[1]
|
Shen, F., Fang, Y., Wu, Y., Zhou, M., Shen, J. and Fan, X. (2023) Metal Ions and Nanometallic Materials in Antitumor Immunity: Function, Application, and Perspective. Journal of Nanobiotechnology, 21, Article No. 20. https://doi.org/10.1186/s12951-023-01771-z
|
[2]
|
Gao, Y., Liu, S., Huang, Y., Li, F. and Zhang, Y. (2024) Regulation of Anti-Tumor Immunity by Metal Ion in the Tumor Microenvironment. Frontiers in Immunology, 15, Article 1379365. https://doi.org/10.3389/fimmu.2024.1379365
|
[3]
|
Zhang, J., Yin, H., Zhu, X., Xiang, R., Miao, Y., Zhang, Y., et al. (2022) Effects of Multi‐metal Exposure on the Risk of Diabetes Mellitus among People Aged 40-75 Years in Rural Areas in Southwest China. Journal of Diabetes Investigation, 13, 1412-1425. https://doi.org/10.1111/jdi.13797
|
[4]
|
Wolide, A.D., Zawdie, B., Alemayehu Nigatu, T. and Tadesse, S. (2016) Evaluation of Serum Ferritin and Some Metal Elements in Type 2 Diabetes Mellitus Patients: Comparative Cross-Sectional Study. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 9, 417-424. https://doi.org/10.2147/dmso.s120326
|
[5]
|
Kim, J. (2012) The Role of Iron Metabolism in Lung Inflammation and Injury. Journal of Allergy & Therapy, 1, S4. https://doi.org/10.4172/2155-6121.s4-004
|
[6]
|
Zhang, B., Su, Y., Zhou, J., Zheng, Y. and Zhu, D. (2021) Toward a Better Regeneration through Implant‐Mediated Immunomodulation: Harnessing the Immune Responses. Advanced Science, 8, Article ID: 2100446. https://doi.org/10.1002/advs.202100446
|
[7]
|
Zou, F., Jiang, J., Lv, F., Xia, X. and Ma, X. (2020) Preparation of Antibacterial and Osteoconductive 3D-Printed PLGA/Cu(I)@ZIF-8 Nanocomposite Scaffolds for Infected Bone Repair. Journal of Nanobiotechnology, 18, Article No. 39. https://doi.org/10.1186/s12951-020-00594-6
|
[8]
|
Guo, D., Zhou, Y., Wei, X., Zhang, S., Jin, T., Zhang, Y., et al. (2021) Preliminary Study of Genome-Wide Association Identifies Novel Susceptibility Genes for Serum Mineral Elements in the Chinese Han Population. Biological Trace Element Research, 200, 2549-2555. https://doi.org/10.1007/s12011-021-02854-4
|
[9]
|
Zhang, X.R., Pham, N.C., Ho, N.T.T., Le, V.A.T., Park, J., Nam, S., et al. (2022) NeoPep S: A New Generation of Aimp1-Derived Peptide (AdP) Effects on Wound Healing in Vivo. In Vivo, 36, 1222-1235. https://doi.org/10.21873/invivo.12821
|
[10]
|
Morales, M.E., Derbes, R.S., Ade, C.M., Ortego, J.C., Stark, J., Deininger, P.L., et al. (2016) Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes. PLOS ONE, 11, e0151367. https://doi.org/10.1371/journal.pone.0151367
|
[11]
|
Cunha, V.R.R., de Souza, R.B., da Fonseca Martins, A.M.C.R.P., Koh, I.H.J. and Constantino, V.R.L. (2016) Accessing the Biocompatibility of Layered Double Hydroxide by Intramuscular Implantation: Histological and Microcirculation Evaluation. Scientific Reports, 6, Article No. 30547. https://doi.org/10.1038/srep30547
|
[12]
|
Sanghani, H., Parmar, V. and Khubchandani, A. (2020) Correlation of Trace Elements (Serum Zinc and Copper) in Type 2 Diabetic Patients with and without Complications. International Journal of Clinical Biochemistry and Research, 5, 249-253.
