基于分子分型的交界性卵巢肿瘤生育力保护策略:从基础到临床
Fertility-Sparing Strategies for Borderline Ovarian Tumors Based on Molecular Classification: From Bench to Bedside
DOI: 10.12677/acm.2025.1551490, PDF, HTML, XML,   
作者: 黄 颖, 令狐华*:重庆医科大学附属第一医院妇产科,母胎医学重庆市重点实验室/生殖与发育教育部国际合作联合实验室/母胎医学创新引智基地,重庆
关键词: 交界性卵巢肿瘤生育力保护分子分型Borderline Ovarian Tumors Fertility Preservation Molecular Classification
摘要: 交界性卵巢肿瘤(borderline ovarian tumors, BOTs)是一类具有独特生物学特征的卵巢肿瘤,好发于育龄期女性。虽然保留生育功能手术(fertility-sparing surgery, FSS)已成为这类患者的首选治疗方式,但由于BOTs仍具有恶性转化和转移的潜在风险,临床决策面临重大挑战。目前尚缺乏可靠的生物标志物来预测BOTs向低级别浆液性癌(low-grade serous carcinoma, LGSC)的进展风险,这使得临床医生在平衡肿瘤安全性和生育力保护时面临困境。BOTs显著的生物学异质性进一步增加了手术方式选择、辅助治疗决策和随访策略制定的复杂性。本文系统综述了当前BOTs分子分型研究的最新进展,旨在为临床实践提供更精准的决策依据,并为未来研究方向提供新的思路。
Abstract: Borderline ovarian tumors (BOTs) constitute a distinct category of ovarian neoplasms with unique biological characteristics, primarily affecting women of reproductive age. While fertility-sparing surgery (FSS) has become the preferred therapeutic strategy for these patients, clinical management remains challenging due to the potential risks of malignant transformation and metastasis. Currently, reliable biomarkers for predicting the progression risk of BOTs to low-grade serous carcinoma (LGSC) remain elusive, posing a therapeutic dilemma in balancing oncological safety and fertility preservation. The significant biological heterogeneity of BOTs further complicates surgical approach selection, adjuvant therapy decisions, and follow-up strategy formulation. This review systematically summarizes recent advances in molecular classification of BOTs, aiming to provide more precise evidence for clinical decision-making and offer new perspectives for future research directions.
文章引用:黄颖, 令狐华. 基于分子分型的交界性卵巢肿瘤生育力保护策略:从基础到临床[J]. 临床医学进展, 2025, 15(5): 1268-1274. https://doi.org/10.12677/acm.2025.1551490

1. 引言

卵巢交界性肿瘤(borderline ovarian tumors, BOTs)是一类具有不确定恶性潜能的异质性肿瘤,该分类于1973年被世界卫生组织(WHO)正式采用。BOTs既往也被称为低度恶性潜能肿瘤和非典型增殖性肿瘤,约占卵巢上皮性肿瘤的10%~20% [1] [2]。这类肿瘤主要发生在年轻的育龄期女性中,其中超过1/3的BOTs患者为40岁以下有保留生育能力需求的女性。值得注意的是,高达79%的患者在诊断时处于FIGO I期。目前,保留生育手术(fertility-sparing surgery, FSS)已被广泛接受。然而,患者及家属仍需基于肿瘤复发及恶性转化风险的个体化评估进行决策,因此亟需更全面的预后信息以指导临床实践。临床医生需在肿瘤安全性与生育力保护之间权衡,这一决策过程仍具有挑战性。因此,通过分子水平的研究优化BOTs患者的个体化治疗决策具有重要意义。

