostasis and Disease. Journal of the American College of Cardiology, 72, 2213-2230. https://doi.org/10.1016/j.jacc.2018.08.2149
|
[22]
|
Pavlou, S., Lindsay, J., Ingram, R., Xu, H. and Chen, M. (2018) Sustained High Glucose Exposure Sensitizes Macrophage Responses to Cytokine Stimuli but Reduces Their Phagocytic Activity. BMC Immunology, 19, Article No. 24. https://doi.org/10.1186/s12865-018-0261-0
|
[23]
|
Kassem, K.M., Ali, M. and Rhaleb, N. (2019) Interleukin 4: Its Role in Hypertension, Atherosclerosis, Valvular, and Nonvalvular Cardiovascular Diseases. Journal of Cardiovascular Pharmacology and Therapeutics, 25, 7-14. https://doi.org/10.1177/1074248419868699
|
[24]
|
Nosalski, R., Mikolajczyk, T., Siedlinski, M., Saju, B., Koziol, J., Maffia, P., et al. (2020) Nox1/4 Inhibition Exacerbates Age Dependent Perivascular Inflammation and Fibrosis in a Model of Spontaneous Hypertension. Pharmacological Research, 161, Article 105235. https://doi.org/10.1016/j.phrs.2020.105235
|
[25]
|
Gan, W., Ren, J., Li, T., Lv, S., Li, C., Liu, Z., et al. (2018) The SGK1 Inhibitor EMD638683, Prevents Angiotensin II-Induced Cardiac Inflammation and Fibrosis by Blocking NLRP3 Inflammasome Activation. Biochimica et Biophysica Acta—Molecular Basis of Disease, 1864, 1-10. https://doi.org/10.1016/j.bbadis.2017.10.001
|
[26]
|
Guido, M.C., Marques, A.F., Tavares, E.R., Tavares de Melo, M.D., Salemi, V.M.C. and Maranhão, R.C. (2017) The Effects of Diabetes Induction on the Rat Heart: Differences in Oxidative Stress, Inflammatory Cells, and Fibrosis between Subendocardial and Interstitial Myocardial Areas. Oxidative Medicine and Cellular Longevity, 2017, Article 5343972. https://doi.org/10.1155/2017/5343972
|
[27]
|
Zhang, M. and Zhang, S. (2020) T Cells in Fibrosis and Fibrotic Diseases. Frontiers in Immunology, 11, Article 1142. https://doi.org/10.3389/fimmu.2020.01142
|
[28]
|
Nevers, T., Salvador, A.M., Velazquez, F., Ngwenyama, N., Carrillo-Salinas, F.J., Aronovitz, M., et al. (2017) Th1 Effector T Cells Selectively Orchestrate Cardiac Fibrosis in Nonischemic Heart Failure. Journal of Experimental Medicine, 214, 3311-3329. https://doi.org/10.1084/jem.20161791
|
[29]
|
van der Pol, A., van Gilst, W.H., Voors, A.A. and van der Meer, P. (2018) Treating Oxidative Stress in Heart Failure: Past, Present and Future. European Journal of Heart Failure, 21, 425-435. https://doi.org/10.1002/ejhf.1320
|
[30]
|
Guzik, T.J. and Touyz, R.M. (2017) Oxidative Stress, Inflammation, and Vascular Aging in Hypertension. Hypertension, 70, 660-667. https://doi.org/10.1161/hypertensionaha.117.07802
|
[31]
|
Li, C., Zhang, J., Xue, M., Li, X., Han, F., Liu, X., et al. (2019) SGLT2 Inhibition with Empagliflozin Attenuates Myocardial Oxidative Stress and Fibrosis in Diabetic Mice Heart. Cardiovascular Diabetology, 18, Article No. 15.
