PD-1/PD-L1抑制剂在不可切除肝癌降期转化治疗中的机制研究进展
Progress in Research on the Mechanism of PD-1/PD-L1 Inhibitors in Down-Stage Conversion Therapy of Unresectable Liver Cancer
DOI: 10.12677/acm.2025.1551481, PDF, HTML, XML,    国家自然科学基金支持
作者: 苗 舜, 赵开心, 李宏旭, 潘家鑫, 边树林, 魏思东*, 陈国勇*:河南省人民医院肝胆胰腺外科六病区,河南 郑州
关键词: 不可切除肝癌PD-1/PD-L1抑制剂转化治疗机制Unresectable Liver Cancer PD-1/PD-L1 Inhibitors Conversion Therapy Mechanism
摘要: 中国大多数原发性肝癌患者初诊时已是中晚期,失去了手术治疗的机会。针对不可切除肝细胞癌(Hepatocellular carcinoma, HCC)患者,局部介入治疗(如经动脉化疗栓塞术)和/或系统治疗(靶向药物、免疫治疗)可使肿瘤降期,从而使患者获得潜在手术干预机会及长期生存可能。近年来,肿瘤免疫微环境的动态调控机制逐渐被揭示,以免疫检查点抑制剂为代表的免疫治疗策略推动HCC治疗范式发生革命性突破。转化治疗对于大多数HCC患者而言,PD-1/PD-L1通路并不是抗肿瘤免疫的唯一限速因素。因此,联合治疗可能是更好的选择。本文解释了转化治疗的内涵,回顾了HCC患者免疫微环境的变化,对PD-1/PD-L1抑制剂的作用机制以及PD-1/PD-L1抑制剂联合用药作用机制进行总结,并列举联合治疗的案例及临床试验。
Abstract: Most patients with primary liver cancer in China are in the advanced stages when they are first diagnosed and have lost the opportunity for surgical treatment. For patients with unresectable hepatocellular carcinoma (HCC), local interventional therapy (such as transarterial chemoembolization) and/or systemic therapy (targeted drugs, immunotherapy) can reduce the tumor, thereby giving patients potential surgical intervention opportunities and long-term survival possibilities. In recent years, the dynamic regulation mechanisms of the tumor immune microenvironment have been gradually revealed, and immunotherapy strategies represented by immune checkpoint inhibitors have promoted revolutionary breakthroughs in the HCC treatment paradigm. At present, immunotherapy based on the programmed cell death protein-1 (PD-1)/programmed cell death protein ligand-1 (PD-L1) axis has achieved unprecedented success in HCC, but it also faces huge challenges, and its low response rate still needs to be resolved. For most HCC patients, the PD-1/PD-L1 pathway is not the only rate-limiting factor in anti-tumor immunity in conversion therapy. Therefore, combination therapy may be a better option. This article explains the content of conversion therapy, reviews the changes in the immune microenvironment of HCC patients, summarizes the mechanism of action of PD-1/PD-L1 inhibitors and the mechanism of action of PD-1/PD-L1 inhibitors combination, and lists cases and clinical trials of combination therapy.
文章引用:苗舜, 赵开心, 李宏旭, 潘家鑫, 边树林, 魏思东, 陈国勇. PD-1/PD-L1抑制剂在不可切除肝癌降期转化治疗中的机制研究进展[J]. 临床医学进展, 2025, 15(5): 1188-1200. https://doi.org/10.12677/acm.2025.1551481

1. 引言

HCC作为是全球第六大最常见的恶性肿瘤和癌症相关死亡的第四大原因[1]。中国HCC的发病率和病死率在所有恶性肿瘤中分别占第4位和第2位[2],严重威胁着中国人民的生命健康。然而,大部分肝癌患者发现时已处于中晚期,失去了手术机会,中位生存期仅为1年[3]。对于此类患者,如何将不可切除肝癌转化成可切除肝癌并成功切除,是提高肝癌治疗效果的重要手段,也是近年肝癌临床研究领域的热点。其中以PD-1/PD-L1抑制剂、抗血管生成靶向药物等为主的系统治疗发展迅速,为越来越多中晚期无法手术的肝癌患者带来了希望,经积极治疗后延长了生存时间[4],部分患者获得了手术机会。PD-1是一种免疫检查点分子,在负性调控免疫系统功能和促进免疫耐受形成方面发挥着重要作用。PD-L1通过与PD-1结合参与肿瘤免疫逃逸,重塑免疫抑制微环境,最终导致抗肿瘤免疫应答被抑制。本文总结了转化治疗的发展,回顾分析了HCC患者免疫微环境的变化,阐明了PD-1/PD-L1抑制剂的作用机制以及PD-1/PD-L1抑制剂联合用药作用机制,并列举联合治疗的案例及临床试验(本文引用的临床案例及临床试验皆通过伦理审批)。

2. 转化治疗

转化治疗针对不可切除肝癌,通过系统药物联合非手术局部治疗抑制肿瘤进展并减轻负荷,改善分期以提升根治性(R0)切除率,降低手术风险,实现降期后切除并改善患者生存预后。

2.1. 转化治疗的目标患者人群

转化治疗是将不可切除肝癌转为可切除肝癌,不可切除分为两个层次,一是外科学不可切除,包括病人全身状况、肝功能或剩余肝脏体积不足等原因无法承受手术,无法进行安全的手术切除[4]。二是肿瘤学或生物学不可切除,指虽技术可切除,但手术后不能获得比非手术治疗更好的疗效[5]。不可手术切除的中国肝癌分期方案(China liver cancer staging, CNLC)-Ⅰa、Ⅰb、Ⅱa期肝癌(主要因患者一般情况或肝功能不耐受、剩余肝容量不足或切除边缘不足而被认为不可手术切除)和肿瘤负荷有限的CNLC-Ⅱb、Ⅲa期可切除肝癌均被认为是潜在可切除类型,建议采用多模式强化治疗策略促进肿瘤降期。对于手术获益有限的CNLC-Ⅱb、Ⅲa期肝癌(手术疗效不优于非手术方案),推荐遵循治疗规范实施渐进式治疗,在保障安全性的前提下动态评估手术可行性[4]

转化治疗可能被认为不同于新辅助治疗,虽然这两种治疗方法都是在围手术期进行的,并且使用相同的方式,但它们的目的不同。新辅助治疗适用于患有可切除疾病的患者,以在最终手术前减小肿瘤大小。相比之下,转化疗法被用于最初不可切除的疾病,在成功降期后有可能切除的患者。然而,当治疗应用于手术可切除但肿瘤不可切除的HCC患者时,两种治疗可能在目标人群(例如:可手术切除的CNLC-Ⅱb或Ⅲa)或治疗目标上重叠,例如:改变一些肿瘤因素,如肿瘤血栓、卫星结节,甚至微血管侵袭。基本上,新辅助治疗是通过减轻肿瘤负荷或其他肿瘤因素来改善手术切除后的预后,因此新辅助治疗可以被认为是肿瘤转化治疗[6]

2.2. 转化治疗的原则

转化治疗策略应在多学科团队的指导下制定,包括外科医生、肿瘤内科医生、介入放射科医生和诊断放射科医生或其他相关医生。转化治疗计划应考虑肝功能、肝功能储备、肝脏病变的数量、位置和大小、血管侵犯、合并症、治疗的具体目的等多种因素。理想的转化治疗应具有较高的客观有效率,对患者及手术后的不良反应较小,并力求在尽可能短的时间内实现转换。在转化治疗期间,对治疗的反应应密切关注监测,并应根据预测疗效的判断来确定手术时机,但需要客观评估以便做出正确的判断[6]

