[1]
|
Yang, J.D., Hainaut, P., Gores, G.J., Amadou, A., Plymoth, A. and Roberts, L.R. (2019) A Global View of Hepatocellular Carcinoma: Trends, Risk, Prevention and Management. Nature Reviews Gastroenterology & Hepatology, 16, 589-604. https://doi.org/10.1038/s41575-019-0186-y
|
[2]
|
Zhou, M., Wang, H., Zeng, X., Yin, P., Zhu, J., Chen, W., et al. (2019) Mortality, Morbidity, and Risk Factors in China and Its Provinces, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 394, 1145-1158. https://doi.org/10.1016/s0140-6736(19)30427-1
|
[3]
|
Zhou, J., Sun, H., Wang, Z., Cong, W., Wang, J., Zeng, M., et al. (2020) Guidelines for the Diagnosis and Treatment of Hepatocellular Carcinoma (2019 Edition). Liver Cancer, 9, 682-720. https://doi.org/10.1159/000509424
|
[4]
|
Sun, H., Zhou, J., Wang, Z., Liu, X., Xie, Q., Jia, W., et al. (2022) Chinese Expert Consensus on Conversion Therapy for Hepatocellular Carcinoma (2021 Edition). Hepatobiliary Surgery and Nutrition, 11, 227-252. https://doi.org/10.21037/hbsn-21-328
|
[5]
|
Zhou, H. and Song, T. (2021) Conversion Therapy and Maintenance Therapy for Primary Hepatocellular Carcinoma. BioScience Trends, 15, 155-160. https://doi.org/10.5582/bst.2021.01091
|
[6]
|
Sun, H. and Zhu, X. (2021) Downstaging Conversion Therapy in Patients with Initially Unresectable Advanced Hepatocellular Carcinoma: An Overview. Frontiers in Oncology, 11, Article 772195. https://doi.org/10.3389/fonc.2021.772195
|
[7]
|
Chen, L. (2004) Co-Inhibitory Molecules of the B7-CD28 Family in the Control of T-Cell Immunity. Nature Reviews Immunology, 4, 336-347. https://doi.org/10.1038/nri1349
|
[8]
|
Intlekofer, A.M. and Thompson, C.B. (2013) At the Bench: Preclinical Rationale for CTLA-4 and PD-1 Blockade as Cancer Immunotherapy. Journal of Leukocyte Biology, 94, 25-39. https://doi.org/10.1189/jlb.1212621
|
[9]
|
Chew, V., Lai, L., Pan, L., Lim, C.J., Li, J., Ong, R., et al. (2017) Delineation of an Immunosuppressive Gradient in Hepatocellular Carcinoma Using High-Dimensional Proteomic and Transcriptomic Analyses. Proceedings of the National Academy of Sciences of the United States of America, 114, E5900-E5909. https://doi.org/10.1073/pnas.1706559114
|
[10]
|
Noy, R. and Pollard, J.W. (2014) Tumor-Associated Macrophages: From Mechanisms to Therapy. Immunity, 41, 49-61. https://doi.org/10.1016/j.immuni.2014.06.010
|
[11]
|
Huang, Y., Ge, W., Zhou, J., Gao, B., Qian, X. and Wang, W. (2021) The Role of Tumor Associated Macrophages in Hepatocellular Carcinoma. Journal of Cancer, 12, 1284-1294. https://doi.org/10.7150/jca.51346
|
[12]
|
Lu, C., Rong, D., Zhang, B., Zheng, W., Wang, X., Chen, Z., et al. (2019) Current Perspectives on the Immunosuppressive Tumor Microenvironment in Hepatocellular Carcinoma: Challenges and Opportunities. Molecular Cancer, 18, Article No. 130. https://doi.org/10.1186/s12943-019-1047-6
|
[13]
|