|
[32]
|
Zhu, W., Wu, R., Lv, Y., Liu, Y., Huang, H. and Xu, J. (2020) BRD4 Blockage Alleviates Pathological Cardiac Hypertrophy through the Suppression of Fibrosis and Inflammation via Reducing ROS Generation. Biomedicine & Pharmacotherapy, 121, Article 109368. https://doi.org/10.1016/j.biopha.2019.109368
|
[33]
|
Chen, M.S., Lee, R.T. and Garbern, J.C. (2021) Senescence Mechanisms and Targets in the Heart. Cardiovascular Research, 118, 1173-1187. https://doi.org/10.1093/cvr/cvab161
|
[34]
|
Zhao, Q.D., Viswanadhapalli, S., Williams, P., Shi, Q., Tan, C., Yi, X., et al. (2015) NADPH Oxidase 4 Induces Cardiac Fibrosis and Hypertrophy through Activating Akt/mTOR and NF-κB Signaling Pathways. Circulation, 131, 643-655. https://doi.org/10.1161/circulationaha.114.011079
|
[35]
|
Liu, X., Zhang, Q., Pan, L., Liu, S., Xu, P., Luo, X., et al. (2016) NADPH Oxidase 4 Contributes to Connective Tissue Growth Factor Expression through Smad3-Dependent Signaling Pathway. Free Radical Biology and Medicine, 94, 174-184. https://doi.org/10.1016/j.freeradbiomed.2016.02.031
|
[36]
|
Li, L., Zhao, Q. and Kong, W. (2018) Extracellular Matrix Remodeling and Cardiac Fibrosis. Matrix Biology, 68, 490-506. https://doi.org/10.1016/j.matbio.2018.01.013
|
[37]
|
Cabral-Pacheco, G.A., Garza-Veloz, I., Castruita-De la Rosa, C., Ramirez-Acuña, J.M., Perez-Romero, B.A., Guerrero-Rodriguez, J.F., et al. (2020) The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. International Journal of Molecular Sciences, 21, Article 9739. https://doi.org/10.3390/ijms21249739
|
[38]
|
Chen, R., Xue, J. and Xie, M. (2013) Osthole Regulates TGF-β1 and MMP-2/9 Expressions via Activation of PPARα/γ in Cultured Mouse Cardiac Fibroblasts Stimulated with Angiotensin II. Journal of Pharmacy & Pharmaceutical Sciences, 16, 732-741. https://doi.org/10.18433/j3hk5c
|
[39]
|
Kostov, K. and Blazhev, A. (2022) Changes in Serum Levels of Matrix Metalloproteinase-1 and Tissue Inhibitor of Metalloproteinases-1 in Patients with Essential Hypertension. Bioengineering, 9, Article 119. https://doi.org/10.3390/bioengineering9030119
|
[40]
|
Saliminejad, K., Khorram Khorshid, H.R., Soleymani Fard, S. and Ghaffari, S.H. (2018) An Overview of MicroRNAs: Biology, Functions, Therapeutics, and Analysis Methods. Journal of Cellular Physiology, 234, 5451-5465. https://doi.org/10.1002/jcp.27486
|
[41]
|
Watanabe, K., Narumi, T., Watanabe, T., Otaki, Y., Takahashi, T., Aono, T., et al. (2020) The Association between MicroRNA-21 and Hypertension-Induced Cardiac Remodeling. PLOS ONE, 15, e0226053. https://doi.org/10.1371/journal.pone.0226053
|
[42]
|
Sassi, Y., Avramopoulos, P., Ramanujam, D., Grüter, L., Werfel, S., Giosele, S., et al. (2017) Cardiac Myocyte miR-29 Promotes Pathological Remodeling of the Heart by Activating Wnt Signaling. Nature Communications, 8, Article No. 1614. https://doi.org/10.1038/s41467-017-01737-4
|
[43]
|