转化疗法可利用多种治疗方式来降低或缩小HCC分期,已经研究的各种治疗方法包括经导管动脉栓塞化疗(Transcatheter arterial chemoembolization, TACE)、肝动脉灌注化疗(Hepatic arterial infusion chemotherapy, HAIC)、放射治疗、消融治疗等局部治疗和系统(药物)治疗[5]。近年研究显示[6],随着肿瘤免疫微环境(Tumor immune microenvironment, TIME)及免疫–肿瘤细胞互作机制的深入解析,免疫系统在肝癌发生发展中的关键调控作用逐渐明晰。其中以PD-1/PD-L1为靶点的免疫疗法在不可切除肝癌中的临床应用中取得了明显疗效。

3. PD-1/PD-L1抑制剂的作用机制

PD-1是由288个氨基酸残基组成的I型跨膜蛋白,属于CD28超家族,该家族包括CD28、细胞毒性T细胞相关蛋白-4 (Cytotoxic T lymphocyte associate protein-4, CTLA-4)、PD-1及诱导性协同共刺激分子等受体。其配体PD-L1 (CD274)和PD-L2 (CD273)分别含290和270个氨基酸残基,均为B7家族成员,二者序列同源性37%,但PD-L1表达谱更广,在肿瘤免疫逃逸中起主导作用[7] [8]

3.1. HCC下肝脏的免疫微环境

肿瘤微环境(Tumor microenvironment, TME)包括癌细胞、免疫细胞亚群、细胞因子环境和细胞外基质等,是一个复杂的生态系统,主动塑造了肿瘤的生长、侵袭和转移[9]。慢性炎症驱动的多种细胞因子持续表达,导致免疫细胞募集,免疫抑制的不断增强,为癌细胞的生长提供了空间。在肝癌中,癌细胞通过多种机制影响免疫微环境,导致免疫抑制。例如,肝癌细胞分泌的因子如白细胞介素-10 (Interleukin-10, IL-10)、转化生长因子-β (Transforming growth factor beta, TGF-β)等,可以吸引并激活免疫抑制性细胞,如髓源性抑制细胞(Myeloid-derived suppressor cells, MDSCs)、调节性T细胞(Regulatory T cells, Tregs)等,这些细胞会抑制效应性T细胞的功能,帮助肿瘤细胞逃避免疫系统的攻击,从而促进肿瘤的生长和转移。

巨噬细胞是TME的主要成分,高水平的肿瘤相关巨噬细胞(Tumor-associated macrophages, TAMs)与HCC患者的不良预后相关[10]。TAMs在HCC发病机制中的主要作用是[11]:(1) 促进HCC中癌细胞的增殖、侵袭和转移;(2) 促进HCC中的血管生成;(3) 促进癌细胞干性;(4) 诱导免疫抑制,减弱治疗效果。

MDSCs在肿瘤微环境中的作用主要包括[12]:(1) 诱导T细胞分化和扩增;(2) 剥夺T细胞必需氨基酸并影响其功能、生存和运输;(3) 诱导氧化应激以介导癌症进展;(4) 扩大免疫检查点的信号传递并降低自然杀伤细胞(NK细胞)的细胞毒性。Tregs通过多重机制抑制抗肿瘤免疫应答,例如:高亲和力白细胞介素-2 (Interleukin-2, IL-2)受体α链介导的IL-2竞争性消耗,抑制效应T细胞增殖活化;其表面CTLA-4与抗原呈递细胞(Antigen-presenting cell, APC)表面CD80/CD86的高亲和力结合,阻断共刺激信号传导;分泌TGF-β等免疫抑制性细胞因子,协同肿瘤相关巨噬细胞极化,形成免疫抑制微环境。更重要的是,Tregs通过产生颗粒酶和穿孔素直接杀死反应性T细胞或抗原呈递细胞[13]

3.2. PD-1/PD-L1通路在肿瘤微环境中的作用机制

PD-1在多种免疫细胞上表达,如活化的T细胞、B细胞、NK细胞和树突状细胞。PD-L1也在肿瘤细胞和APCs中表达。PD-1的结构由四个部分组成:免疫球蛋白可变区、跨膜区、基于免疫受体酪氨酸的抑制基序(Immunoreceptor tyrosine-based inhibitory motif, ITIM)和基于免疫受体酪氨酸的开关基序(Information technology service management, ITSM) [14]。PD-1与PD-L1结合触发胞内段ITIM和ITSM基序磷酸化,招募含Src同源2结构域蛋白酪氨酸磷酸酶(Src homology 2 domain-containing protein tyrosine phosphatase, SHP)-1/SHP-2等抑制性磷酸酶,通过负反馈调控抑制T细胞抗原受体(T cell antigen receptor, TCR)信号传导。该轴在T细胞中主要通过抑制效应细胞活化,而在B细胞中可能通过不同磷酸化级联差异调控免疫抑制效应。

3.2.1. PD-1/PD-L1在T细胞中作用机制

在T细胞中,磷酸化的ITSM将SHP-1/SHP-2分子招募到c端ITSM中,SHP-2与PD-1相互作用产生实时效应拮抗TCR和CD28产生的阳性信号[15],并影响下游信号通路,如磷脂酰肌醇3-激酶(Phosphoinositide 3-kinase, PI3K)-蛋白激酶B(Protein kinase B, AKT)、大鼠肉瘤病毒(Rat sarcoma, RAS)和细胞外信号调节激酶(Extracellular signal-regulated kinase, ERK) [16]。此外,PD-1也通过上调相关转录因子,抑制效应T细胞功能及效应子转录程序。PD-1信号传导通过阻止糖酵解,促进脂质降解和β氧化来调节T细胞功能[17]。以上作用最终影响T细胞的活化、寿命和增殖,导致肿瘤坏死因子(Tumor necrosis factor, TNF)、干扰素-γ (Interferon gamma, IFN-γ)、IL-2等细胞因子的减少以及代谢变化,为癌细胞逃避免疫应答提供了途径[18]。Tregs中PD-1/PD-L1的表达加重了TME中免疫状态的抑制和衰竭[17]。另有研究表明,PD-L1通过双重机制调控iTregs分化与功能,一方面,促进叉头盒蛋白P3 (Forkhead box P3, Foxp3)转录因子表达;另一方面,通过负调控蛋白激酶B、哺乳动物雷帕霉素靶蛋白和细胞外调节蛋白激酶通路并激活磷酸酶和张力蛋白同源物(Phosphatase and tensin homolog, PTEN)磷酸酶,重塑代谢信号网络,驱动初始CD4+ T细胞向调节性表型转化。此外,内皮细胞可以通过PD-1/PD-L1轴增强Treg功能,Treg还可以通过PD-1/PD-L1轴抑制自身反应性B细胞[19]