|
[13]
|
Teo Wendy, Z. and Schalock Peter, C. (2016) Hypersensitivity Reactions to Implanted Metal Devices: Facts and Fictions. Journal of Investigational Allergology and Clinical Immunology, 26, 279-294. https://doi.org/10.18176/jiaci.0095
|
[14]
|
Robinett, N.G., Culbertson, E.M., Peterson, R.L., Sanchez, H., Andes, D.R., Nett, J.E., et al. (2019) Exploiting the Vulnerable Active Site of a Copper-Only Superoxide Dismutase to Disrupt Fungal Pathogenesis. Journal of Biological Chemistry, 294, 2700-5412. https://doi.org/10.1074/jbc.ra118.007095
|
[15]
|
Gleason, J.E., Galaleldeen, A., Peterson, R.L., Taylor, A.B., Holloway, S.P., Waninger-Saroni, J., et al. (2014) candida Albicans SOD5 Represents the Prototype of an Unprecedented Class of Cu-Only Superoxide Dismutases Required for Pathogen Defense. Proceedings of the National Academy of Sciences of the United States of America, 111, 5866-5871. https://doi.org/10.1073/pnas.1400137111
|
[16]
|
Dagan, I. and Palty, R. (2021) Regulation of Store-Operated Ca2+ Entry by Saraf. Cells, 10, Article 1887. https://doi.org/10.3390/cells10081887
|
[17]
|
Lewis, R.S. (2019) Store-Operated Calcium Channels: From Function to Structure and Back Again. Cold Spring Harbor Perspectives in Biology, 12, a035055. https://doi.org/10.1101/cshperspect.a035055
|
[18]
|
Wang, C., Jenkitkasemwong, S., Duarte, S., Sparkman, B.K., Shawki, A., Mackenzie, B., et al. (2012) ZIP8 Is an Iron and Zinc Transporter Whose Cell-Surface Expression Is Up-Regulated by Cellular Iron Loading. Journal of Biological Chemistry, 287, 34032-34043. https://doi.org/10.1074/jbc.m112.367284
|
[19]
|
Musci, G. (2014) Ceruloplasmin-Ferroportin System of Iron Traffic in Vertebrates. World Journal of Biological Chemistry, 5, 204-215. https://doi.org/10.4331/wjbc.v5.i2.204
|
[20]
|
Frazer, D.M., Wilkins, S.J., Darshan, D., Mirciov, C.S.G., Dunn, L.A. and Anderson, G.J. (2017) Ferroportin Is Essential for Iron Absorption during Suckling, but Is Hyporesponsive to the Regulatory Hormone Hepcidin. Cellular and Molecular Gastroenterology and Hepatology, 3, 410-421. https://doi.org/10.1016/j.jcmgh.2016.12.002
|
[21]
|
Ward, D.M. and Kaplan, J. (2012) Ferroportin-mediated Iron Transport: Expression and Regulation. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1823, 1426-1433. https://doi.org/10.1016/j.bbamcr.2012.03.004
|
[22]
|
Keleş Altun, İ., Atagün, M.İ., Erdoğan, A., Oymak Yenilmez, D., Yusifova, A., Şenat, A., et al. (2021) Serum Hepcidin/Ferroportin Levels in Bipolar Disorder and Schizophrenia. Journal of Trace Elements in Medicine and Biology, 68, Article ID: 126843. https://doi.org/10.1016/j.jtemb.2021.126843
|
[23]
|
Zhang, W., Meng, H. and Yang, M. (2015) Regulation of DMT1 on Bone Microstructure in Type 2 Diabetes. International Journal of Medical Sciences, 12, 441-449. https://doi.org/10.7150/ijms.11986
|
[24]