Shao, S., Zhang, Y., Gong, M., Yang, Q., Yuan, M., Yuan, M., et al. (2021) Ivabradine Ameliorates Cardiac Function in Heart Failure with Preserved and Reduced Ejection Fraction via Upregulation of Mir‐133a. Oxidative Medicine and Cellular Longevity, 2021, Article 1257283. https://doi.org/10.1155/2021/1257283
|
[44]
|
Li, X., Zhang, S., Wa, M., Liu, Z. and Hu, S. (2019) MicroRNA-101 Protects against Cardiac Remodeling Following Myocardial Infarction via Downregulation of Runt-Related Transcription Factor 1. Journal of the American Heart Association, 8, e013112. https://doi.org/10.1161/jaha.119.013112
|
[45]
|
Deng, H., He, Z., Dong, Z., Zhang, Y., Han, X. and Li, H. (2021) MicroRNA-451a Attenuates Angiotensin II-Induced Cardiac Fibrosis and Inflammation by Directly Targeting T-Box1. Journal of Physiology and Biochemistry, 78, 257-269. https://doi.org/10.1007/s13105-021-00861-6
|
[46]
|
Yousefi, F., Shabaninejad, Z., Vakili, S., Derakhshan, M., Movahedpour, A., Dabiri, H., et al. (2020) TGF-β and Wnt Signaling Pathways in Cardiac Fibrosis: Non-Coding RNAs Come into Focus. Cell Communication and Signaling, 18, Article No. 87. https://doi.org/10.1186/s12964-020-00555-4
|
[47]
|
Li, D., Zhang, C., Li, J., Che, J., Yang, X., Xian, Y., et al. (2019) Long Non-Coding RNA MALAT1 Promotes Cardiac Remodeling in Hypertensive Rats by Inhibiting the Transcription of MyoD. Aging, 11, 8792-8809. https://doi.org/10.18632/aging.102265
|
[48]
|
Zheng, D., Zhang, Y., Hu, Y., Guan, J., Xu, L., Xiao, W., et al. (2019) Long Noncoding RNA Crnde Attenuates Cardiac Fibrosis via Smad3-Crnde Negative Feedback in Diabetic Cardiomyopathy. The FEBS Journal, 286, 1645-1655. https://doi.org/10.1111/febs.14780
|
[49]
|
Singh, D.D., Kim, Y., Choi, S.A., Han, I. and Yadav, D.K. (2023) Clinical Significance of MicroRNAs, Long Non-Coding RNAs, and CircRNAs in Cardiovascular Diseases. Cells, 12, Article 1629. https://doi.org/10.3390/cells12121629
|
[50]
|
Altesha, M., Ni, T., Khan, A., Liu, K. and Zheng, X. (2018) Circular RNA in Cardiovascular Disease. Journal of Cellular Physiology, 234, 5588-5600. https://doi.org/10.1002/jcp.27384
|
[51]
|
Li, H., Xu, J., Fang, X., Zhu, J., Yang, J., Pan, R., et al. (2019) Circular RNA CircRNA_000203 Aggravates Cardiac Hypertrophy via Suppressing miR-26b-5p and miR-140-3p Binding to Gata4. Cardiovascular Research, 116, 1323-1334. https://doi.org/10.1093/cvr/cvz215
|
[52]
|
Pitt, B. and Diez, J. (2024) Possible Role of Gut Microbiota Alterations in Myocardial Fibrosis and Burden of Heart Failure in Hypertensive Heart Disease. Hypertension, 81, 1467-1476. https://doi.org/10.1161/hypertensionaha.124.23089
|
[53]
|
Lin, C., Cheng, Y., Chen, H., Chao, Y., Nicholson, M.W., Yen, E.C.L., et al. (2022) Commensal Gut Microbiota-Derived Acetate and Propionate Enhance Heart Adaptation in Response to Cardiac Pressure Overload in Mice. Theranostics, 12, 7319-7334. https://doi.org/10.7150/thno.76002
|
[54]
|
Shen, S., Tian, B., Zhang, H., Wang, Y., Li, T. and Cao, Y. (2025) Heart Failure and Gut Microbiota: What Is Cause and Effect? Research, 8, Article 610. https://doi.org/10.34133/research.0610