3.2.2. PD-1/PD-L1在B细胞中作用机制

在B细胞中,PD-1激活后,SHP-2被募集到PD-1的c端,使B细胞受体(B-cell receptor, BCR)通路分子去磷酸化,包括免疫球蛋白α/β (Immunoglobulin alpha/beta, Igα/β)和脾酪氨酸激酶(Spleen tyrosine kinase, Syk),从而抑制PI3K、ERK和磷脂酶Cγ2 (Phospholipase C gamma 2, PLCγ2)通路,导致Ca2+紊乱和B细胞生长停滞[13]。相关研究表明,过表达PD-1的B细胞可以通过IL-10依赖性途径诱导T细胞功能障碍,从而创造有利于肿瘤进展的条件[20]。而在体外,PD-1阳性B细胞通过抑制T细胞增殖并诱导其功能耗竭,而PD-L1阻断可逆转该抑制效应,显著增强T细胞增殖活性。值得注意的是,这些PD-1阳性B细胞不表达高水平的IL-10 [21]。另有研究发现,在非酒精性脂肪性肝炎模型实验中,高度表达PD-L1与IL-10的IgA阳性浆细胞在肝脏微环境中异常聚集,通过双重机制促进肝癌发生:(1) 直接抑制细胞毒性T淋巴细胞活化;(2) 持续高表达PD-L1的IgA阳性B细胞分泌IL-10与TGF-β抑制性细胞因子,协同抑制CD8阳性T细胞增殖及效应功能。这表明PD-L1阳性B细胞可能是调节性B细胞(Regulatory B cells, Bregs)的一个亚群,对T细胞反应具有强大的免疫抑制功能[22]。更重要的是,最近的研究表明,人类TAM也表达PD-1,其随着疾病分期的增加而增加,并表现出与M2型巨噬细胞(M2 macrophage, M2)相似的表面轮廓[23]。PD-1阳性TAM上PD-1高表达通过抑制巨噬细胞吞噬活性,进而促进肿瘤细胞侵袭转移,最终可能导致不良临床结局。此外,有报道称PD-L1优先在巨噬细胞而不是癌细胞上表达,这种现象可能与肿瘤的免疫逃逸机制有关[24]。在小鼠模型中,TAMs可以通过表达PD-L1来降低CD8+和CD4+ T细胞的抗癌免疫应答[25]。尽管TAM中PD-L1/PD-1轴的调控机制尚未完全阐明,但针对肝癌微环境中表达PD-L1巨噬细胞的靶向干预可能成为增强免疫治疗应答的潜在策略。此外,肿瘤释放因子和缺氧条件产生的特定微环境可以诱导PD-L1在MDSCs中的表达[26]。它们通过结合T细胞表面PD-1,进而抑制其激活,体外实验证实其可显著抑制抗CD3与CD28刺激的T细胞增殖与活化。此外,MDSC通过PD-1/PD-L1轴激活B细胞中的PI3K/AKT/NF-κB通路,诱导产生具有免疫抑制功能的Bregs,这些Bregs通过分泌免疫抑制因子如IL-10等,抑制效应性T细胞的活化和增殖[27]。也有研究表明,LPS可以诱导PD-1在MDSC上的表达,通过调节其增殖和抑制分子,进一步促进肿瘤的发展和复发[28]。总之,抑制PD-1/PD-L1对MDSCs的作用可能对HCC的治疗至关重要。

综上,PD-1/PD-L1轴在肝细胞癌免疫抑制微环境中发挥关键调控作用,靶向该轴的免疫检查点抑制剂可解除抗肿瘤T细胞的负调控信号,显著增强其效应功能。此外,T细胞可以增殖并浸润到TME以诱导抗肿瘤反应[29]。它还可以促进肿瘤引流淋巴结(Tumor-draining lymph node, TDLN) CD8+ T细胞的活化并恢复肿瘤驻留功能失调前CD8+ T细胞的活力[30]。雷帕霉素靶蛋白(Mammalian target of rapamycin, mTOR)通路的活性在抗PD-L1抗体治疗后也得到增强,转录组图谱显示巨噬细胞被多条通路激活,成为激活型、炎症型、增殖型和长寿型巨噬细胞,这可能是另一种抗癌途径[31]

4. PD-1/PD-L1抑制剂联合用药的作用机制

然而,在治疗晚期肝癌方面,免疫治疗的单一疗法,对HCC应答率相对较低,免疫疗法与其他疗法(如抗血管生成药物)的结合以及已成为治疗HCC的新策略。并且联合治疗具有协同作用,可显著提高疗效。目前,免疫治疗联合靶向药物已成为晚期HCC的一线治疗策略[32]

4.1. 与酪氨酸激酶抑制剂联用

作为肿瘤治疗的基石,酪氨酸激酶抑制剂(Tyrosine kinase inhibitors, TKIs)无疑开启了肝癌全身治疗的时代,其与抗PD1/PD-L1药物联合治疗备受关注。HCC的发生是由不同细胞内通路的异常激活驱动的,这涉及酪氨酸激酶蛋白受体(Receptor tyrosine kinase, RTK)和非RTK受体的作用[33]。TKIs通过靶向肝细胞癌关键信号通路,抑制肿瘤血管生成及增殖,从而发挥抗肿瘤作用。例如,它可以抑制丝裂原活化蛋白激酶(Mitogen-activated protein kinase, MAPK)级联中的多种细胞表面酪氨酸激酶,如血管内皮生长因子受体(Vascular endothelial growth factor receptor, VEGFR)、血小板衍生生长因子受体-β和下游细胞内丝氨酸/苏氨酸激酶,这些激酶是参与肿瘤细胞的信号转导、增殖、血管生成和凋亡[33]。TKIs通过抑制肿瘤细胞表面的酪氨酸激酶受体,阻断下游信号通路,如RAS-MAPK和PI3K-AKT-mTOR等通路,抑制肿瘤细胞的增殖、存活和侵袭,从而减少肿瘤细胞释放的免疫抑制因子,如TGF-β、VEGF等。VEGF是一种关键的血管生成因子,同时也具有免疫抑制作用。TKI抑制VEGF信号后,可减少TAMs向免疫抑制性的M2型极化,促进其向具有抗肿瘤活性的M1型转化[13]。例如,索拉非尼[34]可以增强肿瘤特异性效应T细胞的活性并减少抑制性免疫细胞群。瑞戈非尼可以通过抑制TIE2通路抑制TAM的浸润,诱导持续的M1极化和反向M2极化,还可以诱导CD8+ T细胞激活和抑制Tregs [35]。此外,它还可以通过抑制肿瘤细胞上PD-L1的表达来减少免疫逃逸[36]。因此,TKI的免疫调节作用可以增强抗PD-1/PD-L1治疗的疗效。

在Ⅰb期研究KEYNOTE-524中,仑伐替尼和帕博利珠单抗联合治疗不可切除HCC的客观缓解率(Objective response rate, ORR)为36.0% [37],但其Ⅲ期试验LEAP-002没有达到研究的主要终点,但显示出有益活性的趋势。另一种组合,卡瑞利珠单抗联合阿帕替尼,在RESCUE实验中显示治疗晚期肝癌的显着疗效[38]。黄等报告了一项回顾性分析,60名患者的研究结果表明,仑伐替尼联合抗PD-1抗体一线治疗的ORR为33.3%,中位缓解持续时间和无进展生存期分别为10.5和7.0个月,未达到中位总生存期[39]。朱等报告了10例患者,酪氨酸激酶抑制剂和抗PD-1抗体联合治疗开始后3.2个月(范围:2.4~8.3个月)内接受了R0切除术。1例患者死于多系统免疫相关不良事件,无肿瘤复发。中位随访11.2个月(7.8~15.9个月)后,其余9例患者存活。10例患者开始联合治疗后12个月生存率为90.0% (标准误差9.5%),术后12个月无复发生存率80.0% (标准误差12.6%) [40]。Ho等报道了1例卡博替尼联合纳武单抗成功地对不能切除的肝细胞癌进行了降期治疗。随着治疗的进行,患者的AFP下降,患者出现影像上病变缩小,最后一次使用纳武单抗大约4周后,他接受了右肝和胆囊切除,手术顺利。之后每3个月接受一次CT检查,术后两年,恢复良好,肝功能正常,甲胎蛋白正常,无肿瘤复发[41]

4.2. 与抗血管生成剂联用

在TME中,肿瘤血管与原肿瘤免疫细胞之间的相互作用干扰了抗癌免疫,促进肿瘤进展并损害ICIs的疗效。异常的肿瘤新生血管不仅产生内皮屏障,阻止T细胞向肿瘤浸润,损害T细胞效应器的功能,引起T细胞凋亡,还促进原肿瘤免疫细胞的逃逸,从而促进肿瘤血管生成[42]。此外,肿瘤血管系统通过表达各种免疫抑制分子(如PD-L1和Fas配体)来抑制和杀死CTL [43]。VEGF是肿瘤血管生成的关键驱动因素。它增强多种细胞的动员和增殖,包括调节性T细胞和免疫抑制细胞因子的释放,以减少CD8+细胞的增殖和功能[43]。此外,VEGF还可以抑制树突状细胞(Dendritic cell, DC)的分化、成熟和抗原呈递,并通过上调T盒转录因子(T-box transcription factor, TOX)增加T细胞消耗和减少CTL产生的细胞因子的增殖[44]。一些临床研究表明,VEGF高表达的肿瘤对免疫治疗有抵抗力[42] [45],而HCC是一种血管丰富的肿瘤,血管生成与肿瘤免疫之间的相互作用表明重塑肿瘤血管可以提高抗PD-1免疫治疗的疗效。抗VEGFR2疗法可以通过上调PD-L1的表达来增加抗PD-L1在肿瘤中的敏感性[46]。最近的研究还发现,药物组合可以通过诱导趋化因子配体10表达来增加HCC中的CD8+ T细胞浸润[47]