Cai, J., Wang, D., Zhang, G. and Guo, X. (2019) The Role of PD-1/PD-L1 Axis in Treg Development and Function: Implications for Cancer Immunotherapy. OncoTargets and Therapy, 12, 8437-8445. https://doi.org/10.2147/ott.s221340
|
[14]
|
Boussiotis, V.A. (2016) Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway. New England Journal of Medicine, 375, 1767-1778. https://doi.org/10.1056/nejmra1514296
|
[15]
|
Yokosuka, T., Takamatsu, M., Kobayashi-Imanishi, W., Hashimoto-Tane, A., Azuma, M. and Saito, T. (2012) Programmed Cell Death 1 Forms Negative Costimulatory Microclusters That Directly Inhibit T Cell Receptor Signaling by Recruiting Phosphatase SHP2. Journal of Experimental Medicine, 209, 1201-1217. https://doi.org/10.1084/jem.20112741
|
[16]
|
Sharpe, A.H. and Pauken, K.E. (2017) The Diverse Functions of the PD1 Inhibitory Pathway. Nature Reviews Immunology, 18, 153-167. https://doi.org/10.1038/nri.2017.108
|
[17]
|
Li, B., Yan, C., Zhu, J., Chen, X., Fu, Q., Zhang, H., et al. (2020) Anti-PD-1/PD-L1 Blockade Immunotherapy Employed in Treating Hepatitis B Virus Infection-Related Advanced Hepatocellular Carcinoma: A Literature Review. Frontiers in Immunology, 11, Article 1037. https://doi.org/10.3389/fimmu.2020.01037
|
[18]
|
Daassi, D., Mahoney, K.M. and Freeman, G.J. (2020) The Importance of Exosomal PDL1 in Tumour Immune Evasion. Nature Reviews Immunology, 20, 209-215. https://doi.org/10.1038/s41577-019-0264-y
|
[19]
|
Zhang, L., Zhang, M., Xu, J., Li, S., Chen, Y., Wang, W., et al. (2020) The Role of the Programmed Cell Death Protein-1/Programmed Death-Ligand 1 Pathway, Regulatory T Cells and T Helper 17 Cells in Tumor Immunity: A Narrative Review. Annals of Translational Medicine, 8, 1526-1526. https://doi.org/10.21037/atm-20-6719
|
[20]
|
Xiao, X., Lao, X., Chen, M., Liu, R., Wei, Y., Ouyang, F., et al. (2016) PD-1hi Identifies a Novel Regulatory B-Cell Population in Human Hepatoma That Promotes Disease Progression. Cancer Discovery, 6, 546-559. https://doi.org/10.1158/2159-8290.cd-15-1408
|
[21]
|
Wang, X., Wang, G., Wang, Z., Liu, B., Han, N., Li, J., et al. (2019) PD-1-Expressing B Cells Suppress CD4+ and CD8+ T Cells via PD-1/PD-L1-Dependent Pathway. Molecular Immunology, 109, 20-26. https://doi.org/10.1016/j.molimm.2019.02.009
|
[22]
|
Liu, M., Sun, Q., Wei, F. and Ren, X. (2020) Comprehensive Insights into the Effects and Regulatory Mechanisms of Immune Cells Expressing Programmed Death-1/programmed Death Ligand 1 in Solid Tumors. Cancer Biology and Medicine, 17, 626-639. https://doi.org/10.20892/j.issn.2095-3941.2020.0112
|
[23]
|
Gordon, S.R., Maute, R.L., Dulken, B.W., Hutter, G., George, B.M., McCracken, M.N., et al. (2017) PD-1 Expression by Tumour-Associated Macrophages Inhibits Phagocytosis and Tumour Immunity. Nature, 545, 495-499. https://doi.org/10.1038/nature22396
|
[24]
|
Zhou, D., Luan, J., Huang, C. and Li, J. (2021) Tumor-Associated Macrophages in Hepatocellular Carcinoma: Friend or Foe? Gut and Liver, 15, 500-516. https://doi.org/10.5009/gnl20223
|
[25]
|