|
Yanatori, I. and Kishi, F. (2019) DMT1 and Iron Transport. Free Radical Biology and Medicine, 133, 55-63. https://doi.org/10.1016/j.freeradbiomed.2018.07.020
|
[25]
|
Danping, H. (2017) A Research on the Effect of Worm Predation on Phosphorus Release from Actived Sludge. Science Discovery, 5, 217-222. https://doi.org/10.11648/j.sd.20170503.20
|
[26]
|
Cheng, X., Li, Y., Liang, Y., Meng, K., Li, G., Lu, Q., et al. (2024) Mechanical Biomimetic Silk Nano Fiber-Magnesium Ion Complex/Hydroxyethylcellulose/Glycerol Hydrogel Dressing with Angiogenic Capacity for Accelerating Scarless Diabetic Wound Healing. Journal of Colloid and Interface Science, 667, 624-639. https://doi.org/10.1016/j.jcis.2024.03.142
|
[27]
|
Zhu, W., Liu, Y., Wang, W., Zhou, Z., Gu, J., Zhang, Z., et al. (2021) A Paradox: Fe2+-Containing Agents Decreased ROS and Apoptosis Induced by CoNPs in Vascular Endothelial Cells by Inhibiting HIF-1α. Bioscience Reports, 41, BSR20203456. https://doi.org/10.1042/bsr20203456
|
[28]
|
Liu, R., Lv, Z., Liu, X., Huang, W., Pan, S., Yin, R., et al. (2021) Improved Delivery System for Celastrol-Loaded Magnetic Fe3O4/α-Fe2O3 Heterogeneous Nanorods: HIF-1α-Related Apoptotic Effects on SMMC-7721 Cell. Materials Science and Engineering: C, 125, Article ID: 112103. https://doi.org/10.1016/j.msec.2021.112103
|
[29]
|
Yang, L., Gao, Y., Liu, Q., Li, W., Li, Z., Zhang, D., et al. (2023) A Bacterial Responsive Microneedle Dressing with Hydrogel Backing Layer for Chronic Wound Treatment. Small, 20, e2307104. https://doi.org/10.1002/smll.202307104
|
[30]
|
Luo, W., Li, Z., Che, J., Li, X., Zhang, H., Tian, J., et al. (2024) Near-Infrared Responsive Nanocomposite Hydrogel Dressing with Anti-Inflammation and Pro-Angiogenesis for Wound Healing. ACS Applied Materials & Interfaces, 16, 34720-34731. https://doi.org/10.1021/acsami.4c06193
|
[31]
|
ElHusseiny, A.F., Eldissouky, A., Al-Hamza, A.M. and Hassan, H.H.A.M. (2014) Structure-Property Relationship Studies of Copper(I) Complexes of Nanosized Hypodentate Ligands and Evaluation of Their Antitumor and Antimicrobial Activities. Journal of Coordination Chemistry, 68, 241-260. https://doi.org/10.1080/00958972.2014.982551
|
[32]
|
Król, E., Bogdański, P., Suliburska, J. and Krejpcio, Z. (2018) The Relationship between Dietary, Serum and Hair Levels of Minerals (Fe, Zn, Cu) and Glucose Metabolism Indices in Obese Type 2 Diabetic Patients. Biological Trace Element Research, 189, 34-44. https://doi.org/10.1007/s12011-018-1470-3
|
[33]
|
Geneto, M., Umeta, M., Kebede, T., Azazh, A., Nagphaul, R. and Mohammed, S.F. (2015) A Comparative Study on Serum Level Concentration of Micronutrients Like Zinc, Copper and Chromium Status in Type 2 Diabetic Patients in Diabetes & Endocrinology Unit, Tikur Anbessa Specialized Hospital, Ethiopia. Journal of Pharmacy and Nutrition Sciences, 5, 95-102.