在几项临床前研究中,血管生成抑制剂提高了α-PD-1/PD-L1在小鼠肿瘤模型中的疗效[48] [49]。在IMBrave150研究中,与索拉非尼相比,阿替利珠单抗联合贝伐单抗被证明可以显着改善患者的预后,并在更长时间的随访后保持临床显着的生存获益[50]。另一个成功的组合在ORIENT-32中得到评估,这是世界上第一个达到主要终点的联合PD-1治疗HCC的临床研究,信迪利单抗加IBI305治疗的总生存期和无进展生存期均获益,且安全性可接受[51]。Wang等报道1例不能切除的肝细胞癌患者,该患者最初接受了15个周期的阿替利珠单抗联合贝伐珠单抗联合治疗,部分缓解的肿瘤反应最佳,但后来出现疾病进展,进行手术切除后,患者在术后19个月的最后一次随访中长期无病状态[52]。另外,由于肝癌容易发生门静脉转移,许多合并门静脉癌栓的患者无法手术切除或切除效果较差。Hidaka Y等报道1例79岁男性在两次经导管动脉化疗栓塞术后再次出现S2/S3肝癌和门静脉癌栓(Portal vein tumor thrombus, PVTT),门静脉血栓从门静脉左支延伸至主干,并确定在R0状态下难以切除相应门静脉,根据不能切除的肝细胞癌的诊断,开始行阿替利珠单抗联合贝伐珠单抗治疗,两个疗程后,影像学显示门静脉癌栓已退缩至左侧门静脉周围,行R0切除后无并发症,术后5个月未见复发[53]

4.3. 与抗CTLA-4抗体联合

CTLA-4作为CD28-B7共刺激通路成员,表达于活化T细胞表面,通过竞争性结合CD80 (B7-1)和CD86 (B7-2)配体(亲和力高于CD28),发挥T细胞活化负调控作用。与配体结合后,由于缺乏第二个信号的激活,T细胞的共刺激受到抑制[54]-[56]。此外,CTLA-4与CD80/CD86的相互作用通过激活蛋白磷酸酶2负调控TCR介导的信号级联反应,并抑制PI3K/AKT通路。并且,CTLA-4可以通过反式内吞作用捕获其配体并将其降解,进一步阻碍共刺激信号[57]。虽然CTLA-4和PD-1虽同属T细胞的负调节因子,但它们在免疫反应的共抑制机制中发挥着不同的作用。CTLA-4在T细胞免疫反应早期主要作用于淋巴结,而PD-1在T细胞免疫反应晚期主要作用于外周组织[58]。因此,同时阻断PD-1/PD-L1轴和CTLA-4轴对恢复免疫活性起着叠加作用。此外,PD-L1通过抑制CTLA-4轴发挥免疫刺激作用,而抗PD-L1降低APC上CD80的表达,而这种作用被CTLA-4的共同阻断所抵消[59]。伊匹木单抗(Ipilimumab)是一种单克隆抗体,可阻断APCs上的CD80/CD86配体与活化T细胞上的CTLA-4受体结合,从而消除免疫抑制信号并允许T细胞启动和克隆扩增。与纳武利尤单抗联合使用,可实现效应T细胞的后续抗肿瘤功能。此外,Ipilimumab可在体外引起抗体依赖性的细胞介导的细胞毒作用(Antibody-dependent cell-mediated cytotoxicity, ADCC)介导的Tregs切割并减少Tregs浸润,从而增强联合药物的抗肿瘤活性[60]。在CheckMate040试验的队列4中,在接受索拉非尼治疗的患者中证明了纳武利尤单抗和Ipilimumab联合方案的安全性和有效性[61]

一项Ⅰ/Ⅱ期临床试验评估了曲美木单抗与度伐利尤单抗作为单一疗法和联合疗法治疗不可切除HCC患者的疗效。研究设计包含四组:不同剂量曲美木单抗(300 mg或75 mg)联合度伐利尤单抗组(T300 + D与T75 + D),以及两种单药治疗组,得到T300 + D组效果最好,总生存期为18.7个月(95% CI: 10.8~27.3) [62] [63]。一项随机、开放、对照的多中心Ⅲ期临床研究NCT04720716旨在检验抗CTLA-4单克隆抗体联合信迪利单抗一线治疗晚期HCC的有效性也在进行中。

4.4. 其他组合

缺氧可通过缺氧诱导因子1亚基α (Hypoxia inducible factor 1α, HIF-1α)在恶性细胞和免疫调节细胞中诱导PD-L1表达[64]。在HCC小鼠模型中,HIF抑制剂32-134D联合抗PD-1治疗可将肿瘤根除率从25%提高到67% [65]。研究人员推测32-134D改变了大量基因的表达,导致肿瘤免疫微环境、CD8+ T细胞和自然杀伤细胞的百分比发生显着变化,从而显著增强抗PD-1治疗[65]。因此,靶向HIF-1α联合抗PD-1治疗可能是HCC的突破性治疗。

有研究表明,PD-1阻断联合干扰素α (Interferon alpha, IFNα)显著提高了PD-1抗体单药治疗的效果,延长了小鼠的生存期,增强了肝癌小鼠模型中T细胞的分泌和活化,恢复甚至增强了CD8+ T细胞的细胞毒作用,并具有协同抗肿瘤作用[66]。最近的一项研究表明,该机制可能是由于该组合可以破坏HCC细胞的糖酵解和葡萄糖摄取,重塑并形成富含葡萄糖的TME,可增强肿瘤浸润细胞毒性T淋巴细胞的杀伤功能。此外,高糖环境诱导CD8+ T细胞中CD27等分子的蛋白水平升高,通过增加CD27转录恢复CD8+ T细胞的抗肿瘤作用[67]

免疫相关鸟苷三磷酸酶家族M成员(Immunity-related GTPase family M member, IRGM)是一种干扰素诱导蛋白,单细胞测序显示,IRGM抑制促进了CD8+细胞毒性T淋巴细胞的浸润,并显着下调HCC中的PD-L1表达。IRGM促进Y盒结合蛋白1 (Y-box binding protein 1, YBX1)和核糖体蛋白S6激酶β1 (Ribosomal protein S6 Kinase beta-1, S6K1)的相互作用,增加YBX1的磷酸化和核定位以及PD-L1的转录。此外,与单独应用α-PD1相比,IRGM抑制与α-PD1的联合显示出更强的抗肿瘤作用。总之,IRGM是PD-L1的新型调节剂,可抑制CD8+ CTLs在HCC中的浸润和功能,从而导致癌症进展。IRGM1抑制剂和ICIs联合使用可能为HCC治疗提供新的策略[68]

组蛋白去乙酰化酶2 (Histone deacetylase 2, HDAC2)抑制剂可以通过调节PD-L1乙酰化,从而阻断PD-L1的核易位,从而重编程免疫反应相关基因表达,并导致对PD-1阻断剂的抗肿瘤反应增强。同时,据报道,HDAC2i在调节IFN-γ诱导的PD-L1表达中起着至关重要的作用。因此,HDAC2抑制剂与PD-1/PD-L1免疫疗法的联合应用被认为是一种具有良好临床应用和研究前景的新型肿瘤治疗策略,为进一步改善HCC患者的整体预后提供了新的机会[69]