Park, D., Sung, P., Lee, G., Cho, S., Kim, S., Kang, B., et al. (2021) Preferential Expression of Programmed Death Ligand 1 Protein in Tumor-Associated Macrophages and Its Potential Role in Immunotherapy for Hepatocellular Carcinoma. International Journal of Molecular Sciences, 22, Article 4710. https://doi.org/10.3390/ijms22094710
|
[26]
|
Lu, C., Redd, P.S., Lee, J.R., Savage, N. and Liu, K. (2016) The Expression Profiles and Regulation of PD-L1 in Tumor-Induced Myeloid-Derived Suppressor Cells. OncoImmunology, 5, e1247135. https://doi.org/10.1080/2162402x.2016.1247135
|
[27]
|
Liu, M., Wei, F., Wang, J., Yu, W., Shen, M., Liu, T., et al. (2021) Myeloid-Derived Suppressor Cells Regulate the Immunosuppressive Functions of PD-1−PD-L1+ Bregs through PD-L1/PI3K/AKT/NF-κB Axis in Breast Cancer. Cell Death & Disease, 12, Article No. 465. https://doi.org/10.1038/s41419-021-03745-1
|
[28]
|
Nam, S., Lee, A., Lim, J. and Lim, J. (2019) Analysis of the Expression and Regulation of PD-1 Protein on the Surface of Myeloid-Derived Suppressor Cells (MDSCs). Biomolecules & Therapeutics, 27, 63-70. https://doi.org/10.4062/biomolther.2018.201
|
[29]
|
Kuzume, A., Chi, S., Yamauchi, N. and Minami, Y. (2020) Immune-Checkpoint Blockade Therapy in Lymphoma. International Journal of Molecular Sciences, 21, Article 5456. https://doi.org/10.3390/ijms21155456
|
[30]
|
Callahan, M.K. and Wolchok, J.D. (2019) Recruit or Reboot? How Does Anti-PD-1 Therapy Change Tumor-Infiltrating Lymphocytes? Cancer Cell, 36, 215-217. https://doi.org/10.1016/j.ccell.2019.08.009
|
[31]
|
Kudo, M. (2019) Targeted and Immune Therapies for Hepatocellular Carcinoma: Predictions for 2019 and beyond. World Journal of Gastroenterology, 25, 789-807. https://doi.org/10.3748/wjg.v25.i7.789
|
[32]
|
国家卫生健康委办公厅. 原发性肝癌诊疗指南(2022年版) [J]. 临床肝胆病杂志, 2022, 38(2): 288-303.
|
[33]
|
da Fonseca, L.G., Reig, M. and Bruix, J. (2020) Tyrosine Kinase Inhibitors and Hepatocellular Carcinoma. Clinics in Liver Disease, 24, 719-737. https://doi.org/10.1016/j.cld.2020.07.012
|
[34]
|
Al-Salama, Z.T., Syed, Y.Y. and Scott, L.J. (2019) Lenvatinib: A Review in Hepatocellular Carcinoma. Drugs, 79, 665-674. https://doi.org/10.1007/s40265-019-01116-x
|
[35]
|
Liu, J., Tao, H., Yuan, T., Li, J., Li, J., Liang, H., et al. (2022) Immunomodulatory Effects of Regorafenib: Enhancing the Efficacy of Anti-PD-1/PD-L1 Therapy. Frontiers in Immunology, 13, Article 992611. https://doi.org/10.3389/fimmu.2022.992611
|
[36]
|
Wu, R., Kong, P., Xia, L., Huang, Y., Li, Z., Tang, Y., et al. (2019) Regorafenib Promotes Antitumor Immunity via Inhibiting PD-L1 and IDO1 Expression in Melanoma. Clinical Cancer Research, 25, 4530-4541. https://doi.org/10.1158/1078-0432.ccr-18-2840
|
[37]
|
Finn, R.S., Ikeda, M., Zhu, A.X., Sung, M.W., Baron, A.D., Kudo, M., et al. (2020) Phase Ib Study of Lenvatinib Plus Pembrolizumab in Patients with Unresectable Hepatocellular Carcinoma. Journal of Clinical Oncology, 38, 2960-2970. https://doi.org/10.1200/jco.20.00808