|
[34]
|
Ghafari, C., Brassart, N., Delmotte, P., Brunner, P., Dghoughi, S. and Carlier, S. (2023) Bioresorbable Magnesium-Based Stent: Real-World Clinical Experience and Feasibility of Follow-Up by Coronary Computed Tomography: A New Window to Look at New Scaffolds. Biomedicines, 11, Article 1150. https://doi.org/10.3390/biomedicines11041150
|
[35]
|
Toušek, P., Lazarák, T., Varvařovský, I., Nováčková, M., Neuberg, M. and Kočka, V. (2021) Comparison of a Bioresorbable, Magnesium-Based Sirolimus-Eluting Stent with a Permanent, Everolimus-Eluting Metallic Stent for Treating Patients with Acute Coronary Syndrome: The PRAGUE-22 Study. Cardiovascular Drugs and Therapy, 36, 1129-1136. https://doi.org/10.1007/s10557-021-07258-z
|
[36]
|
Zhang, B., Pei, Z., He, W., Feng, W., Hao, T., Sun, M., et al. (2024) 3D-Printed Porous Zinc Scaffold Combined with Bioactive Serum Exosomes Promotes Bone Defect Repair in Rabbit Radius. Aging, 16, 9625-9648. https://doi.org/10.18632/aging.205891
|
[37]
|
Liu, Y., Yu, L., Chen, J., Li, S., Wei, Z. and Guo, W. (2024) Exploring the Osteogenic Potential of Zinc-Doped Magnesium Phosphate Cement (ZMPC): A Novel Material for Orthopedic Bone Defect Repair. Biomedicines, 12, Article 344. https://doi.org/10.3390/biomedicines12020344
|
[38]
|
Du, X., Yuan, X., Lin, S., Tan, X. and Han, Y. (2024) An Injectable Bone Paste of Poly (Lactic Acid)/Zinc-Doped Nano Hydroxyapatite Composite Microspheres for Skull Repair. Colloids and Surfaces B: Biointerfaces, 239, Article ID: 113969. https://doi.org/10.1016/j.colsurfb.2024.113969
|
[39]
|
Yang, F., Chang, R. and Webster, T. (2019) Atomic Layer Deposition Coating of TiO2 Nano-Thin Films on Magnesium-Zinc Alloys to Enhance Cytocompatibility for Bioresorbable Vascular Stents. International Journal of Nanomedicine, 14, 9955-9970. https://doi.org/10.2147/ijn.s199093
|
[40]
|
Yue, Y., Wang, L., Yang, N., Huang, J., Lei, L., Ye, H., et al. (2015) Effectiveness of Biodegradable Magnesium Alloy Stents in Coronary Artery and Femoral Artery. Journal of Interventional Cardiology, 28, 358-364. https://doi.org/10.1111/joic.12217
|
[41]
|
Wang, J., He, Y., Maitz, M.F., Collins, B., Xiong, K., Guo, L., et al. (2013) A Surface-Eroding Poly(1,3-Trimethylene Carbonate) Coating for Fully Biodegradable Magnesium-Based Stent Applications: Toward Better Biofunction, Biodegradation and Biocompatibility. Acta Biomaterialia, 9, 8678-8689. https://doi.org/10.1016/j.actbio.2013.02.041
|
[42]
|
Huan, Z.G., Leeflang, M.A., Zhou, J., Fratila-Apachitei, L.E. and Duszczyk, J. (2010) In Vitro Degradation Behavior and Cytocompatibility of Mg-Zn-Zr Alloys. Journal of Materials Science: Materials in Medicine, 21, 2623-2635. https://doi.org/10.1007/s10856-010-4111-8
|
[43]
|
Ding, B., Chen, H., Tan, J., Meng, Q., Zheng, P., Ma, P., et al. (2023) ZIF‐8 Nanoparticles Evoke Pyroptosis for High‐efficiency Cancer Immunotherapy. Angewandte Chemie International Edition, 62, e202215307. https://doi.org/10.1002/anie.202215307
|
[44]
|
Xiao, T., Liu, J., Li, Y., Cai, Y., Xing, X., Shao, M., et al. (2023) Microenvironment-Responsive Cu-Phenolic Networks Coated Nanofibrous Dressing with Timely Macrophage Phenotype Transition for Chronic MRSA Infected Wound Healing. Materials Today Bio, 22, Article ID: 100788. https://doi.org/10.1016/j.mtbio.2023.100788