分子分型通过解析肿瘤的分子特征(如基因突变、基因表达谱、表观遗传学改变等),对肿瘤进行亚型分类,以揭示其生物学行为、预后差异及治疗敏感性。在强调个体化精准治疗的当下,乳腺癌、子宫内膜癌等肿瘤的分子分型已被纳入临床指南,对患者诊疗发挥着越来越重要的指导作用,而BOTs的分子分型仍处于探索阶段。现有研究表明[3]-[5] BOTs总体预后良好,FSS成为年轻、有生育需求女性的首选手术方案。美国国立综合癌症网络(National Comprehensive Cancer Network, NCCN)及欧洲妇科肿瘤学会(European Society of Gynecological Oncology, ESGO)指出,对于希望保留生育功能的交界性上皮性肿瘤患者,无论期别,均可考虑行保留生育功能手术[6]。约5%的BOTs患者进展为低级别浆液性癌(low-grade serous carcinoma, LGSC),特别是对于伴有腹膜种植的患者来说,即便预后明显优于高级别浆液性癌,但远期预后仍差。目前缺乏可靠的生物标志物预测BOTs向LGSC的进展,导致生育力保护手术的选择及长期随访管理缺乏明确依据。尽管多数BOTs患者不会进展为LGSC,但其生物学行为的异质性仍使患者及医生在手术方式选择、术后辅助治疗决策及随访策略上面临挑战,亟需基于分子标志物的精准指导以缓解临床决策压力。本文就目前交界性卵巢肿瘤分子分型层面的研究进展做一个总结,以期对患者治疗方式及随访提供一些参考依据。

2. 交界性卵巢肿瘤的特点

BOTs是一类生物学行为介于良性与恶性之间的卵巢肿瘤,其组织学特征包括上皮不典型增生、细胞核不典型性及有丝分裂活性增加,但无间质浸润[7]。尽管如此,BOTs仍存在转移潜能,且病程进展相对缓慢。根据第5版WHO卵巢肿瘤分类,交界性卵巢肿瘤可分为浆液性、粘液性、浆黏液性、子宫内膜样、透明细胞及Brenner瘤,以浆液性、粘液性为主,约占95% [8]

2.1. 浆液性交界性卵巢肿瘤

BOTs中约有51%的病理类型为浆液性[8],根据最新WHO卵巢肿瘤分类,浆液性BOTs可分为典型的浆液性BOTs和微乳头亚型的浆液性BOTs。微乳头亚型BOTs病理特征为细长乳头结构(长径 ≥ 5倍短径) [9] [10]。与典型亚型相比,微乳头亚型更易表现为双侧卵巢受累、卵巢表面受累和卵巢外种植,且具有更高的复发率与恶变率[2] [11] [12]

2.2. 粘液性交界性卵巢肿瘤

BOTs中约有44%的病理类型为黏液性[8],粘液性BOTs分为肠型(85%)和苗勒管型(15%),通常表现为光滑的卵巢表面及囊壁。然而,少数病例中可见实性区域和坚硬的结节,这通常是由于紧密堆积的小囊肿内充满黏液蛋白,或由于少量的腺纤维瘤成分所致。因此,必须仔细对这些区域进行取样以排除浸润性肿瘤,包括粘液性癌或肉瘤的壁结节,这凸显了对粘液性肿瘤进行充分采样的重要性。

3. 分子分型

3.1. 卵巢肿瘤二分类模型

2004年,Shih I M等[13]基于临床病理学和分子遗传学提出卵巢肿瘤发生的分类模型。I型肿瘤(低级别肿瘤)包括低级别浆液性癌、粘液癌、子宫内膜样癌、恶性Brenner肿瘤和透明细胞癌,通常表现为单侧较大的囊性肿瘤,生物学行为相对惰性,缓慢地从良性到交界性,再发展到恶性;II型肿瘤(高级别肿瘤)包括高级别浆液性癌(high-grade serous carcinoma, HGSC)、癌肉瘤和未分化癌,通常在晚期被发现,发展迅速,直接起源于表面上皮,具有高度侵袭性[13]-[15]。研究提示,高级别浆液性癌(HGSC)的直接前体是输卵管上皮内癌,而大多数低级别浆液性癌的直接前体是非浸润性LGSC,即微乳头亚型的交界性浆液性肿瘤,后者由交界性浆液性肿瘤发展而来[15]