|
[38]
|
Xu, J., Shen, J., Gu, S., Zhang, Y., Wu, L., Wu, J., et al. (2021) Camrelizumab in Combination with Apatinib in Patients with Advanced Hepatocellular Carcinoma (RESCUE): A Nonrandomized, Open-Label, Phase II Trial. Clinical Cancer Research, 27, 1003-1011. https://doi.org/10.1158/1078-0432.ccr-20-2571
|
[39]
|
Huang, C., Zhu, X., Shen, Y., Wu, D., Ji, Y., Ge, N., et al. (2021) Organ Specific Responses to First-Line Lenvatinib Plus Anti-PD-1 Antibodies in Patients with Unresectable Hepatocellular Carcinoma: A Retrospective Analysis. Biomarker Research, 9, Article No. 19. https://doi.org/10.1186/s40364-021-00274-z
|
[40]
|
Zhu, X., Huang, C., Shen, Y., Ji, Y., Ge, N., Qu, X., et al. (2021) Downstaging and Resection of Initially Unresectable Hepatocellular Carcinoma with Tyrosine Kinase Inhibitor and Anti-PD-1 Antibody Combinations. Liver Cancer, 10, 320-329. https://doi.org/10.1159/000514313
|
[41]
|
Ho, W.J., Sharma, G., Zhu, Q., Stein-O’Brien, G., Durham, J., Anders, R., et al. (2020) Integrated Immunological Analysis of a Successful Conversion of Locally Advanced Hepatocellular Carcinoma to Resectability with Neoadjuvant Therapy. Journal for ImmunoTherapy of Cancer, 8, e000932. https://doi.org/10.1136/jitc-2020-000932
|
[42]
|
Lee, W.S., Yang, H., Chon, H.J. and Kim, C. (2020) Combination of Anti-Angiogenic Therapy and Immune Checkpoint Blockade Normalizes Vascular-Immune Crosstalk to Potentiate Cancer Immunity. Experimental & Molecular Medicine, 52, 1475-1485. https://doi.org/10.1038/s12276-020-00500-y
|
[43]
|
Motz, G.T., Santoro, S.P., Wang, L., Garrabrant, T., Lastra, R.R., Hagemann, I.S., et al. (2014) Tumor Endothelium FasL Establishes a Selective Immune Barrier Promoting Tolerance in Tumors. Nature Medicine, 20, 607-615. https://doi.org/10.1038/nm.3541
|
[44]
|
Kim, K., Park, S., Park, S.Y., Kim, G., Park, S.M., Cho, J., et al. (2020) Single-Cell Transcriptome Analysis Reveals TOX as a Promoting Factor for T Cell Exhaustion and a Predictor for Anti-PD-1 Responses in Human Cancer. Genome Medicine, 12, Article No. 22. https://doi.org/10.1186/s13073-020-00722-9
|
[45]
|
Nishino, M., Ramaiya, N.H., Chambers, E.S., Adeni, A.E., Hatabu, H., Jänne, P.A., et al. (2016) Immune-Related Response Assessment during PD-1 Inhibitor Therapy in Advanced Non-Small-Cell Lung Cancer Patients. Journal for ImmunoTherapy of Cancer, 4, 84. https://doi.org/10.1186/s40425-016-0193-2
|
[46]
|
Allen, E., Jabouille, A., Rivera, L.B., Lodewijckx, I., Missiaen, R., Steri, V., et al. (2017) Combined Antiangiogenic and Anti-PD-L1 Therapy Stimulates Tumor Immunity through HEV Formation. Science Translational Medicine, 9, eaak9679. https://doi.org/10.1126/scitranslmed.aak9679
|
[47]
|
Shigeta, K., Matsui, A., Kikuchi, H., Klein, S., Mamessier, E., Chen, I.X., et al. (2020) Regorafenib Combined with PD1 Blockade Increases CD8 T-Cell Infiltration by Inducing CXCL10 Expression in Hepatocellular Carcinoma. Journal for ImmunoTherapy of Cancer, 8, e001435. https://doi.org/10.1136/jitc-2020-001435