|
[55]
|
Zhang, Y., Wang, Y., Ke, B. and Du, J. (2021) TMAO: How Gut Microbiota Contributes to Heart Failure. Translational Research, 228, 109-125. https://doi.org/10.1016/j.trsl.2020.08.007
|
[56]
|
Saha, P., Mell, B., Golonka, R.M., Bovilla, V.R., Abokor, A.A., Mei, X., et al. (2022) Selective IgA Deficiency in Spontaneously Hypertensive Rats with Gut Dysbiosis. Hypertension, 79, 2239-2249. https://doi.org/10.1161/hypertensionaha.122.19307
|
[57]
|
Gutiérrez-Calabrés, E., Ortega-Hernández, A., Modrego, J., Gómez-Gordo, R., Caro-Vadillo, A., Rodríguez-Bobada, C., et al. (2020) Gut Microbiota Profile Identifies Transition from Compensated Cardiac Hypertrophy to Heart Failure in Hypertensive Rats. Hypertension, 76, 1545-1554. https://doi.org/10.1161/hypertensionaha.120.15123
|
[58]
|
Carrillo-Salinas, F.J., Anastasiou, M., Ngwenyama, N., Kaur, K., Tai, A., Smolgovsky, S.A., et al. (2020) Gut Dysbiosis Induced by Cardiac Pressure Overload Enhances Adverse Cardiac Remodeling in a T Cell-Dependent Manner. Gut Microbes, 12, Article 1823801. https://doi.org/10.1080/19490976.2020.1823801
|
[59]
|
Mamic, P., Snyder, M. and Tang, W.H.W. (2023) Gut Microbiome-Based Management of Patients with Heart Failure. Journal of the American College of Cardiology, 81, 1729-1739. https://doi.org/10.1016/j.jacc.2023.02.045
|
[60]
|
Avery, E.G., Bartolomaeus, H., Rauch, A., Chen, C., N’Diaye, G., Löber, U., et al. (2022) Quantifying the Impact of Gut Microbiota on Inflammation and Hypertensive Organ Damage. Cardiovascular Research, 119, 1441-1452. https://doi.org/10.1093/cvr/cvac121
|
[61]
|
Unger, T., Borghi, C., Charchar, F., Khan, N.A., Poulter, N.R., Prabhakaran, D., et al. (2020) 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Journal of Hypertension, 38, 982-1004. https://doi.org/10.1097/hjh.0000000000002453
|
[62]
|
Ren, Z., Yang, K., Zhao, M., Liu, W., Zhang, X., Chi, J., et al. (2020) Calcium-Sensing Receptor on Neutrophil Promotes Myocardial Apoptosis and Fibrosis after Acute Myocardial Infarction via NLRP3 Inflammasome Activation. Canadian Journal of Cardiology, 36, 893-905. https://doi.org/10.1016/j.cjca.2019.09.026
|
[63]
|
Mustafa, N.H., Jalil, J., Zainalabidin, S., Saleh, M.S.M., Asmadi, A.Y. and Kamisah, Y. (2022) Molecular Mechanisms of Sacubitril/Valsartan in Cardiac Remodeling. Frontiers in Pharmacology, 13, Article 892460. https://doi.org/10.3389/fphar.2022.892460
|
[64]
|
Wu, M., Guo, Y., Wu, Y., Xu, K. and Lin, L. (2021) Protective Effects of Sacubitril/Valsartan on Cardiac Fibrosis and Function in Rats with Experimental Myocardial Infarction Involves Inhibition of Collagen Synthesis by Myocardial Fibroblasts through Downregulating TGF-β1/Smads Pathway. Frontiers in Pharmacology, 12, Article 696472. https://doi.org/10.3389/fphar.2021.696472
|
[65]
|