交界性卵巢肿瘤和低级别浆液性癌属于I型肿瘤,在超过50%的病例中携带BRAF、KRAS突变[16] [17],但P53突变较为少见。相比之下,高级别浆液性癌通常携带p53突变(>50%),但很少出现BRAF和KRAS突变[18]

3.2. KRAS、BRAF

KRAS是RAS家族成员之一,其最常见突变位于第12号染色体的第12号和13号密码子;BRAF属于RAF家族,其突变以第600号氨基酸缬氨酸交换为谷氨酸(V600E)为主。BRAF蛋白是KRAS的下游效应子,二者在肿瘤发生过程中表现出相似的促癌作用,且其突变具有相互排他性。它们在细胞信号传导、细胞增殖和分化中起关键作用,导致RAS-RAF-MAPK-ERK通路组成性激活,从而使细胞不受控制地生长和分裂,最终形成肿瘤。

癌基因激活或肿瘤抑制基因突变失活事件的积累会导致肿瘤进展。由基因改变(如编码区的染色体缺失或功能丧失突变)引起的某些肿瘤抑制基因的功能失活可能在肿瘤发生中起重要作用[19]。86%的浆液性BOTs及其邻近非异型性囊腺瘤区域共享相同KRAS/BRAF突变,提示这些突变是肿瘤发生的早期事件[17] [20]

在BRAF、KRAS突变患者中,二者预后的区别也引起了大家的兴趣。据系列报道,在交界性浆液性卵巢肿瘤中,KRAS突变率为17%~39.5%,BRAF突变率为23%~48%;而LGSC与SBOTs的KRAS突变率相当,约为19%~54.5%,而LGSC中BRAF突变率降至0~33% [21]。基于BRAF突变,良性卵巢浆液性肿瘤似乎可以进展为SBOTs,但这种突变很少参与进展为LGSC [22]。同时,研究报道KRAS突变与SBOTs复发密切相关,KRAS突变在复发性LGSC中很常见,而BRAF突变则很少见[23] [24]。同时,Zeppernick F等[25]的研究表明BRAF突变与细胞衰老及以丰富嗜酸性粒细胞质(EC)为特征的特定细胞类型的存在相关。BRAF突变可通过p16/p21通路诱导肿瘤细胞衰老,而KRAS突变无此效应,这可能是BRAF突变患者预后更优的机制。BRAF突变似乎具有矛盾效应:既作为BOTs启动的驱动突变,又显著抑制其向LGSC的进展[16] [25]

3.3. 甲基化

甲基化是一种常见的表观遗传学修饰,通过添加甲基基团沉默抑癌基因(如RASSF1A),在卵巢肿瘤发生中发挥关键作用,可能是除基因突变之外的另一种致癌机制。

目前普遍认为,低级别浆液性癌是由交界性浆液性肿瘤逐步发展而来,二者具有相似的分子遗传变化。Ie-Ming Shih等[26]的研究显示低级别和高级别浆液性癌具有不同的DNA甲基化模式,且低级别浆液性癌的甲基化谱与浆液性交界性肿瘤及浆液性囊腺瘤密切相关,而与高级别浆液性癌显著不同。基于甲基化分析的结果,进一步支持了卵巢肿瘤的二元模型。