有研究表明,肿瘤微环境中,免疫逃逸由肿瘤细胞内源性骨桥蛋白的致癌活性、PD-L1表达及肿瘤相关巨噬细胞TAM扩增的关键驱动因素共同作用。OPN通过集落刺激因子1 (Colony stimulating factor 1, CSF1)-集落刺激因子1受体(Colony stimulating factor 1 receptor, CSF1R)通路介导巨噬细胞趋化迁移与替代性激活,进而促进肝癌组织中PD-L1表达。OPN/CSF1/CSF1R轴在HCC微环境的免疫抑制性质中起关键作用,阻断CSF1/CSF1R可防止TAM转运,从而增强免疫检查点抑制剂治疗HCC的功效[70]

5. 三联疗法

对于中晚期肝癌转化降期治疗来说,我们不能仅仅只关注二联疗法,结合目前的研究结果,当肝功能、体能状态、一般情况良好,且患者能够耐受治疗时,尽量选择多种治疗方法相结合的方案,如靶免治疗结合局部治疗,以改善病情。Cai等探讨TACE联合仑伐替尼联合PD-1抑制剂(TACE-L-P)与TACE联合仑伐替尼(TACE-L)治疗晚期HCC患者的疗效。该研究发现与TACE-L组相比,TACE-L-P组患者OS延长(中位数,16.9个月vs12.1个月,P = 0.009),PFS延长(中位数,7.3个月vs 4.0个月,P = 0.002),客观缓解率(56.1% vs 32.5%, P = 0.033)和疾病控制(85.4% vs 62.5%, P = 0.019),显著提高了生存率[71]。Wu等进行了一项单臂、多中心、前瞻性研究,该研究招募了55名患者,接受TACE联合仑伐替尼和卡瑞利珠单抗三联疗法,结果显示客观缓解率为76.4% (95% CI, 65.2%~87.6%),共有30例(54.5%)患者转为可切除HCC,29例(52.7%)患者接受切除。手术人群的主要病理反应和病理完全缓解率分别为65.5%和20.7% [72]

对于多发肝癌合并门静脉癌栓形成肝细胞癌方面,罗等报告一名59岁男性的病例,他患有巨大肝细胞癌以及右半肝的多发性肝内病灶和门静脉癌栓形成。他接受了HAIC、仑伐替尼和PD-1抗体联合治疗,并显示出快速而持久的反应。成功降期后,由于FLV低,该患者被评估为不适合进行挽救性肝切除术。随后,他接受了同时进行的TACE和门静脉栓塞术。FLV增加到符合挽救性肝切除术的标准。最后,该患者接受了右半肝切除术,没有任何严重的围手术期并发症。此外,手术后9个月的随访期间没有出现肿瘤复发[73]。仑伐替尼 + 特瑞普利单抗 + HAIC联合治疗晚期肝癌展现出了非凡的疗效客观缓解率,达到67.6% (mRECIST标准) [74]。Chiang等为筛选入组的33名患者开发了一种名为“减少和移除(Reduce and remove)”新的治疗模式,参与者在第1天接受TACE,然后在第28天接受立体定向放疗,Avelumab在立体定向放疗后14天给药,此后每2周一次给药。18例(55%)患者被认为适合根治性治疗,33例患者中有4例(12%)接受了根治性治疗,14例(42%)具有放射学完全缓解并选择密切监测,为三联治疗提供了新的思路[75]。三联疗法具有令人满意的客观缓解率,转化疗法后的手术可行且安全,我们应当尽量选择多种治疗方法相结合的方案,这也为晚期不可切除肝癌的转化治疗提供了方向。

6. 总结展望

近年来分子免疫治疗和靶向治疗是对传统治疗的重大突破,各种免疫及靶向药物不断出现,大量临床试验在积极开展,并取得了可喜的治疗效果。以肿瘤降期为目标的转换治疗可以提高转化切除率比例,延长生存时间,使更多晚期HCC患者受益。免疫治疗联合靶向治疗及局部治疗可能是不可切除肝癌最有前景的转化方案,但仍存在很多问题和挑战:1、超过一半的患者分别对单药免疫疗法和靶免治疗没有反应。我们需要一种可靠的预测性生物标志物,以最大限度地提高免疫治疗的疗效,同时最大限度地减少免疫治疗组合中受到的伤害;2、我们需要更清晰的定义,如何更好地筛选有疗效的人群,确定哪些患者应该启动降期方案;3、如何选择联合用药方案,更好地安排全身治疗和局部治疗以达到降期效果,提高转化率;4、如何确定转换治疗时间并安排手术时间窗口,抓住手术机会,避免延长用药周期,从而降低治疗的耐药性、不良反应及经济负担。

同时,由于肝癌致病因素复杂、生物学行为高度恶性、肝病背景和预后差异较大、个体对治疗的反应不同以及涉及多个学科[76],未来临床需要常态化依托多学科团队模式,积极监测肿瘤反应,必要时调整转换方案,为根治性手术创造机会,最终实现患者高质量的长期生存。