Burke, R.M., Lighthouse, J.K., Mickelsen, D.M. and Small, E.M. (2019) Sacubitril/Valsartan Decreases Cardiac Fibrosis in Left Ventricle Pressure Overload by Restoring PKG Signaling in Cardiac Fibroblasts. Circulation: Heart Failure, 12, e005565. https://doi.org/10.1161/circheartfailure.118.005565
|
[66]
|
Liu, J., Zheng, X., Zhang, C., Zhang, C. and Bu, P. (2021) Lcz696 Alleviates Myocardial Fibrosis after Myocardial Infarction through the sFRP-1/Wnt/β-Catenin Signaling Pathway. Frontiers in Pharmacology, 12, Article 724147. https://doi.org/10.3389/fphar.2021.724147
|
[67]
|
Aimo, A., Spitaleri, G., Panichella, G., Lupón, J., Emdin, M. and Bayes-Genis, A. (2021) Pirfenidone as a Novel Cardiac Protective Treatment. Heart Failure Reviews, 27, 525-532. https://doi.org/10.1007/s10741-021-10175-w
|
[68]
|
Holmes, D.R., Savage, M., LaBlanche, J.-., Grip, L., Serruys, P.W., Fitzgerald, P., et al. (2002) Results of Prevention of Restenosis with Tranilast and Its Outcomes (PRESTO) Trial. Circulation, 106, 1243-1250. https://doi.org/10.1161/01.cir.0000028335.31300.da
|
[69]
|
Engebretsen, K.V.T., Skårdal, K., Bjørnstad, S., Marstein, H.S., Skrbic, B., Sjaastad, I., et al. (2014) Attenuated Development of Cardiac Fibrosis in Left Ventricular Pressure Overload by SM16, an Orally Active Inhibitor of Alk5. Journal of Molecular and Cellular Cardiology, 76, 148-157. https://doi.org/10.1016/j.yjmcc.2014.08.008
|
[70]
|
Castoldi, G., Carletti, R., Ippolito, S., Colzani, M., Pelucchi, S., Zerbini, G., et al. (2023) Cardioprotective Effects of Sodium Glucose Cotransporter 2 Inhibition in Angiotensin II-Dependent Hypertension Are Mediated by the Local Reduction of Sympathetic Activity and Inflammation. International Journal of Molecular Sciences, 24, Article 10710. https://doi.org/10.3390/ijms241310710
|
[71]
|
Zhang, Y., Lin, X., Chu, Y., Chen, X., Du, H., Zhang, H., et al. (2021) Dapagliflozin: A Sodium-Glucose Cotransporter 2 Inhibitor, Attenuates Angiotensin II-Induced Cardiac Fibrotic Remodeling by Regulating TGFβ1/Smad Signaling. Cardiovascular Diabetology, 20, Article No. 121. https://doi.org/10.1186/s12933-021-01312-8
|
[72]
|
Ren, C., Liu, K., Zhao, X., Guo, H., Luo, Y., Chang, J., et al. (2022) Research Progress of Traditional Chinese Medicine in Treatment of Myocardial Fibrosis. Frontiers in Pharmacology, 13, Article 853289. https://doi.org/10.3389/fphar.2022.853289
|
[73]
|
Shen, S., Wu, G., Luo, W., Li, W., Li, X., Dai, C., et al. (2023) Leonurine Attenuates Angiotensin II-Induced Cardiac Injury and Dysfunction via Inhibiting MAPK and NF-κB Pathway. Phytomedicine, 108, Article 154519. https://doi.org/10.1016/j.phymed.2022.154519
|
[74]
|
Fang, R., Zhou, R., Ju, D., Li, M., Wang, H., Pan, L., et al. (2024) Zhen-Wu-Tang Protects against Myocardial Fibrosis by Inhibiting M1 Macrophage Polarization via the Tlr4/NF-κB Pathway. Phytomedicine, 130, Article 155719. https://doi.org/10.1016/j.phymed.2024.155719
|
[75]
|
Meng, T., Wang, P., Xie, X., Li, T., Kong, L., Xu, Y., et al. (2022) Efficacy and Safety of Songling Xuemaikang Capsule for Essential Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Phytomedicine, 107, Article 154459. https://doi.org/10.1016/j.phymed.2022.154459