|
[48]
|
Deng, H., Kan, A., Lyu, N., Mu, L., Han, Y., Liu, L., et al. (2020) Dual Vascular Endothelial Growth Factor Receptor and Fibroblast Growth Factor Receptor Inhibition Elicits Antitumor Immunity and Enhances Programmed Cell Death-1 Checkpoint Blockade in Hepatocellular Carcinoma. Liver Cancer, 9, 338-357. https://doi.org/10.1159/000505695
|
[49]
|
Esteban-Fabró, R., Willoughby, C.E., Piqué-Gili, M., Montironi, C., Abril-Fornaguera, J., Peix, J., et al. (2022) Cabozantinib Enhances Anti-Pd1 Activity and Elicits a Neutrophil-Based Immune Response in Hepatocellular Carcinoma. Clinical Cancer Research, 28, 2449-2460. https://doi.org/10.1158/1078-0432.ccr-21-2517
|
[50]
|
Cheng, A., Qin, S., Ikeda, M., Galle, P.R., Ducreux, M., Kim, T., et al. (2022) Updated Efficacy and Safety Data from Imbrave150: Atezolizumab plus Bevacizumab vs. Sorafenib for Unresectable Hepatocellular Carcinoma. Journal of Hepatology, 76, 862-873. https://doi.org/10.1016/j.jhep.2021.11.030
|
[51]
|
Ren, Z., Xu, J., Bai, Y., Xu, A., Cang, S., Du, C., et al. (2021) Sintilimab plus a Bevacizumab Biosimilar (IBI305) versus Sorafenib in Unresectable Hepatocellular Carcinoma (ORIENT-32): A Randomised, Open-Label, Phase 2-3 Study. The Lancet Oncology, 22, 977-990. https://doi.org/10.1016/s1470-2045(21)00252-7
|
[52]
|
Wang, Y., Lu, L., Guan, Y., Ho, M., Lu, S., Spahn, J., et al. (2021) Atezolizumab plus Bevacizumab Combination Enables an Unresectable Hepatocellular Carcinoma Resectable and Links Immune Exclusion and Tumor Dedifferentiation to Acquired Resistance. Experimental Hematology & Oncology, 10, Article No. 45. https://doi.org/10.1186/s40164-021-00237-y
|
[53]
|
Hidaka, Y., Tomita, M., Desaki, R., Hamanoue, M., Takao, S., Kirishima, M., et al. (2022) Conversion Surgery for Hepatocellular Carcinoma with Portal Vein Tumor Thrombus after Successful Atezolizumab plus Bevacizumab Therapy: A Case Report. World Journal of Surgical Oncology, 20, Article No. 228. https://doi.org/10.1186/s12957-022-02691-2
|
[54]
|
Fife, B.T. and Bluestone, J.A. (2008) Control of Peripheral T‐Cell Tolerance and Autoimmunity via the CTLA‐4 and PD‐1 Pathways. Immunological Reviews, 224, 166-182. https://doi.org/10.1111/j.1600-065x.2008.00662.x
|
[55]
|
Krummel, M.F. and Allison, J.P. (1995) CD28 and CTLA-4 Have Opposing Effects on the Response of T Cells to Stimulation. The Journal of Experimental Medicine, 182, 459-465. https://doi.org/10.1084/jem.182.2.459
|
[56]
|
Stamper, C.C., Zhang, Y., Tobin, J.F., Erbe, D.V., Ikemizu, S., Davis, S.J., et al. (2001) Crystal Structure of the B7-1/CTLA-4 Complex That Inhibits Human Immune Responses. Nature, 410, 608-611. https://doi.org/10.1038/35069118
|
[57]
|
Yi, M., Zheng, X., Niu, M., Zhu, S., Ge, H. and Wu, K. (2022) Combination Strategies with PD-1/PD-L1 Blockade: Current Advances and Future Directions. Molecular Cancer, 21, Article No. 28. https://doi.org/10.1186/s12943-021-01489-2