基金项目

国家自然科学基金资助项目(编号:U2004124;81370577);河南省科技攻关计划项目(编号:242102310317;252102310083)。

NOTES

*通讯作者。

参考文献

[1] Yang, J.D., Hainaut, P., Gores, G.J., Amadou, A., Plymoth, A. and Roberts, L.R. (2019) A Global View of Hepatocellular Carcinoma: Trends, Risk, Prevention and Management. Nature Reviews Gastroenterology & Hepatology, 16, 589-604.
https://doi.org/10.1038/s41575-019-0186-y
[2] Zhou, M., Wang, H., Zeng, X., Yin, P., Zhu, J., Chen, W., et al. (2019) Mortality, Morbidity, and Risk Factors in China and Its Provinces, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 394, 1145-1158.
https://doi.org/10.1016/s0140-6736(19)30427-1
[3] Zhou, J., Sun, H., Wang, Z., Cong, W., Wang, J., Zeng, M., et al. (2020) Guidelines for the Diagnosis and Treatment of Hepatocellular Carcinoma (2019 Edition). Liver Cancer, 9, 682-720.
https://doi.org/10.1159/000509424
[4] Sun, H., Zhou, J., Wang, Z., Liu, X., Xie, Q., Jia, W., et al. (2022) Chinese Expert Consensus on Conversion Therapy for Hepatocellular Carcinoma (2021 Edition). Hepatobiliary Surgery and Nutrition, 11, 227-252.
https://doi.org/10.21037/hbsn-21-328
[5] Zhou, H. and Song, T. (2021) Conversion Therapy and Maintenance Therapy for Primary Hepatocellular Carcinoma. BioScience Trends, 15, 155-160.
https://doi.org/10.5582/bst.2021.01091
[6] Sun, H. and Zhu, X. (2021) Downstaging Conversion Therapy in Patients with Initially Unresectable Advanced Hepatocellular Carcinoma: An Overview. Frontiers in Oncology, 11, Article 772195.
https://doi.org/10.3389/fonc.2021.772195
[7] Chen, L. (2004) Co-Inhibitory Molecules of the B7-CD28 Family in the Control of T-Cell Immunity. Nature Reviews Immunology, 4, 336-347.
https://doi.org/10.1038/nri1349
[8] Intlekofer, A.M. and Thompson, C.B. (2013) At the Bench: Preclinical Rationale for CTLA-4 and PD-1 Blockade as Cancer Immunotherapy. Journal of Leukocyte Biology, 94, 25-39.
https://doi.org/10.1189/jlb.1212621
[9] Chew, V., Lai, L., Pan, L., Lim, C.J., Li, J., Ong, R., et al. (2017) Delineation of an Immunosuppressive Gradient in Hepatocellular Carcinoma Using High-Dimensional Proteomic and Transcriptomic Analyses. Proceedings of the National Academy of Sciences of the United States of America, 114, E5900-E5909.
https://doi.org/10.1073/pnas.1706559114
[10] Noy, R. and Pollard, J.W. (2014) Tumor-Associated Macrophages: From Mechanisms to Therapy. Immunity, 41, 49-61.
https://doi.org/10.1016/j.immuni.2014.06.010
[11] Huang, Y., Ge, W., Zhou, J., Gao, B., Qian, X. and Wang, W. (2021) The Role of Tumor Associated Macrophages in Hepatocellular Carcinoma. Journal of Cancer, 12, 1284-1294.
https://doi.org/10.7150/jca.51346
[12] Lu, C., Rong, D., Zhang, B., Zheng, W., Wang, X., Chen, Z., et al. (2019) Current Perspectives on the Immunosuppressive Tumor Microenvironment in Hepatocellular Carcinoma: Challenges and Opportunities. Molecular Cancer, 18, Article No. 130.
https://doi.org/10.1186/s12943-019-1047-6
[13] Cai, J., Wang, D., Zhang, G. and Guo, X. (2019) The Role of PD-1/PD-L1 Axis in Treg Development and Function: Implications for Cancer Immunotherapy. OncoTargets and Therapy, 12, 8437-8445.
https://doi.org/10.2147/ott.s221340
[14] Boussiotis, V.A. (2016) Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway. New England Journal of Medicine, 375, 1767-1778.
https://doi.org/10.1056/nejmra1514296
[15] Yokosuka, T., Takamatsu, M., Kobayashi-Imanishi, W., Hashimoto-Tane, A., Azuma, M. and Saito, T. (2012) Programmed Cell Death 1 Forms Negative Costimulatory Microclusters That Directly Inhibit T Cell Receptor Signaling by Recruiting Phosphatase SHP2. Journal of Experimental Medicine, 209, 1201-1217.
https://doi.org/10.1084/jem.20112741
[16] Sharpe, A.H. and Pauken, K.E. (2017) The Diverse Functions of the PD1 Inhibitory Pathway. Nature Reviews Immunology, 18, 153-167.
https://doi.org/10.1038/nri.2017.108
[17] Li, B., Yan, C., Zhu, J., Chen, X., Fu, Q., Zhang, H., et al. (2020) Anti-PD-1/PD-L1 Blockade Immunotherapy Employed in Treating Hepatitis B Virus Infection-Related Advanced Hepatocellular Carcinoma: A Literature Review. Frontiers in Immunology, 11, Article 1037.
https://doi.org/10.3389/fimmu.2020.01037
[18] Daassi, D., Mahoney, K.M. and Freeman, G.J. (2020) The Importance of Exosomal PDL1 in Tumour Immune Evasion. Nature Reviews Immunology, 20, 209-215.
https://doi.org/10.1038/s41577-019-0264-y
[19] Zhang, L., Zhang, M., Xu, J., Li, S., Chen, Y., Wang, W., et al. (2020) The Role of the Programmed Cell Death Protein-1/Programmed Death-Ligand 1 Pathway, Regulatory T Cells and T Helper 17 Cells in Tumor Immunity: A Narrative Review. Annals of Translational Medicine, 8, 1526-1526.
https://doi.org/10.21037/atm-20-6719
[20] Xiao, X., Lao, X., Chen, M., Liu, R., Wei, Y., Ouyang, F., et al. (2016) PD-1hi Identifies a Novel Regulatory B-Cell Population in Human Hepatoma That Promotes Disease Progression. Cancer Discovery, 6, 546-559.
https://doi.org/10.1158/2159-8290.cd-15-1408
[21] Wang, X., Wang, G., Wang, Z., Liu, B., Han, N., Li, J., et al. (2019) PD-1-Expressing B Cells Suppress CD4+ and CD8+ T Cells via PD-1/PD-L1-Dependent Pathway. Molecular Immunology, 109, 20-26.
https://doi.org/10.1016/j.molimm.2019.02.009
[22] Liu, M., Sun, Q., Wei, F. and Ren, X. (2020) Comprehensive Insights into the Effects and Regulatory Mechanisms of Immune Cells Expressing Programmed Death-1/programmed Death Ligand 1 in Solid Tumors. Cancer Biology and Medicine, 17, 626-639.
https://doi.org/10.20892/j.issn.2095-3941.2020.0112
[23] Gordon, S.R., Maute, R.L., Dulken, B.W., Hutter, G., George, B.M., McCracken, M.N., et al. (2017) PD-1 Expression by Tumour-Associated Macrophages Inhibits Phagocytosis and Tumour Immunity. Nature, 545, 495-499.
https://doi.org/10.1038/nature22396
[24] Zhou, D., Luan, J., Huang, C. and Li, J. (2021) Tumor-Associated Macrophages in Hepatocellular Carcinoma: Friend or Foe? Gut and Liver, 15, 500-516.
https://doi.org/10.5009/gnl20223
[25] Park, D., Sung, P., Lee, G., Cho, S., Kim, S., Kang, B., et al. (2021) Preferential Expression of Programmed Death Ligand 1 Protein in Tumor-Associated Macrophages and Its Potential Role in Immunotherapy for Hepatocellular Carcinoma. International Journal of Molecular Sciences, 22, Article 4710.
https://doi.org/10.3390/ijms22094710
[26] Lu, C., Redd, P.S., Lee, J.R., Savage, N. and Liu, K. (2016) The Expression Profiles and Regulation of PD-L1 in Tumor-Induced Myeloid-Derived Suppressor Cells. OncoImmunology, 5, e1247135.
https://doi.org/10.1080/2162402x.2016.1247135
[27] Liu, M., Wei, F., Wang, J., Yu, W., Shen, M., Liu, T., et al. (2021) Myeloid-Derived Suppressor Cells Regulate the Immunosuppressive Functions of PD-1PD-L1+ Bregs through PD-L1/PI3K/AKT/NF-κB Axis in Breast Cancer. Cell Death & Disease, 12, Article No. 465.
https://doi.org/10.1038/s41419-021-03745-1