|
[76]
|
Liu, M., Long, X., Xu, J., Chen, M., Yang, H., Guo, X., et al. (2022) Hypertensive Heart Disease and Myocardial Fibrosis: How Traditional Chinese Medicine Can Help Addressing Unmet Therapeutical Needs. Pharmacological Research, 185, Article 106515. https://doi.org/10.1016/j.phrs.2022.106515
|
[77]
|
Kaye, D.M., Shihata, W.A., Jama, H.A., Tsyganov, K., Ziemann, M., Kiriazis, H., et al. (2020) Deficiency of Prebiotic Fiber and Insufficient Signaling through Gut Metabolite-Sensing Receptors Leads to Cardiovascular Disease. Circulation, 141, 1393-1403. https://doi.org/10.1161/circulationaha.119.043081
|
[78]
|
Jama, H.A., Beale, A., Shihata, W.A. and Marques, F.Z. (2019) The Effect of Diet on Hypertensive Pathology: Is There a Link via Gut Microbiota-Driven Immunometabolism? Cardiovascular Research, 115, 1435-1447. https://doi.org/10.1093/cvr/cvz091
|
[79]
|
Chen, Y., Qi, R., Song, J., Wang, S., Dong, Z., Chen, Y., et al. (2024) Sirtuin 7 Ameliorates Cuproptosis, Myocardial Remodeling and Heart Dysfunction in Hypertension through the Modulation of YAP/ATP7A Signaling. Apoptosis, 29, 2161-2182. https://doi.org/10.1007/s10495-024-02021-9
|
[80]
|
Wang, J., Shi, Q., Wang, Y., Dawson, L.W., Ciampa, G., Zhao, W., et al. (2022) Gene Therapy with the N-Terminus of Junctophilin-2 Improves Heart Failure in Mice. Circulation Research, 130, 1306-1317. https://doi.org/10.1161/circresaha.121.320680
|
[81]
|
Argiro, A., Bui, Q., Hong, K.N., Ammirati, E., Olivotto, I. and Adler, E. (2024) Applications of Gene Therapy in Cardiomyopathies. JACC: Heart Failure, 12, 248-260. https://doi.org/10.1016/j.jchf.2023.09.015
|
[82]
|
Zhang, X., McLendon, J.M., Peck, B.D., Chen, B., Song, L. and Boudreau, R.L. (2023) Modulation of miR-29 Influences Myocardial Compliance Likely through Coordinated Regulation of Calcium Handling and Extracellular Matrix. Molecular Therapy Nucleic Acids, 34, Article 102081. https://doi.org/10.1016/j.omtn.2023.102081
|
[83]
|
Wu, C., Zhang, X., Chen, L., Huang, H., Wu, W., Wang, Y., et al. (2024) Pyroptosis and Mitochondrial Function Participated in miR-654-3p-Protected against Myocardial Infarction. Cell Death & Disease, 15, Article No. 393. https://doi.org/10.1038/s41419-024-06786-4
|
[84]
|
Aghajanian, H., Kimura, T., Rurik, J.G., Hancock, A.S., Leibowitz, M.S., Li, L., et al. (2019) Targeting Cardiac Fibrosis with Engineered T Cells. Nature, 573, 430-433. https://doi.org/10.1038/s41586-019-1546-z
|
[85]
|
Rurik, J.G., Tombácz, I., Yadegari, A., Méndez Fernández, P.O., Shewale, S.V., Li, L., et al. (2022) CAR T Cells Produced in Vivo to Treat Cardiac Injury. Science, 375, 91-96. https://doi.org/10.1126/science.abm0594
|
[86]
|
Park, S., Nguyen, N.B., Pezhouman, A. and Ardehali, R. (2019) Cardiac Fibrosis: Potential Therapeutic Targets. Translational Research, 209, 121-137. https://doi.org/10.1016/j.trsl.2019.03.001
|