|
[58]
|
Rotte, A. (2019) Combination of CTLA-4 and PD-1 Blockers for Treatment of Cancer. Journal of Experimental & Clinical Cancer Research, 38, Article No. 255. https://doi.org/10.1186/s13046-019-1259-z
|
[59]
|
Zhao, Y., Lee, C.K., Lin, C., Gassen, R.B., Xu, X., Huang, Z., et al. (2019) PD-L1:CD80 Cis-Heterodimer Triggers the Co-Stimulatory Receptor CD28 While Repressing the Inhibitory PD-1 and CTLA-4 Pathways. Immunity, 51, 1059-1073.e9. https://doi.org/10.1016/j.immuni.2019.11.003
|
[60]
|
Romano, E., Kusio-Kobialka, M., Foukas, P.G., Baumgaertner, P., Meyer, C., Ballabeni, P., et al. (2015) Ipilimumab-dependent Cell-Mediated Cytotoxicity of Regulatory T Cells Ex Vivo by Nonclassical Monocytes in Melanoma Patients. Proceedings of the National Academy of Sciences of the United States of America, 112, 6140-6145. https://doi.org/10.1073/pnas.1417320112
|
[61]
|
Saung, M.T., Pelosof, L., Casak, S., Donoghue, M., Lemery, S., Yuan, M., et al. (2021) FDA Approval Summary: Nivolumab plus Ipilimumab for the Treatment of Patients with Hepatocellular Carcinoma Previously Treated with Sorafenib. The Oncologist, 26, 797-806. https://doi.org/10.1002/onco.13819
|
[62]
|
Martinez-Cannon, B.A., Castro-Sanchez, A., Barragan-Carrillo, R., de la Rosa Pacheco, S., Platas, A., Fonseca, A., et al. (2021) Adherence to Adjuvant Tamoxifen in Mexican Young Women with Breast Cancer. Patient Preference and Adherence, 15, 1039-1049. https://doi.org/10.2147/ppa.s296747
|
[63]
|
Kelley, R.K., Sangro, B., Harris, W., Ikeda, M., Okusaka, T., Kang, Y., et al. (2021) Safety, Efficacy, and Pharmacodynamics of Tremelimumab plus Durvalumab for Patients with Unresectable Hepatocellular Carcinoma: Randomized Expansion of a Phase I/II Study. Journal of Clinical Oncology, 39, 2991-3001. https://doi.org/10.1200/jco.20.03555
|
[64]
|
Shurin, M.R. and Umansky, V. (2022) Cross-Talk between HIF and PD-1/PD-L1 Pathways in Carcinogenesis and Therapy. Journal of Clinical Investigation, 132, e159473. https://doi.org/10.1172/jci159473
|
[65]
|
Bailey, C.M., Liu, Y., Liu, M., Du, X., Devenport, M., Zheng, P., et al. (2022) Targeting Hif-1α Abrogates Pd-L1-Mediated Immune Evasion in Tumor Microenvironment but Promotes Tolerance in Normal Tissues. Journal of Clinical Investigation, 132, e150846. https://doi.org/10.1172/jci150846
|
[66]
|
Zhu, Y., Chen, M., Xu, D., Li, T., Zhang, Z., Li, J., et al. (2022) The Combination of PD-1 Blockade with Interferon-α Has a Synergistic Effect on Hepatocellular Carcinoma. Cellular & Molecular Immunology, 19, 726-737. https://doi.org/10.1038/s41423-022-00848-3
|
[67]
|
Hu, B., Yu, M., Ma, X., Sun, J., Liu, C., Wang, C., et al. (2022) IFNα Potentiates Anti-Pd-1 Efficacy by Remodeling Glucose Metabolism in the Hepatocellular Carcinoma Microenvironment. Cancer Discovery, 12, 1718-1741. https://doi.org/10.1158/2159-8290.cd-21-1022
|
[68]
|