[28] Nam, S., Lee, A., Lim, J. and Lim, J. (2019) Analysis of the Expression and Regulation of PD-1 Protein on the Surface of Myeloid-Derived Suppressor Cells (MDSCs). Biomolecules & Therapeutics, 27, 63-70.
https://doi.org/10.4062/biomolther.2018.201
[29] Kuzume, A., Chi, S., Yamauchi, N. and Minami, Y. (2020) Immune-Checkpoint Blockade Therapy in Lymphoma. International Journal of Molecular Sciences, 21, Article 5456.
https://doi.org/10.3390/ijms21155456
[30] Callahan, M.K. and Wolchok, J.D. (2019) Recruit or Reboot? How Does Anti-PD-1 Therapy Change Tumor-Infiltrating Lymphocytes? Cancer Cell, 36, 215-217.
https://doi.org/10.1016/j.ccell.2019.08.009
[31] Kudo, M. (2019) Targeted and Immune Therapies for Hepatocellular Carcinoma: Predictions for 2019 and beyond. World Journal of Gastroenterology, 25, 789-807.
https://doi.org/10.3748/wjg.v25.i7.789
[32] 国家卫生健康委办公厅. 原发性肝癌诊疗指南(2022年版) [J]. 临床肝胆病杂志, 2022, 38(2): 288-303.
[33] da Fonseca, L.G., Reig, M. and Bruix, J. (2020) Tyrosine Kinase Inhibitors and Hepatocellular Carcinoma. Clinics in Liver Disease, 24, 719-737.
https://doi.org/10.1016/j.cld.2020.07.012
[34] Al-Salama, Z.T., Syed, Y.Y. and Scott, L.J. (2019) Lenvatinib: A Review in Hepatocellular Carcinoma. Drugs, 79, 665-674.
https://doi.org/10.1007/s40265-019-01116-x
[35] Liu, J., Tao, H., Yuan, T., Li, J., Li, J., Liang, H., et al. (2022) Immunomodulatory Effects of Regorafenib: Enhancing the Efficacy of Anti-PD-1/PD-L1 Therapy. Frontiers in Immunology, 13, Article 992611.
https://doi.org/10.3389/fimmu.2022.992611
[36] Wu, R., Kong, P., Xia, L., Huang, Y., Li, Z., Tang, Y., et al. (2019) Regorafenib Promotes Antitumor Immunity via Inhibiting PD-L1 and IDO1 Expression in Melanoma. Clinical Cancer Research, 25, 4530-4541.
https://doi.org/10.1158/1078-0432.ccr-18-2840
[37] Finn, R.S., Ikeda, M., Zhu, A.X., Sung, M.W., Baron, A.D., Kudo, M., et al. (2020) Phase Ib Study of Lenvatinib Plus Pembrolizumab in Patients with Unresectable Hepatocellular Carcinoma. Journal of Clinical Oncology, 38, 2960-2970.
https://doi.org/10.1200/jco.20.00808
[38] Xu, J., Shen, J., Gu, S., Zhang, Y., Wu, L., Wu, J., et al. (2021) Camrelizumab in Combination with Apatinib in Patients with Advanced Hepatocellular Carcinoma (RESCUE): A Nonrandomized, Open-Label, Phase II Trial. Clinical Cancer Research, 27, 1003-1011.
https://doi.org/10.1158/1078-0432.ccr-20-2571
[39] Huang, C., Zhu, X., Shen, Y., Wu, D., Ji, Y., Ge, N., et al. (2021) Organ Specific Responses to First-Line Lenvatinib Plus Anti-PD-1 Antibodies in Patients with Unresectable Hepatocellular Carcinoma: A Retrospective Analysis. Biomarker Research, 9, Article No. 19.
https://doi.org/10.1186/s40364-021-00274-z
[40] Zhu, X., Huang, C., Shen, Y., Ji, Y., Ge, N., Qu, X., et al. (2021) Downstaging and Resection of Initially Unresectable Hepatocellular Carcinoma with Tyrosine Kinase Inhibitor and Anti-PD-1 Antibody Combinations. Liver Cancer, 10, 320-329.
https://doi.org/10.1159/000514313
[41] Ho, W.J., Sharma, G., Zhu, Q., Stein-O’Brien, G., Durham, J., Anders, R., et al. (2020) Integrated Immunological Analysis of a Successful Conversion of Locally Advanced Hepatocellular Carcinoma to Resectability with Neoadjuvant Therapy. Journal for ImmunoTherapy of Cancer, 8, e000932.
https://doi.org/10.1136/jitc-2020-000932
[42] Lee, W.S., Yang, H., Chon, H.J. and Kim, C. (2020) Combination of Anti-Angiogenic Therapy and Immune Checkpoint Blockade Normalizes Vascular-Immune Crosstalk to Potentiate Cancer Immunity. Experimental & Molecular Medicine, 52, 1475-1485.
https://doi.org/10.1038/s12276-020-00500-y
[43] Motz, G.T., Santoro, S.P., Wang, L., Garrabrant, T., Lastra, R.R., Hagemann, I.S., et al. (2014) Tumor Endothelium FasL Establishes a Selective Immune Barrier Promoting Tolerance in Tumors. Nature Medicine, 20, 607-615.
https://doi.org/10.1038/nm.3541
[44] Kim, K., Park, S., Park, S.Y., Kim, G., Park, S.M., Cho, J., et al. (2020) Single-Cell Transcriptome Analysis Reveals TOX as a Promoting Factor for T Cell Exhaustion and a Predictor for Anti-PD-1 Responses in Human Cancer. Genome Medicine, 12, Article No. 22.
https://doi.org/10.1186/s13073-020-00722-9
[45] Nishino, M., Ramaiya, N.H., Chambers, E.S., Adeni, A.E., Hatabu, H., Jänne, P.A., et al. (2016) Immune-Related Response Assessment during PD-1 Inhibitor Therapy in Advanced Non-Small-Cell Lung Cancer Patients. Journal for ImmunoTherapy of Cancer, 4, 84.
https://doi.org/10.1186/s40425-016-0193-2
[46] Allen, E., Jabouille, A., Rivera, L.B., Lodewijckx, I., Missiaen, R., Steri, V., et al. (2017) Combined Antiangiogenic and Anti-PD-L1 Therapy Stimulates Tumor Immunity through HEV Formation. Science Translational Medicine, 9, eaak9679.
https://doi.org/10.1126/scitranslmed.aak9679
[47] Shigeta, K., Matsui, A., Kikuchi, H., Klein, S., Mamessier, E., Chen, I.X., et al. (2020) Regorafenib Combined with PD1 Blockade Increases CD8 T-Cell Infiltration by Inducing CXCL10 Expression in Hepatocellular Carcinoma. Journal for ImmunoTherapy of Cancer, 8, e001435.
https://doi.org/10.1136/jitc-2020-001435
[48] Deng, H., Kan, A., Lyu, N., Mu, L., Han, Y., Liu, L., et al. (2020) Dual Vascular Endothelial Growth Factor Receptor and Fibroblast Growth Factor Receptor Inhibition Elicits Antitumor Immunity and Enhances Programmed Cell Death-1 Checkpoint Blockade in Hepatocellular Carcinoma. Liver Cancer, 9, 338-357.
https://doi.org/10.1159/000505695
[49] Esteban-Fabró, R., Willoughby, C.E., Piqué-Gili, M., Montironi, C., Abril-Fornaguera, J., Peix, J., et al. (2022) Cabozantinib Enhances Anti-Pd1 Activity and Elicits a Neutrophil-Based Immune Response in Hepatocellular Carcinoma. Clinical Cancer Research, 28, 2449-2460.
https://doi.org/10.1158/1078-0432.ccr-21-2517
[50] Cheng, A., Qin, S., Ikeda, M., Galle, P.R., Ducreux, M., Kim, T., et al. (2022) Updated Efficacy and Safety Data from Imbrave150: Atezolizumab plus Bevacizumab vs. Sorafenib for Unresectable Hepatocellular Carcinoma. Journal of Hepatology, 76, 862-873.
https://doi.org/10.1016/j.jhep.2021.11.030
[51] Ren, Z., Xu, J., Bai, Y., Xu, A., Cang, S., Du, C., et al. (2021) Sintilimab plus a Bevacizumab Biosimilar (IBI305) versus Sorafenib in Unresectable Hepatocellular Carcinoma (ORIENT-32): A Randomised, Open-Label, Phase 2-3 Study. The Lancet Oncology, 22, 977-990.
https://doi.org/10.1016/s1470-2045(21)00252-7
[52] Wang, Y., Lu, L., Guan, Y., Ho, M., Lu, S., Spahn, J., et al. (2021) Atezolizumab plus Bevacizumab Combination Enables an Unresectable Hepatocellular Carcinoma Resectable and Links Immune Exclusion and Tumor Dedifferentiation to Acquired Resistance. Experimental Hematology & Oncology, 10, Article No. 45.
https://doi.org/10.1186/s40164-021-00237-y
[53] Hidaka, Y., Tomita, M., Desaki, R., Hamanoue, M., Takao, S., Kirishima, M., et al. (2022) Conversion Surgery for Hepatocellular Carcinoma with Portal Vein Tumor Thrombus after Successful Atezolizumab plus Bevacizumab Therapy: A Case Report. World Journal of Surgical Oncology, 20, Article No. 228.