与J H Yoon等[19]和Rathi等[27]分别观察到的卵巢肿瘤高甲基化发生率(40%和41%)一致,Yoon-La Choi等[28]也报道了浆液性交界性卵巢肿瘤中RASSF1A有48.8%的高甲基化。RASSF1A是一个重要的抑癌基因,在多种肿瘤中因其启动子区的甲基化而失活,进而促进肿瘤的发生和发展。RASSF1A的甲基化和失活可能导致细胞周期失控、凋亡抑制及基因组不稳定,从而促进BOTs的发生。此外,研究发现交界性肿瘤中RASSF1A高甲基化与肿瘤微浸润、腹膜植入物和双侧性相关,表现为更高的侵袭性,更高的术后复发风险及较差的预后整体[28]。RASSF1A启动子高甲基化常见于交界性肿瘤和癌中,提示其可能是卵巢肿瘤早期检测的有用分子标志物。

4. 分子分型的应用

手术目前仍是BOTs的标准治疗方式,但关于患者手术方式的选择及术后长期治疗尚存在争议。尽管各项研究都在尝试确定对治疗有潜在影响的分子改变,但目前进展还十分有限。分子分型有助于临床医生区分低风险型与高风险型患者,低风险型患者在治疗方式更倾向于保留生育手术(如单侧附件切除术或肿瘤剥除术),术后补充治疗更为保守,且术前行卵巢组织冰冻或术后辅助生殖技术风险较低;而高风险型患者则相反。

检测BRAF、KRAS突变及RASSF1A甲基化可为囊腺瘤的进展风险分层提供分子依据:携带此类突变的肿瘤常表现为高进展风险,而突变阴性者则进展风险极低。在BOTs患者中,BRAF突变不仅是重要的预后标志物(与低复发率及惰性生物学行为密切相关),更为生育功能保留治疗提供了决策支持。基于BRAF突变的良好预后特征,临床医生可更有信心为这部分患者选择保留生育功能的保守治疗方案。值得关注的是,针对囊液等样本开发特异性分子检测技术(如ddPCR或NGS),有望在卵巢囊腺瘤的精准管理中发挥重要价值,尤其适用于对生育力保护需求迫切的年轻女性患者群体。

目前,针对MEK突变的靶向药物(如司美替尼,selumetinib;比美替尼,binimetinib)已在临床试验中应用,并在复发性低级别浆液性卵巢癌的治疗中表现出良好效果[9]-[31]。针对RASSF1A甲基化的药物主要包括DNA甲基转移酶抑制剂(如5-氮杂胞苷、地西他滨)以及组蛋白去乙酰化酶抑制剂(如伏立诺他、罗米地辛)。这些药物通过逆转RASSF1A甲基化以恢复其抑癌功能,在卵巢癌等实体瘤中显示出潜在疗效[32] [33]。未来,联合治疗和生物标志物指导的个体化治疗将成为BOTs重要研究方向。

5. 分子分型在生育力保护中的争议与挑战

目前,BOTs的分子分型标准尚未统一,不同研究采用的分类方法存在差异,且缺乏明确的指南指导治疗。此外,由于BOTs异质性较高,单一的分子标志物可能无法全面反映肿瘤特征。

据报道,术中冰冻病理诊断BOTs的灵敏度仅为71.9% [34]。在目前的临床实践中,临床医生通常只能在术前基于患者的临床表现、肿瘤标志物及影像学检查对肿瘤性质做出初步判断,术中再行冰冻病理检查指导手术范围的确定。若能在术前通过活检或液体活检获取初步的分子分型信息,临床医生对患者病情的评估将更加准确,与患者及家属的沟通也会更有效,同时有利于制定手术方案,并在术后进一步完善分子分型指导后续治疗和随访。

6. 结论

分子分型通过解析KRAS/BRAF突变及RASSF1A甲基化状态,可进一步评估复发及恶变风险,为BOTs行保留生育手术的适应证筛选提供分子依据。KRAS和BRAF突变发生于BOTs的早期阶段,KRAS突变和RASSF1A高甲基化患者具有更高的复发率及恶变率;然而,BRAF突变似乎对进展为低级别浆液性癌具有保护作用。关于BOTs分子分型,仍需更多研究以指导后续治疗。