Ru, J., Lu, J., Ge, J., Ding, B., Su, R., Jiang, Y., et al. (2024) IRGM Is a Novel Regulator of PD-L1 via Promoting S6k1-Mediated Phosphorylation of YBX1 in Hepatocellular Carcinoma. Cancer Letters, 581, Article ID: 216495. https://doi.org/10.1016/j.canlet.2023.216495
|
[69]
|
Han, R., Ling, C., Wang, Y. and Lu, L. (2023) Enhancing HCC Treatment: Innovatively Combining HDAC2 Inhibitor with PD-1/PD-L1 Inhibition. Cancer Cell International, 23, Article No. 203. https://doi.org/10.1186/s12935-023-03051-0
|
[70]
|
Zhu, Y., Yang, J., Xu, D., Gao, X., Zhang, Z., Hsu, J.L., et al. (2019) Disruption of Tumour-Associated Macrophage Trafficking by the Osteopontin-Induced Colony-Stimulating Factor-1 Signalling Sensitises Hepatocellular Carcinoma to Anti-Pd-L1 Blockade. Gut, 68, 1653-1666. https://doi.org/10.1136/gutjnl-2019-318419
|
[71]
|
Cai, M., Huang, W., Huang, J., Shi, W., Guo, Y., Liang, L., et al. (2022) Transarterial Chemoembolization Combined with Lenvatinib plus PD-1 Inhibitor for Advanced Hepatocellular Carcinoma: A Retrospective Cohort Study. Frontiers in Immunology, 13, Article 848387. https://doi.org/10.3389/fimmu.2022.848387
|
[72]
|
Wu, X., Yang, L., Chen, Y., Chen, Z., Lu, H., Shen, X., et al. (2024) Transcatheter Arterial Chemoembolisation Combined with Lenvatinib Plus Camrelizumab as Conversion Therapy for Unresectable Hepatocellular Carcinoma: A Single-Arm, Multicentre, Prospective Study. eClinicalMedicine, 67, Article ID: 102367. https://doi.org/10.1016/j.eclinm.2023.102367
|
[73]
|
Luo, X., Chang, R., Kuang, D., Yuan, M., Li, G., Zhang, B., et al. (2023) Case Report: Successful Conversion and Salvage Resection of Huge Hepatocellular Carcinoma with Portal Vein Tumor Thrombosis and Intrahepatic Metastasis via Sequential Hepatic Arterial Infusion Chemotherapy, Lenvatinib plus PD-1 Antibody Followed by Simultaneous Transcatheter Arterial Chemoembolization, and Portal Vein Embolization. Frontiers in Immunology, 14, Article 1285296. https://doi.org/10.3389/fimmu.2023.1285296
|
[74]
|
He, M., Liang, R., Zhao, Y., Xu, Y., Chen, H., Zhou, Y., et al. (2021) Lenvatinib, Toripalimab, plus Hepatic Arterial Infusion Chemotherapy versus Lenvatinib Alone for Advanced Hepatocellular Carcinoma. Therapeutic Advances in Medical Oncology, 13, 8340-8359. https://doi.org/10.1177/17588359211002720
|
[75]
|
Chiang, C.L., Chiu, K.W.H., Chan, K.S.K., Lee, F.A.S., Li, J.C.B., Wan, C.W.S., et al. (2023) Sequential Transarterial Chemoembolisation and Stereotactic Body Radiotherapy Followed by Immunotherapy as Conversion Therapy for Patients with Locally Advanced, Unresectable Hepatocellular Carcinoma (START-FIT): A Single-Arm, Phase 2 Trial. The Lancet Gastroenterology & Hepatology, 8, 169-178. https://doi.org/10.1016/s2468-1253(22)00339-9
|
[76]
|
Lurje, I., Czigany, Z., Bednarsch, J., Roderburg, C., Isfort, P., Neumann, U.P., et al. (2019) Treatment Strategies for Hepatocellular Carcinoma—A Multidisciplinary Approach. International Journal of Molecular Sciences, 20, Article 1465. https://doi.org/10.3390/ijms20061465
|