https://doi.org/10.1186/s12957-022-02691-2
[54] Fife, B.T. and Bluestone, J.A. (2008) Control of Peripheral T‐Cell Tolerance and Autoimmunity via the CTLA‐4 and PD‐1 Pathways. Immunological Reviews, 224, 166-182.
https://doi.org/10.1111/j.1600-065x.2008.00662.x
[55] Krummel, M.F. and Allison, J.P. (1995) CD28 and CTLA-4 Have Opposing Effects on the Response of T Cells to Stimulation. The Journal of Experimental Medicine, 182, 459-465.
https://doi.org/10.1084/jem.182.2.459
[56] Stamper, C.C., Zhang, Y., Tobin, J.F., Erbe, D.V., Ikemizu, S., Davis, S.J., et al. (2001) Crystal Structure of the B7-1/CTLA-4 Complex That Inhibits Human Immune Responses. Nature, 410, 608-611.
https://doi.org/10.1038/35069118
[57] Yi, M., Zheng, X., Niu, M., Zhu, S., Ge, H. and Wu, K. (2022) Combination Strategies with PD-1/PD-L1 Blockade: Current Advances and Future Directions. Molecular Cancer, 21, Article No. 28.
https://doi.org/10.1186/s12943-021-01489-2
[58] Rotte, A. (2019) Combination of CTLA-4 and PD-1 Blockers for Treatment of Cancer. Journal of Experimental & Clinical Cancer Research, 38, Article No. 255.
https://doi.org/10.1186/s13046-019-1259-z
[59] Zhao, Y., Lee, C.K., Lin, C., Gassen, R.B., Xu, X., Huang, Z., et al. (2019) PD-L1:CD80 Cis-Heterodimer Triggers the Co-Stimulatory Receptor CD28 While Repressing the Inhibitory PD-1 and CTLA-4 Pathways. Immunity, 51, 1059-1073.e9.
https://doi.org/10.1016/j.immuni.2019.11.003
[60] Romano, E., Kusio-Kobialka, M., Foukas, P.G., Baumgaertner, P., Meyer, C., Ballabeni, P., et al. (2015) Ipilimumab-dependent Cell-Mediated Cytotoxicity of Regulatory T Cells Ex Vivo by Nonclassical Monocytes in Melanoma Patients. Proceedings of the National Academy of Sciences of the United States of America, 112, 6140-6145.
https://doi.org/10.1073/pnas.1417320112
[61] Saung, M.T., Pelosof, L., Casak, S., Donoghue, M., Lemery, S., Yuan, M., et al. (2021) FDA Approval Summary: Nivolumab plus Ipilimumab for the Treatment of Patients with Hepatocellular Carcinoma Previously Treated with Sorafenib. The Oncologist, 26, 797-806.
https://doi.org/10.1002/onco.13819
[62] Martinez-Cannon, B.A., Castro-Sanchez, A., Barragan-Carrillo, R., de la Rosa Pacheco, S., Platas, A., Fonseca, A., et al. (2021) Adherence to Adjuvant Tamoxifen in Mexican Young Women with Breast Cancer. Patient Preference and Adherence, 15, 1039-1049.
https://doi.org/10.2147/ppa.s296747
[63] Kelley, R.K., Sangro, B., Harris, W., Ikeda, M., Okusaka, T., Kang, Y., et al. (2021) Safety, Efficacy, and Pharmacodynamics of Tremelimumab plus Durvalumab for Patients with Unresectable Hepatocellular Carcinoma: Randomized Expansion of a Phase I/II Study. Journal of Clinical Oncology, 39, 2991-3001.
https://doi.org/10.1200/jco.20.03555
[64] Shurin, M.R. and Umansky, V. (2022) Cross-Talk between HIF and PD-1/PD-L1 Pathways in Carcinogenesis and Therapy. Journal of Clinical Investigation, 132, e159473.
https://doi.org/10.1172/jci159473
[65] Bailey, C.M., Liu, Y., Liu, M., Du, X., Devenport, M., Zheng, P., et al. (2022) Targeting Hif-1α Abrogates Pd-L1-Mediated Immune Evasion in Tumor Microenvironment but Promotes Tolerance in Normal Tissues. Journal of Clinical Investigation, 132, e150846.
https://doi.org/10.1172/jci150846
[66] Zhu, Y., Chen, M., Xu, D., Li, T., Zhang, Z., Li, J., et al. (2022) The Combination of PD-1 Blockade with Interferon-α Has a Synergistic Effect on Hepatocellular Carcinoma. Cellular & Molecular Immunology, 19, 726-737.
https://doi.org/10.1038/s41423-022-00848-3
[67] Hu, B., Yu, M., Ma, X., Sun, J., Liu, C., Wang, C., et al. (2022) IFNα Potentiates Anti-Pd-1 Efficacy by Remodeling Glucose Metabolism in the Hepatocellular Carcinoma Microenvironment. Cancer Discovery, 12, 1718-1741.
https://doi.org/10.1158/2159-8290.cd-21-1022
[68] Ru, J., Lu, J., Ge, J., Ding, B., Su, R., Jiang, Y., et al. (2024) IRGM Is a Novel Regulator of PD-L1 via Promoting S6k1-Mediated Phosphorylation of YBX1 in Hepatocellular Carcinoma. Cancer Letters, 581, Article ID: 216495.
https://doi.org/10.1016/j.canlet.2023.216495
[69] Han, R., Ling, C., Wang, Y. and Lu, L. (2023) Enhancing HCC Treatment: Innovatively Combining HDAC2 Inhibitor with PD-1/PD-L1 Inhibition. Cancer Cell International, 23, Article No. 203.
https://doi.org/10.1186/s12935-023-03051-0
[70] Zhu, Y., Yang, J., Xu, D., Gao, X., Zhang, Z., Hsu, J.L., et al. (2019) Disruption of Tumour-Associated Macrophage Trafficking by the Osteopontin-Induced Colony-Stimulating Factor-1 Signalling Sensitises Hepatocellular Carcinoma to Anti-Pd-L1 Blockade. Gut, 68, 1653-1666.
https://doi.org/10.1136/gutjnl-2019-318419
[71] Cai, M., Huang, W., Huang, J., Shi, W., Guo, Y., Liang, L., et al. (2022) Transarterial Chemoembolization Combined with Lenvatinib plus PD-1 Inhibitor for Advanced Hepatocellular Carcinoma: A Retrospective Cohort Study. Frontiers in Immunology, 13, Article 848387.
https://doi.org/10.3389/fimmu.2022.848387
[72] Wu, X., Yang, L., Chen, Y., Chen, Z., Lu, H., Shen, X., et al. (2024) Transcatheter Arterial Chemoembolisation Combined with Lenvatinib Plus Camrelizumab as Conversion Therapy for Unresectable Hepatocellular Carcinoma: A Single-Arm, Multicentre, Prospective Study. eClinicalMedicine, 67, Article ID: 102367.
https://doi.org/10.1016/j.eclinm.2023.102367
[73] Luo, X., Chang, R., Kuang, D., Yuan, M., Li, G., Zhang, B., et al. (2023) Case Report: Successful Conversion and Salvage Resection of Huge Hepatocellular Carcinoma with Portal Vein Tumor Thrombosis and Intrahepatic Metastasis via Sequential Hepatic Arterial Infusion Chemotherapy, Lenvatinib plus PD-1 Antibody Followed by Simultaneous Transcatheter Arterial Chemoembolization, and Portal Vein Embolization. Frontiers in Immunology, 14, Article 1285296.
https://doi.org/10.3389/fimmu.2023.1285296
[74] He, M., Liang, R., Zhao, Y., Xu, Y., Chen, H., Zhou, Y., et al. (2021) Lenvatinib, Toripalimab, plus Hepatic Arterial Infusion Chemotherapy versus Lenvatinib Alone for Advanced Hepatocellular Carcinoma. Therapeutic Advances in Medical Oncology, 13, 8340-8359.
https://doi.org/10.1177/17588359211002720
[75] Chiang, C.L., Chiu, K.W.H., Chan, K.S.K., Lee, F.A.S., Li, J.C.B., Wan, C.W.S., et al. (2023) Sequential Transarterial Chemoembolisation and Stereotactic Body Radiotherapy Followed by Immunotherapy as Conversion Therapy for Patients with Locally Advanced, Unresectable Hepatocellular Carcinoma (START-FIT): A Single-Arm, Phase 2 Trial. The Lancet Gastroenterology & Hepatology, 8, 169-178.
https://doi.org/10.1016/s2468-1253(22)00339-9
[76] Lurje, I., Czigany, Z., Bednarsch, J., Roderburg, C., Isfort, P., Neumann, U.P., et al. (2019) Treatment Strategies for Hepatocellular Carcinoma—A Multidisciplinary Approach. International Journal of Molecular Sciences, 20, Article 1465.
https://doi.org/10.3390/ijms20061465