|
[45]
|
Gaudillat, Q., Kirchhoff, J., Jourdain, I., Humblot, V., Figarol, A., Knorr, M., et al. (2024) Coordination Assemblies of Acetylenic Dithioether Ligands on Silver(I) Salts: Crystal Structure, Antibacterial and Cytotoxicity Activities. Inorganic Chemistry, 63, 19249-19265. https://doi.org/10.1021/acs.inorgchem.4c02913
|
[46]
|
Desai, S.S., Deepika Roy, K.A., Abishad, P., Krishnan, R., Vinod, V.K., Karthikeyan, A., et al. (2025) Harnessing in Vitro Cytotoxicity and Antibacterial Potential of a Novel Silver-DABCO Framework against Multi-Drug-Resistant Pathogens. RSC Advances, 15, 8180-8188. https://doi.org/10.1039/d5ra00509d
|
[47]
|
Rego, R.M., Kurkuri, M.D. and Kigga, M. (2022) A Comprehensive Review on Water Remediation Using Uio-66 MOFs and Their Derivatives. Chemosphere, 302, Article ID: 134845. https://doi.org/10.1016/j.chemosphere.2022.134845
|
[48]
|
Sadek, A.A., Abd-Elkareem, M., Abdelhamid, H.N., Moustafa, S. and Hussein, K. (2022) Enhancement of Critical-Sized Bone Defect Regeneration Using UiO-66 Nanomaterial in Rabbit Femurs. BMC Veterinary Research, 18, Article No. 260. https://doi.org/10.1186/s12917-022-03347-9
|
[49]
|
Mbatia, H.W., Dhammika Bandara, H.M. and Burdette, S.C. (2012) Cuprocleav-1, a First Generation Photocage for Cu+. Chemical Communications, 48, 5331-5333. https://doi.org/10.1039/c2cc31281f
|
[50]
|
Zhang, J., Wang, C., Wu, X., Shen, Q. and Du, Y. (2025) Nanozyme-Based Therapeutic Strategies for Rheumatoid Arthritis. Journal of Controlled Release, 377, 716-734. https://doi.org/10.1016/j.jconrel.2024.11.072
|
[51]
|
Zarei, K., Jahanbakhshi, M., Nahavandi, R. and Emadi, R. (2024) Optimized Co-Delivery of Curcumin and Methylprednisolone Using Polyvinyl Alcohol-Coated CuO Nanoparticles for Synergistic Rheumatoid Arthritis Treatment. Heliyon, 10, e40429. https://doi.org/10.1016/j.heliyon.2024.e40429
|
[52]
|
Chakraborty, M. (2015) Serum Copper as a Marker of Disease Activity in Rheumatoid Arthritis. Journal of Clinical and Diagnostic Research, 9, BC09-BC11. https://doi.org/10.7860/jcdr/2015/14851.7001
|
[53]
|
Mirak, M., Alizadeh, M., Ghaffari, M. and Ashtiani, M.N. (2016) Characterization, Mechanical Properties and Corrosion Resistance of Biocompatible Zn-Ha/TiO2 Nanocomposite Coatings. Journal of the Mechanical Behavior of Biomedical Materials, 62, 282-290. https://doi.org/10.1016/j.jmbbm.2016.05.016
|
[54]
|
Bi, Q., Song, X., Chen, Y., Zheng, Y., Yin, P. and Lei, T. (2020) Zn-Ha/Bi-Ha Biphasic Coatings on Titanium: Fabrication, Characterization, Antibacterial and Biological Activity. Colloids and Surfaces B: Biointerfaces, 189, Article ID: 110813. https://doi.org/10.1016/j.colsurfb.2020.110813
|
[55]
|
Mao, L., Shen, L., Chen, J., Wu, Y., Kwak, M., Lu, Y., et al. (2015) Enhanced Bioactivity of Mg-Nd-Zn-Zr Alloy Achieved with Nanoscale MgF2 Surface for Vascular Stent Application. ACS Applied Materials & Interfaces, 7, 5320-5330. https://doi.org/10.1021/am5086885
|
[56]
|
Xiao, J., Zhou, Y., Ye, M., An, Y., Wang, K., Wu, Q., et al. (2020) Freeze‐Thawing Chitosan/Ions Hydrogel Coated Gauzes Releasing Multiple Metal Ions on Demand for Improved Infected Wound Healing. Advanced Healthcare Materials, 10, e2001591. https://doi.org/10.1002/adhm.202001591
|