NOTES

*通讯作者。

参考文献

[1] Zanetta, G., Rota, S., Chiari, S., Bonazzi, C., Bratina, G. and Mangioni, C. (2001) Behavior of Borderline Tumors with Particular Interest to Persistence, Recurrence, and Progression to Invasive Carcinoma: A Prospective Study. Journal of Clinical Oncology, 19, 2658-2664.
https://doi.org/10.1200/jco.2001.19.10.2658
[2] Hart, W.R. (2005) Borderline Epithelial Tumors of the Ovary. Modern Pathology, 18, S33-S50.
https://doi.org/10.1016/s0893-3952(22)04457-x
[3] Wang, D., Jia, S., Jia, C., Cao, D., Yang, J., Yang, J., et al. (2022) Oncological and Reproductive Outcomes after Fertility-Sparing Surgery in Patients with Seromucinous Borderline Ovarian Tumor: Results of a Large Retrospective Study. Gynecologic Oncology, 165, 446-452.
https://doi.org/10.1016/j.ygyno.2022.04.002
[4] Vasconcelos, I. and de Sousa Mendes, M. (2015) Conservative Surgery in Ovarian Borderline Tumours: A Meta-Analysis with Emphasis on Recurrence Risk. European Journal of Cancer, 51, 620-631.
https://doi.org/10.1016/j.ejca.2015.01.004
[5] Johansen, G., Dahm-Kähler, P., Staf, C., Flöter Rådestad, A. and Rodriguez-Wallberg, K.A. (2021) Reproductive and Obstetrical Outcomes with the Overall Survival of Fertile-Age Women Treated with Fertility-Sparing Surgery for Borderline Ovarian Tumors in Sweden: A Prospective Nationwide Population-Based Study. Fertility and Sterility, 115, 157-163.
https://doi.org/10.1016/j.fertnstert.2020.07.043
[6] Morice, P., Scambia, G., Abu-Rustum, N.R., Acien, M., Arena, A., Brucker, S., et al. (2024) Fertility-sparing Treatment and Follow-Up in Patients with Cervical Cancer, Ovarian Cancer, and Borderline Ovarian Tumours: Guidelines from ESGO, ESHRE, and Esge. The Lancet Oncology, 25, e602-e610.
https://doi.org/10.1016/s1470-2045(24)00262-6
[7] Colombo, N., Sessa, C., Du Bois, A., et al. (2019) ESMO-ESGO Consensus Conference Recommendations on Ovarian Cancer: Pathology and Molecular Biology, Early and Advanced Stages, Borderline Tumours and Recurrent Disease. Annals of Oncology, 30, 672-705.
[8] Baandrup, L., Faber, M.T., Aalborg, G.L. and Kjaer, S.K. (2020) Borderline Ovarian Tumors in Denmark 1997‐2018: Time Trends in Incidence by Histology, Age and Educational Level. Acta Obstetricia et Gynecologica Scandinavica, 100, 436-443.
https://doi.org/10.1111/aogs.14013
[9] Hauptmann, S., Friedrich, K., Redline, R. and Avril, S. (2016) Ovarian Borderline Tumors in the 2014 WHO Classification: Evolving Concepts and Diagnostic Criteria. Virchows Archiv, 470, 125-142.
https://doi.org/10.1007/s00428-016-2040-8
[10] Malpica, A. and Longacre, T.A. (2018) Prognostic Indicators in Ovarian Serous Borderline Tumours. Pathology, 50, 205-213.
https://doi.org/10.1016/j.pathol.2017.12.001
[11] Burks, R.T., Sherman, M.E. and Kurman, R.J. (1996) Micropapillary Serous Carcinoma of the Ovary. A Distinctive Low-Grade Carcinoma Related to Serous Borderline Tumors. The American Journal of Surgical Pathology, 20, 1319-1330.
https://doi.org/10.1097/00000478-199611000-00003
[12] Seidman, J.D. and Kurman, R.J. (1996) Subclassification of Serous Borderline Tumors of the Ovary into Benign Malignant Types. A Clinicopathologic Study of 65 Advanced Stage Cases. The American Journal of Surgical Pathology, 20, 1331-1345.
https://doi.org/10.1097/00000478-199611000-00004
[13] Shih, I. and Kurman, R.J. (2004) Ovarian Tumorigenesis: A Proposed Model Based on Morphological and Molecular genetic Analysis. The American Journal of Pathology, 164, 1511-1518.
https://doi.org/10.1016/s0002-9440(10)63708-x
[14] Kurman, R.J. and Shih, I. (2016) The Dualistic Model of Ovarian Carcinogenesis. The American Journal of Pathology, 186, 733-747.
https://doi.org/10.1016/j.ajpath.2015.11.011
[15] Kurman, R.J. (2013) Origin and Molecular Pathogenesis of Ovarian High-Grade Serous Carcinoma. Annals of Oncology, 24, x16-x21.
https://doi.org/10.1093/annonc/mdt463
[16] Sheu, J.J., Guan, B., Tsai, F., Hsiao, E.Y., Chen, C., Seruca, R., et al. (2012) Mutant BRAF Induces DNA Strand Breaks, Activates DNA Damage Response Pathway, and Up-Regulates Glucose Transporter-1 in Nontransformed Epithelial Cells. The American Journal of Pathology, 180, 1179-1188.
https://doi.org/10.1016/j.ajpath.2011.11.026
[17] Ho, C., Kurman, R.J., Dehari, R., Wang, T. and Shih, I. (2004) Mutations of BRAF and KRAS Precede the Development of Ovarian Serous Borderline Tumors. Cancer Research, 64, 6915-6918.
https://doi.org/10.1158/0008-5472.can-04-2067
[18] Bell, D.A. (2005) Origins and Molecular Pathology of Ovarian Cancer. Modern Pathology, 18, S19-S32.
https://doi.org/10.1016/s0893-3952(22)04456-8
[19] Yoon, J., Dammann, R. and Pfeifer, G.P. (2001) Hypermethylation of the CPG Island of Therassf1a Gene in Ovarian and Renal Cell Carcinomas. International Journal of Cancer, 94, 212-217.
https://doi.org/10.1002/ijc.1466
[20] Cheng, E.J., Kurman, R.J., Wang, M., Oldt, R., Wang, B.G., Berman, D.M., et al. (2004) Molecular Genetic Analysis of Ovarian Serous Cystadenomas. Laboratory Investigation, 84, 778-784.
https://doi.org/10.1038/labinvest.3700103
[21] Malpica, A. and Wong, K. (2016) The Molecular Pathology of Ovarian Serous Borderline Tumors. Annals of Oncology, 27, i16-i19.
https://doi.org/10.1093/annonc/mdw089
[22] Sieben, N.L., Macropoulos, P., Roemen, G.M., Kolkman‐Uljee, S.M., Jan Fleuren, G., Houmadi, R., et al. (2004) In Ovarian Neoplasms, BRAF, but Not KRAS, Mutations Are Restricted to Low‐Grade Serous Tumours. The Journal of Pathology, 202, 336-340.
https://doi.org/10.1002/path.1521
[23] Tsang, Y.T., Deavers, M.T., Sun, C.C., Kwan, S., Kuo, E., Malpica, A., et al. (2013) KRAS (but Not BRAF) Mutations in Ovarian Serous Borderline Tumour Are Associated with Recurrent Low‐grade Serous Carcinoma. The Journal of Pathology, 231, 449-456.
https://doi.org/10.1002/path.4252
[24] McHenry, A., Rottmann, D.A., Buza, N. and Hui, P. (2023) KRAS Mutation in Primary Ovarian Serous Borderline Tumors Correlates with Tumor Recurrence. Virchows Archiv, 483, 71-79.
https://doi.org/10.1007/s00428-023-03564-z
[25] Zeppernick, F., Ardighieri, L., Hannibal, C.G., Vang, R., Junge, J., Kjaer, S.K., et al. (2014) BRAF Mutation Is Associated with a Specific Cell Type with Features Suggestive of Senescence in Ovarian Serous Borderline (Atypical Proliferative) Tumors. American Journal of Surgical Pathology, 38, 1603-1611.
https://doi.org/10.1097/pas.0000000000000313
[26] Shih, I., Chen, L., Wang, C.C., Gu, J., Davidson, B., Cope, L., et al. (2010) Distinct DNA Methylation Profiles in Ovarian Serous Neoplasms and Their Implications in Ovarian Carcinogenesis. American Journal of Obstetrics and Gynecology, 203, 584.e1-584.e22.
https://doi.org/10.1016/j.ajog.2010.08.003
[27] Rathi, A., Virmani, A.K., Schorge, J.O., et al. (2002) Methylation Profiles of Sporadic Ovarian Tumors and Nonmalignant Ovaries from High-Risk Women. Clinical Cancer Research, 8, 3324-3331.
[28] Choi, Y., Kang, S.Y., Choi, J.S., Shin, Y.K., Kim, S.H., Lee, S., et al. (2005) Aberrant Hypermethylation of RASSF1A Promoter in Ovarian Borderline Tumors and Carcinomas. Virchows Archiv, 448, 331-336.
https://doi.org/10.1007/s00428-005-0091-3
[29] Farley, J., Brady, W.E., Vathipadiekal, V., Lankes, H.A., Coleman, R., Morgan, M.A., et al. (2013) Selumetinib in Women with Recurrent Low-Grade Serous Carcinoma of the Ovary or Peritoneum: An Open-Label, Single-Arm, Phase 2 Study. The Lancet Oncology, 14, 134-140.
https://doi.org/10.1016/s1470-2045(12)70572-7
[30] Grisham, R.N., Vergote, I., Banerjee, S., Drill, E., Kalbacher, E., Mirza, M.R., et al. (2023) Molecular Results and Potential Biomarkers Identified from the Phase 3 Milo/engot-Ov11 Study of Binimetinib versus Physician Choice of Chemotherapy in Recurrent Low-Grade Serous Ovarian Cancer. Clinical Cancer Research, 29, 4068-4075.
https://doi.org/10.1158/1078-0432.ccr-23-0621
[31] Grisham, R.N. (2020) MILO/ENGOT-ov11: Phase-3 Study of Binimetinib versus Physician’s Choice Chemotherapy in Recurrent or Persistent Low-Grade Serous Carcinomas of the Ovary, Fallopian Tube, or Primary Peritoneum. Gynecologic Oncology, 159, 22.
https://doi.org/10.1016/j.ygyno.2020.06.044
[32] Shetty, M.G., Pai, P., Deaver, R.E., Satyamoorthy, K. and Babitha, K.S. (2021) Histone Deacetylase 2 Selective Inhibitors: A Versatile Therapeutic Strategy as Next Generation Drug Target in Cancer Therapy. Pharmacological Research, 170, Article ID: 105695.
https://doi.org/10.1016/j.phrs.2021.105695
[33] Saleh, M.H., Wang, L. and Goldberg, M.S. (2015) Improving Cancer Immunotherapy with DNA Methyltransferase Inhibitors. Cancer Immunology, Immunotherapy, 65, 787-796.
https://doi.org/10.1007/s00262-015-1776-3
[34] Tempfer, C., Polterauer, S., Bentz, E., Reinthaller, A. and Hefler, L. (2007) Accuracy of Intraoperative Frozen Section Analysis in Borderline Tumors of the Ovary: A Retrospective Analysis of 96 Cases and Review of the Literature. Gynecologic Oncology, 107, 248-252.
https://doi.org/10.1016/j.ygyno.2007.06.008